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Nonlinear interactions between deep-water
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The effects of nonlinearity on a train of linear water waves in deep water interacting
with underlying currents are investigated numerically via a boundary-integral method.
The current is assumed to be two-dimensional and stationary, being induced by a
distribution of singularities located beneath the free surface, which impose sharp and
gentle surface velocity gradients. For ‘slowly’ varying currents, the fully nonlinear
results confirm that opposing currents induce wave steepening and breaking within
the region where a high convergence of rays occurs. For ‘rapidly’ varying currents,
wave blocking and breaking are more prominent. In this case reflection was observed
when sufficiently strong adverse currents are imposed, confirming that at least part
of the wave energy that builds up within the caustic can be released in the form of
partial reflection and wave breaking. For bichromatic waves, the fully nonlinear results
show that partial wave blocking occurs at the individual wave components in the wave
groups and that waves become almost monochromatic upstream of the blocking region.
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1. Introduction
Wave–current interactions occur in nature over a wide range of hydrodynamic length

scales. Giant waves have been registered in some parts of the world, especially off
the east coast of South Africa, where long waves are focused by the Agulhas current
(Mallory 1974; Kharif & Pelinovsky 2006). Short surface waves propagating into a
strong enough opposing current can be blocked such as at the entrances of tidal inlets
(Vincent 1979; Battjes 1982). In both cases the adverse current augments the wave
height and steepness, resulting in increased breaking and thus adding to the hazards
of navigation. The varied physical circumstances in which these interactions occur and
the different mathematical approaches that are applicable to them can be found in the
review papers of Peregrine (1976), Jonsson (1990) and Thomas & Klopman (1997).

A particular area of interest is the interaction between short-scale gravity waves and
strong large-scale currents. In this case the time and length scales over which the
current varies are much larger than the wave period or wavelength. If these waves
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propagate into a strong enough opposing current, then their group velocity could be
reduced to zero causing the waves to be blocked. A region almost free of wave
activity is formed upstream from the blocking point while a strong increase in wave
steepness is observed downstream, leading to rough water surfaces. Short surface
waves propagating over a steady but non-uniform current tend to undergo refractive
changes in length, direction and amplitude. Under certain conditions a simple linear
ray theory can predict these properties accurately. The changes in length and direction
depend on kinematical considerations only; however, changes in the wave amplitude
are less straightforward. Wave amplitudes become essentially nonlinear at the blocking
point and therefore the linear solutions are no longer accurate.

Thus the study of wave–current interactions has been a topic of active research
among scientists for many years, with several theoretical approaches (Longuet-
Higgins & Stewart 1960, 1961; Bretherton & Garrett 1968; Crapper 1972; Smith
1975; Peregrine & Smith 1979; Peregrine & Thomas 1979; Stiassnie & Dagan
1979). Recently direct modelling of wave blocking has been done with the help of
Boussinesq models (Chen et al. 1998; Chawla 1999), which have the advantage of
being nonlinear and thus can be used to study amplitude dispersion and energy transfer
effects in the dynamics of wave blocking. However, for short waves the dispersive
properties are not very well predicted, with the discrepancies in the dispersion relation
leading to significant errors in the wave blocking region. The complexity of the wave
field and the theoretical difficulties in understanding the dynamics near the blocking
point stimulated several researchers to carry out experimental work in this field (Sakai
& Saeki 1984; Lai, Long & Huang 1989; Ris & Holthuijsen 1996; Chawla & Kirby
1998; Suastika, de Jong & Battjes 2000; Chawla & Kirby 2002).

Though there are several theoretical and experimental works on waves propagating
against adverse currents, few fully nonlinear numerical models considering both
incident and reflected waves in the blocking region can be found in the literature.
Peregrine & Thomas (1979) suggested that solutions involving both types of waves
needed to be considered in the analysis in order to solve these caustic problems. The
current work aims to study via fully nonlinear computations the behaviour of a train
of linear water waves in deep water when meeting non-uniform currents, especially
in the region where linear solutions become singular. In particular ‘rapidly’ varying
surface currents are imposed in order to verify the wave transformation that occurs at
the blocking region. It is shown that wave blocking and breaking are more prominent
than in the solutions found for a gentle surface current and that reflection occurs when
sufficiently strong adverse currents are imposed. The computed incident, reflected and
transmitted waves are compared to linear theory, with wavelengths found to agree
rather well, but not wave amplitudes. The numerical simulations can help to clarify
some aspects of the nonlinear interaction such as the extension of the concept of group
velocity to nonlinear waves and the prediction of surface wave properties in the region
where linear ray theory breaks down.

2. Governing equations
2.1. Unsteady nonlinear model

In order to simulate the nonlinear evolution of periodic surface waves on a current,
an underlying flow is modelled via a stationary distribution of singularities underneath
the free surface. Basically the concept of introducing a single singular point in a
non-periodic domain (such as used by Moreira & Peregrine 2010) is extended in
order to generate spatially periodic free-surface flows with gentle and sharp current
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gradients. The method of solution consists of applying a boundary-integral method to
a free-surface flow problem, which reduces significantly the computational demand for
the calculation of the fluid motion since only surface properties are evaluated (Dold &
Peregrine 1986; Dold 1992). The solution is based on solving an integral equation that
arises from Cauchy’s integral theorem for functions of a complex variable.

The fluid flow is assumed to be inviscid and incompressible with the singularities
distributed below the free surface at fixed points xsi . It is also assumed that the flow is
irrotational outside the singular cores and away from the free surface. The irrotational
velocity field u(x, y, t) is then given by the gradient of a velocity potential Φ(x, y, t)
which satisfies Laplace’s equation in the fluid domain, excluding the singular points.
The coordinate axes, x and y, have their origin located at the undisturbed level of
the free surface. All the interior properties of the fluid are then determined by its
properties at the boundaries alone. The entire motion can be modelled by considering
a point discretisation of the surface.

To apply Cauchy’s integral theorem to the problem, the potential Φ must be known
on all the boundaries. The kinematic and dynamic boundary conditions are applied at
the free surface such that

Dr
Dt
=∇Φ,

DΦ
Dt
= 1

2
|∇Φ |2−gy− p

ρ
, (2.1)

where r= (x, y, t); y= η(x, t) is the elevation of the free surface above the undisturbed
water level; g is the acceleration due to gravity; and ρ is the fluid density. The
pressure p exerted on the exterior side of the surface can be chosen to approximate the
effects of wind, capillarity or a localised pressure on the surface, though for simplicity
it is not used in the present calculations.

Attention is directed to the case where a periodic train of short waves with initially
uniform wavenumber interacts with an underlying current. A strong gust of wind over
the sea surface may generate a periodic set of short waves of initially approximately
uniform wavenumber. It is convenient to assume that the wave surface is periodic in x,
not only for the purpose of computing a numerical solution, but also to guarantee
that the solution surface looks like a periodic plane wave train, satisfying linear
ray theory assumptions and also avoiding more complicated wave patterns. This
is particularly important for validation of the numerical results. Authors who have
similarly employed spatially periodic domains to study other related wave–current
problems include Donato, Peregrine & Stocker (1999) and Stocker & Peregrine (1999).

The velocity potential Φ(x, y, t) and the velocity u(x, y, t) are then required to be
continuous at the vertical boundaries such that

∇Φ(0, y, t)=∇Φ(2π, y, t), (2.2)

valid for −∞ < y 6 0 and t > 0. Here the length units are chosen to make the period
equal to 2π, which is convenient for a periodic domain. It is also assumed that the
water is deep, satisfying the condition |∇Φ| → 0 as y→−∞. To complete the model,
an initial condition for the free surface is required such that η(x, t) = η0(x, 0) and
Φ(x, η, t)=Φ0(x, η0, 0), as will be defined in § 2.3. To characterise the fluid motion in
deep water, the Froude number is defined as

Fr = γ√
gd3

, (2.3)

where γ and d are the strength and the depth of submergence of the singularities.



4 R. M. Moreira and D. H. Peregrine

2.2. Free-surface currents induced by singularities
The use of singularities in the modelling of free-surface flows has been a common
tool for researchers for many years in order to understand the basics and complexities
of several natural phenomena. Lamb (1932) was perhaps the first to register the
value of singularities when modelling free-surface flows, helping to disseminate this
concept. Singularities have become widely employed in fluid mechanics, whether in
the investigation of nonlinear effects at the free surface due to an underlying current,
or in the understanding of free-surface disturbances induced by vortex and sink flows.
Authors who have employed singularities to model underlying flows include Tuck &
Vanden-Broeck (1984), Vanden-Broeck & Keller (1987), Mekias & Vanden-Broeck
(1989, 1991), Tyvand (1991, 1992), Hocking & Forbes (1992), Miloh & Tyvand
(1993), Barnes et al. (1996), Xue & Yue (1998), Moreira (2001), Stokes, Hocking &
Forbes (2003) and Moreira & Peregrine (2010).

In this work the underlying current is modelled by a distribution of singularities
– vortices, sinks and sources – located beneath the free surface, which can induce
varied surface current profiles, each of them with a certain minimum and maximum
velocity and with a gentle or sharp current gradient. The current is designed to
be essentially uniform over the depth of penetration of the wave disturbances but
variable in the x-direction. Several singularity distributions were tested based on the
experimental current profiles presented by Chawla & Kirby (2002) and Suastika &
Battjes (2009). (Actually the present work was motivated by the experimental work
first published by Chawla & Kirby 1998 and Suastika et al. 2000.)

The chosen singularity distributions satisfy Laplace’s equation in the fluid domain
and are introduced in our model by decomposing the velocity potential Φ into a
regular part φw(due to surface waves) and a singular part φs (due to the singularities),
such that Φ = φw + φs. To apply Cauchy’s integral theorem to the periodic free-surface
flow problem, which now includes the singularities, a conformal mapping of the form
ζ = e−iz is used, where z = x + iy. No generality is lost in assuming time and space
dimensions to be suitably scaled by choosing a certain length to make this period
exactly 2π.

For a sharp current gradient, two counter-rotating vortices with strength γ are
employed, occupying the positions z1(= x1+ iy1) and z2(= x2+ iy2). For deep water, the
velocity potential φs of the flow induced by the pair of point vortices in the ζ -plane is
given by (Batchelor 1967)

φs(ζ )=−γRe

i log

(ζ − ζ1

ζ − ζ2

)
1
ζ
− ζ2

1
ζ
− ζ1



 , (2.4)

where ζ1(= e−iz1) and ζ2(= e−iz2) represent the corresponding positions of the vortex
couple in the ζ -plane; ζ1 and ζ2 are, respectively, the complex conjugates of ζ1 and ζ2.

For a gentle surface current gradient, a set of sinks and sources are employed. In the
case of a single pair of source and sink, located at ζ1 and ζ2 respectively, the velocity
potential φs becomes (Batchelor 1967)

φs(ζ )= γRe

log

(ζ − ζ1

ζ − ζ2

)
1
ζ
− ζ1

1
ζ
− ζ2



 , (2.5)
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FIGURE 1. A sketch of the fluid domain with an arbitrary free-surface initial condition plus:
(a) a sink–source distribution (×: sources; ◦: sinks); (b) an eddy couple.

which is valid for deep water. Here γ is defined as the volume flux per length unit
of each of the sinks and sources. Note that the reflection of the singularities onto
the free surface, expressed in (2.4) and (2.5), represents a convenient choice for deep
water only. They are placed outside the body of the fluid and used to approximate the
velocity potential within the fluid. For an unbounded domain with a bed, a vertically
periodic set of singularities reflected onto the bed is more appropriate.

The singularities are assumed to be at fixed positions in time such that steady
surface currents are imposed on the waves. The singularity distribution has to be
weak enough to have little or no effect on the waves such that its existence can be
considered unimportant. Therefore only free-surface flows with Fr 6 0.1 are employed
in this work. This condition is particularly relevant when sharp current gradients
are considered. Hence the free-surface waves do not affect the singularities in our
nonlinear model. Then the velocity potential φs satisfies a linear equation beneath the
free surface.

Figure 1 sketches the periodic fluid domain with a distribution of 16 sinks and
16 sources and an eddy couple, plus an arbitrary free-surface initial condition.
The singularity distributions were chosen to define ‘slowly’ and ‘rapidly’ varying
surface currents conveniently. Different maxima and minima for the velocity profiles
– namely Umax and Umin – can be obtained by simply varying the sink–source volume
flux γ and the vortices depth d. The free-surface current profiles used in the nonlinear
computations are detailed in § 4, figure 7.

The method of solution consists of solving numerically an integral equation that
arises from Cauchy’s integral theorem for functions of a complex variable. Φ is
known on the surface for each time step; φs is then subtracted from the surface value
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of Φ such that the remaining surface wave potential φw, which has no singularities
in the fluid domain, can be used with Cauchy’s integral theorem to calculate the
velocity ∇φw on the free surface (Dold 1992). The ‘total’ surface velocity is then
given by u = ∇φw + ∇φs. The surface profile r and the velocity potential Φ are then
stepped in time using a truncated Taylor time series truncated at the sixth power. Since
in our model the singularities are assumed to be at fixed positions in time, the partial
time derivatives of φs vanish, though the ‘total’ surface velocity u and its Lagrangian
derivatives are affected directly in our model by the presence of the singularities. For
more details on the numerical method see Moreira (2001, Section 2.3).

2.3. Initial condition for the fully nonlinear model
The impulsive initial motion of the underlying flow generates disturbances at the free
surface. Waves may then be formed as a response to this interaction. Eventually
these waves reach regions where the surface current is adverse and sufficiently
strong to block their group velocity, increasing their wave steepness and leading to
wave breaking, and thus making the analysis more difficult. To construct a suitable
initial condition, we superimpose a ‘quasi-steady’ damped nonlinear solution onto
an initially uniform wave train with gentle steepness. The resulting initial condition
reduces considerably the disturbances generated by the impulsive initial motion and
let us investigate more precisely possible nonlinear effects that would arise due to
the interaction between the linear wave train and the singularities. A second-order
linearized steady solution for the free-surface elevation is derived in order to compare
with the ‘quasi-steady’ damped nonlinear profiles obtained from the numerical scheme,
supposing a simple flat free surface as our initial condition.

Under linear theory, it is possible to solve explicitly the problem of a stationary
free-surface flow due to a generic distribution of singularities. Laplace’s equation is
valid for the whole fluid domain, excluding the singular points xsi , while at the vertical
boundaries ∇Φ(0, y) = ∇Φ(2π, y) for −∞ < y 6 0. As x→ xsi , the ‘total’ velocity
potential Φ approaches the velocity potential φs due to the singularities. At the free
surface the kinematic and dynamic boundary conditions (2.1) take the stationary form

∂Φ

∂x

∂η

∂x
= ∂Φ
∂y
,

1
2

[(
∂Φ

∂x

)2

+
(
∂Φ

∂y

)2
]
+ gη = 0, (2.6)

both valid on y= η(x).
Assuming that the surface waves are sufficiently small, a linearized steady free-

surface solution can be approximated by defining the ‘total’ velocity potential Φ(x, η)
and the free-surface profile η(x) in terms of the algebraic expansions

Φ(x, η)= εΦ1 + ε2Φ2 + · · · , η(x)= εη1 + ε2η2 + · · · , (2.7)

in which ε is a small parameter; the functions ηi(i = 1, 2, . . .) depend on x, while Φi

depends on x and η. Substituting these approximations into (2.6) and extracting the ε
and ε2 terms gives

η(x)=− 1
2g

(
∂φ

∂x

)2

, (2.8)

where, to simplify the notation, Φ1 and η2 were replaced by φ and η; φ denotes the
velocity potential φs due to any submerged distribution of singularities and satisfies
Laplace’s equation in the fluid domain, while ∇φ(0, y)=∇φ(2π, y) for −∞< y 6 0.
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FIGURE 2. The linear steady free-surface solution (——) and the damped nonlinear
numerical results due to: (a) a distribution of 16 sources and 16 sinks: Fr = 0.015, δ = 1.5,
T = 119.0 (· · · · · ·) and T = 158.0 (– – –); (b) an eddy couple: Fr = 0.08, δ = 1.5, T = 79.2
(· · · · · ·) and T = 119.2 (– – –). Vertical exaggeration 250:1.

Depending on the magnitude of the surface current induced by the singularities,
previous computational runs showed that disturbances generated by the impulsive
initial motion at an initially flat free surface may be significant and sufficient to lead
to wave breaking. These initial disturbances can be numerically dissipated leading to
a ‘quasi-steady’ surface in finite time. For the purpose of obtaining a suitable initial
condition for the fully nonlinear problem, a damping term for the second harmonic
of Φ is introduced

Φ(t +1t)=Φ(t)+ DΦ
Dt
1t + 1

2
D2Φ

Dt2
1t2 + δ

2
∂2Φ

∂t2
1t2 + O(1t3), (2.9)

where δ is the damping factor.
From now on all the variables in the numerical code are non-dimensionalised such

that X = κx, T = t
√

gκ and U = u
√
κ/g, where κ is the wavenumber; X, T and U are

the dimensionless parameters. A comparison between the damped nonlinear results and
the linear steady free-surface solutions for a distribution of 16 sinks and 16 sources
and an eddy couple is shown in figure 2. Two depressions are formed immediately
above the counter-rotating vortices, which approach the linear steady solution given by
Novikov (1981); depressions are wider for the sink–source distribution. In both cases,
however, the depth of the depression reaches its maximum where the maximum and
minimum surface currents are imposed. For bigger Froude numbers these depressions
become deeper.

Tests carried out employing the ‘stationary’ solutions as the initial condition of the
numerical code showed that the disturbances generated by the impulsive initial motion
have either vanished or appeared in the form of tiny waves with very small amplitude.
To include an initially uniform wave train with gentle steepness in our initial condition,



8 R. M. Moreira and D. H. Peregrine

U
 =

 0

U
 =

 0

U
 =

 0

U
 =

 U
m

in

U
 =

 U
m

ax

U
 =

 U
m

in

0
–0.006

–0.004

–0.002

0

0.002

0.004

1 2 3 4 5

Y

6

(a)

0
–0.006

–0.004

–0.002

0

0.002

0.004

1 2 3 4 5

X

Y

6

(b)

FIGURE 3. The ‘stationary’ free surface (– – –), the initially uniform wave train with
a0k0 = 0.04 (– · – · –) and the superposition of both profiles (——) due to: (a) a distribution of
16 sources and 16 sinks (Fr = 0.015); (b) an eddy couple (Fr = 0.08). a0 and k0 represent the
wave amplitude and wavenumber at time T = 0. Vertical exaggeration 250:1.

we superimpose a train of linear waves onto the ‘quasi-steady’ solutions obtained.
Figure 3 shows the surface elevations, with the solid lines representing the resulting
initial conditions. The uniform wave train (dashed–dotted line) follows the ‘stationary’
solution (dashed line) as its mean level. The same procedure applies to the calculation
of the velocity potential.

2.4. Accuracy of the numerical scheme
With steep surface phenomena, such as wave breaking, there is a tendency for
dramatic changes in properties to take place over relatively small portions of the
surface. Nonlinearity exaggerates such changes and thus accuracy may be lost more
readily for steep waves than weakly nonlinear waves. Surface resolution may then
become relatively poor in regions of high curvature. This lack of resolution occurs
when waves are ‘about to break’ and depends on the ‘precision’ parameter ε imposed
on the nonlinear computations (Dold 1992); ε is used to determine the appropriate
stage at which iteration for the potential gradients may cease. It is also employed to
specify the convergence of the Taylor series expansion used in the time stepping
process. When the free surface contains regions of high curvature or the point
distribution becomes too irregular in space, the scheme does not converge and thus
the algorithm breaks down. This means that an insufficient number of points could be
found if, for example, the wave approaches Stokes’ limiting shape (120◦ at the crest of
the calculated wave) or the crest overturns.

Wave breaking is, therefore, very sensitive to the computational parameters. This
is demonstrated in figure 4 where three free-surface profiles with different initial
discretisations, but with the same accuracy parameter (ε = 10−6) and time (T = 12.8),
are compared. In this case the initial train of linear water waves did not maintain
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FIGURE 4. Resolution of the surface wave at T = 12.8 due to a ‘rapidly’ varying current
(Fr = 0.08) for three initially uniform discretisations. The initial train of linear waves has a
steepness a0k0 = 0.04. No vertical exaggeration.

its initial wave form but steepened due to the interaction of an opposing current (for
a full discussion see § 4). The more discretisation points that are used, the earlier
wave breaking occurs. At low resolutions wave energy is numerically dissipated.
Computations are then interrupted as soon as the accuracy required is no longer
achieved. For illustration, dotted lines are placed at 120◦ to each other near the crest of
the wave. For an initial discretisation of 120 points per wavelength the computed wave
approaches Stokes’ limiting shape at T = 12.8 and soon wave breaking occurs.

Slightly different surface profiles are also found for regions which contain very short
waves on currents if we try to model the same surface with a different number of
points. Figure 5 shows the surface profiles obtained from the same starting conditions
using 60, 120 and 240 calculation points per wavelength. As already discussed, the
difference is most noticeable in the crest of the steepest wave where a high curvature
is reached. The reflected waves on the backward face of the steepest wave also present
slight differences. The fewer points used, the longer are the reflected waves, with
amplitudes decaying quicker with distance from the crest. The decrease in amplitude
is attributed to numerical dispersion, which has the effect of smoothing waves with
few points per wavelength. To avoid this the computed cases presented here have an
initial distribution of 120 points per wavelength, unless otherwise stated. A discussion
on the number of points employed to resolve these reflected waves is presented in
§ 4.1. Sawtooth numerical instabilities were not observed in any of the computations
presented in this paper; smoothing was therefore not necessary.

3. Linear wave theory
3.1. Kinematics of waves on currents

Most of the theoretical analysis on the interactions between water waves and currents
has been developed using linear wave theory. This means that linear results are limited
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with 60 (– – –), 120 (——) and 240 (· · · · · ·) surface calculation points per wavelength.
Fr = 0.08, a0k0 = 0.04. Vertical exaggeration 10:1.

to cases in which changes of the wave properties occur slowly over the wave period.
The problem studied here concerns the interaction of periodic waves on a current
which varies in the x-direction only i.e. u = u(x)i. Only waves travelling directly with
or against the current are considered such that k = ki. In the absence of surface
tension effects and considering that the surface waves propagate in deep water, then
the Doppler-shifted dispersion relation simplifies to

(ω − u(x)k)2 = gk, (3.1)

where ω is the wave frequency in a fixed reference frame; Ω(= ω − u(x)k) is the
wave frequency in a reference frame moving with the current u. The group velocity of
the waves relative to the water is then given by ∂ω/∂k, while the corresponding total
group velocity, or total wave energy transport velocity, is defined by Cg = ∂Ω/∂k.

Figure 6 shows the possible dispersion solutions for opposing and following currents
in a one-dimensional flow field. The linear dispersion relation is represented by the
solid curve and the Doppler-shifted relation by the straight lines. In the absence of
a current, Ω = ω, and two solution points exist, which correspond to waves moving
at a constant phase speed c = + (g/k)1/2 if k > 0, or c = − (−g/k)1/2 if k < 0. The
relative group velocity ∂ω/∂k is the slope of the solid curve, while the total group
velocity ∂Ω/∂k is given by the difference between the slope of the solid curve and the
straight line. Thus for Ω = ω, cg =±c/2, which corresponds to the group velocity for
waves in deep water.

In the presence of a current u, with Ω = ω − uk and us < u < 0 (where us is the
blocking current), four solutions are possible for a fixed wave frequency ω. If k is
positive then the current is opposing the wave propagation. The solution point A on
figure 6 represents waves with a shorter wavelength (larger wavenumber) compared
to the solution without any current. From the graph, it is clear that the total group
velocity decreases due to the opposing current, but still ∂Ω/∂k > 0 for root A. Even
though waves are moving against the current, their energy is ‘washed down’ by
the current. If the waves are pushed further into weaker currents, which essentially
depends on the sign of ∂u/∂x, their wavelengths keep decreasing. The second solution,
given by root B, has waves with very short wavelengths with ∂Ω/∂k < 0. Reflected
waves must then be generated upstream whereas wave energy is swept downstream.
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the blocking current. The shaded area represents the region where nonlinear effects are
investigated.

The other two solutions, namely C and D, correspond to cases in which waves and
current move in the same direction i.e. k < 0 and us < u < 0. It is directly seen from
figure 6 (solution point C) that, in comparison with the waves without a current, a
following current lengthens the wave instead of shortening it as occurs at point A.
This means that the relative phase speed is now augmented by the following current.
Root D appears when the Doppler-shifted line crosses the negative branch of the linear
dispersion relation. This solution corresponds to very short waves, with both wave
crests and energy being swept downstream. Note that for u > 0, analogous solutions
can be obtained; in this case blocking can only occur if k < 0.

The two roots A and B tend to coalesce if the waves propagate into regions of
stronger currents, giving in the limiting case a single solution E, which represents the
blocking point where u = us. At this stage the Doppler-shifted line is tangent to the
linear dispersion relation and, therefore, ∂Ω/∂k = 0. The kinematic condition for wave
blocking is then satisfied and linear theory becomes singular. The velocity at which
the waves’ group velocity relative to the water is equal and opposite to the current is
known as the stopping velocity where

us =− g

4ω
. (3.2)

The Doppler-shifted line also crosses the dispersion relation at two more solution
points, namely F and G. In this case the current follows the wave propagation
since k < 0 and u = us < 0. Since the current had increased in magnitude, roots F
and G have longer wavelengths when compared to C and D respectively. For stronger
currents (u < us), only two solutions exist for the wave, namely H and I, which are
swept downstream. In this case there is no linear solution if k > 0. If ω decreases, cg

increases at the blocking point. Thus stronger currents are necessary to block longer
waves.

The influence of wave amplitude on the dispersion relation is neglected by
linear theory. Stokes was the first to show that this dependence produces important
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qualitative changes in the behaviour of water waves, especially when nonlinear effects
arise. The effects of wave amplitude on the dispersion relation when waves are
near the blocking point were considered by Longuet-Higgins (1975) and Peregrine
& Thomas (1979). They found that the total group velocity ∂Ω/∂k in which blocking
occurs is greater for the nonlinear case. This means that a stronger free-surface current
is then necessary to block the nonlinear waves. The concept of group velocity is very
valuable in understanding and predicting the propagation of linear waves. However
its extension to nonlinear waves presents difficulties since there are several different
velocities which might correspond to a group velocity. Peregrine & Thomas (1979)
presented various possible extensions of this concept to nonlinear waves showing the
difficulties associated with deep-water waves blocked by an adverse stream.

3.2. Linear ray theory
We also use ray theory to model the interaction of the short waves with the surface
current due to the singularity distribution. Ray theory assumes that at any particular
point the solution surface locally looks like a periodic plane wave train and that any
variations in the wave amplitude, frequency and wavenumber are slow, i.e. changes
over one wavelength are small. The hypothesis of slow variation of wave properties
leads to equations which define lines parallel to the total group velocity of the waves,
known as rays. These rays represent a single set of characteristic directions which in
one dimension simplifies to

dx

dt
= Cg = u(x)+ cg, (3.3)

where cg(= c/2) is the group velocity for waves in deep water. For a steady surface
current the frequency ω is constant along a ray.

Assuming that initially the waves propagate in the positive direction with a phase
velocity c = √g/k then the Doppler-shifted dispersion relation (3.1) can be rewritten
as

ωc2 − gc− gu(x)= 0, (3.4)

which is a quadratic determining the phase velocity c as a function of the surface
current u(x) and the frequency ω. Equation (3.4) gives two solutions for c:

c= g

2ω

(
1±

√
1+ 4ωu(x)

g

)
. (3.5)

Thus for a particular ray the quadratic (3.4) defines the frequency ω:

ω = g

(
1
c1
+ u(x0)

c2
1

)
, (3.6)

where x0 is the position of the ray at time t = 0 and c1 is the corresponding value of
the phase velocity at that point. Substituting expression (3.6) into (3.5) gives

c= 1
2

c2
1

u(x0)+ c1

[
1±

√
1+ 4u(x)

u(x0)+ c1

c2
1

]
. (3.7)

Restricting the initial conditions to the case with a positive sign (i.e. waves
travelling in the same direction as the current), for time t = 0, x = x0, and then
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the ray equation (3.3) assumes the form

dx

dt
= u(x0)+ 1

2
c1. (3.8)

Expression (3.8) determines which root of c should be taken. If in the subsequent
propagation of a ray dx/dt = 0 then the wave is blocked by the current, followed
by reflection with respect to the (x, t)-plane. This corresponds to a transfer to the
negative root of expression (3.7) for c. Thus energy cannot propagate beyond the
blocking point and builds up along the caustic formed. Linear ray theory breaks down
near the caustic and either nonlinear effects take over followed possibly by wave
breaking, or a uniform solution is needed. The ray diagrams presented in the following
section are obtained by integrating expression (3.8) with respect to x and t, and
non-dimensionalised as shown in § 2.3.

An expression for the wavenumber k(=g/c2) can be derived in terms of the surface
current u(x) and u(x0), and the phase velocity c1. From expression (3.7),

k = 4g

c4
1

[
u(x0)+ c1

1±√1+ 4u(x) [u(x0)+ c1] /c2
1

]2

. (3.9)

Wave amplitudes can also be estimated; for a steady one-dimensional flow, the
conservation of wave action equation simplifies to (Bretherton & Garrett 1968)

∂

∂x

(
Cg

E

Ω

)
= 0. (3.10)

The total group velocity Cg is given by expression (3.3) while the wave action E/Ω is
defined as

E

Ω
= ρca2

2
, (3.11)

where a is the wave amplitude. Substituting expressions (3.3) and (3.11) into (3.10)
and integrating results leads to

a

a0
=
√

c2
0

c[c+ 2u(x)] , (3.12)

where a0 and c0 are, respectively, the amplitude and the phase velocity at time t = 0;
and c is given by expression (3.7). For comparison purposes, expressions (3.9)
and (3.12) are plotted against the fully nonlinear results in § 4.1, figure 12.

In the light of linear ray analysis it is also possible to estimate the opposing
current u(x) necessary to block the incident waves. By substituting the wave
frequency ω given by (3.6) into expression (3.2),

us =−1
4

c2
1

u(x0)+ c1
. (3.13)

If u = us then, by simple substitution into expressions (3.7) and (3.3), Cg = 0, which
is exactly the condition for a stopping velocity. For comparison purposes, us is non-
dimensionalised as in § 2.3 such that Us = us

√
κ/g.
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FIGURE 7. Free-surface current profiles induced by: (a) 16 sources and 16 sinks (‘near-
linear’ current); (b) an eddy couple (‘rapidly’ varying current). For each case, three
peak velocities are considered: |Umin|/|Us| = |Umax |/|Us| = 1.26 (— — —); 1.0 (———);
0.83 (— ·— ·— ·).

4. Fully nonlinear results
The nonlinear results consider as an initial condition a set of short waves with initial

gentle steepness (set up as explained in § 2.3) interacting with gentle or sharp current
gradients, each of them with different peak velocities. Free-surface currents were
conveniently chosen such that their minimum velocity Umin approaches the stopping
velocity Us of the free-surface waves under still-water conditions. This situation is of
especial interest since linear solutions become singular at the blocking point. Figure 7
shows the free-surface current profiles employed in the nonlinear computations. For
convenience velocities are expressed in terms of the stopping velocity Us. Thus
three particular situations are of interest and herein studied: Umin < Us, Umin = Us

and Us < Umin < 0, similarly as discussed in § 3.1, figure 6.
Ten initially uniform waves with gentle steepness propagating from the left to the

right side are introduced in the periodic domain. In the case of no surface current,



Nonlinear interactions between deep-water waves and currents 15

RII RI

U = Umax U = UmaxU = UminU = 0 U = 0

U = Umax U = UmaxU = UminU = 0 U = 0

0
0 2 4 6

5

10T

15

0
0 2 4

X
6

5

10
T

15

20

(a)

(b)

FIGURE 8. Fully nonlinear results (a) and the corresponding ray diagram (b) due to a
‘near-linear’ current. |Umin| = |Umax | = 1.26|Us|, a0k0 = 0.04, Tbreaking = 18.0.

waves propagate steadily without any distortion since the wave train is too gentle
for the Benjamin–Feir instability to develop in the time available. For clarity of the
nonlinear results, the stacked free-surface profiles are vertically exaggerated 40 times,
unless otherwise stated. As explained in § 3, ray diagrams are also presented for the
purpose of comparison. All the computations were done on a Sun Ultra 2/200 with the
same accuracy parameters as presented in § 2.4.

4.1. ‘Slowly’ and ‘rapidly’ varying surface currents
Figure 8 shows the stacked free-surface deformation of a wave train with initial
gentle steepness a0k0 = 0.04 and its corresponding ray diagram on the same
scale. In this case 16 sinks and 16 sources are symmetrically distributed in the
periodic domain at the same depth, imposing a ‘near-linear’ surface current with
|Umin| = |Umax | = 1.26|Us| (for details of the surface current profile, see figure 7a).
The wave transformation that occurs due to the underlying current is clear from
figure 8(a) . Rough and smooth surfaces can be identified, respectively, downstream
and upstream of the Umin region after a certain period of time. Some of the waves
are steep enough to be noticeably affected by nonlinearity. Rays start to converge as
soon as they approach the Umin region (see the region indicated by RI in figure 8b),
with no focusing occurring in the period of time considered. Associated with RI , an
increase in wave amplitude is observed in the nonlinear calculations, shortly leading
to wave breaking with no reflection. Partial wave blocking is predicted by linear
ray theory and thus confirmed by the nonlinear computations. There are very few
rays upstream of the Umin region, exactly where the waves are much less steep with
longer wavelengths. Rays also converge in a second region, namely RII , but without
wave breaking being seen. Instead, only an increase in wave steepness is associated
with RII , which appears from the interaction of rays blocked by Umin and rays that had
already been accelerated by Umax . In fact these two families of rays do overlap at later
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FIGURE 9. Fully nonlinear results (a) and the corresponding ray diagram (b) due to a
‘rapidly’ varying current. |Umin| = |Umax | = 1.26|Us|, a0k0 = 0.04, Tbreaking = 6.0.

times. For the same underlying current, computational runs with gentler initial waves
show that, as the initial wave steepness decreases, the corresponding time at which
wave breaking occurs increases (e.g. Tbreaking = 18.0 for a0k0 = 0.04; Tbreaking = 21.2
for a0k0 = 0.02).

Figure 9 illustrates the free-surface evolution of a similar wave train (a0k0 = 0.04)
and its ray diagram for a ‘rapidly’ varying surface current. In this case a stationary
vortex couple located underneath the free surface induces the same peak velocities
|Umin| = |Umax | = 1.26|Us| (for details of the surface current profile, see figure 7b).
Comparing with the corresponding ‘slowly’ varying current (see figure 8), waves are
blocked sooner with wave breaking occurring three times earlier (Tbreaking = 6.0). It
is also possible to notice that for sharp current gradients waves are trapped nearer
the Umin region. A comparison with the ray diagram shows that rays strongly
converge in the region where waves steepen and break. Though this region has a
high concentration of rays, no focusing was observed. Since a strong surface current
gradient is applied over one wavelength near the Umin region, ray theory assumptions
are not fully satisfied there, with nonlinear effects taking over. Furthermore, since we
are ignoring dissipation, in the linear approximation wave action is conserved in the
system as a whole. This implies that wave energy increases for rays moving into
regions of greater frequencies and is lost when frequencies decrease. This feature is
confirmed by the ray diagram in figure 9(b), where rays are clearly much more spaced
upstream of the Umin region than downstream.

For weaker currents, figure 10 shows the evolution of short surface waves
(a0k0 = 0.04) interacting with a ‘near-linear’ current (|Umin| = |Umax | = |Us|) plus
the corresponding ray diagram. The surface current also leads to wave breaking,
which now occurs later (Tbreaking = 25.4) and in the region where rays overlap (see
figure 10b). When stronger currents are imposed, such as in figure 8, nonlinear effects
take over before overlapping occurs; in that case a strong convergence of rays is
observed near the Umin region. Figure 10(b) also shows a low concentration of rays
upstream of the blocking region, with waves much less steep there.

As sharper current gradients are applied, with similar initial conditions (a0k0 = 0.04)
and peak velocities (|Umin| = |Umax | = |Us|), reflection accompanied by wave breaking
appears in the blocking region (see figure 11). This means that part of the wave
energy that builds up within the blocking region can be released in the form of partial
reflection before wave breaking occurs. This nonlinear feature was not observed when
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FIGURE 10. Fully nonlinear results (a) and the corresponding ray diagram (b) due to a
‘near-linear’ current. |Umin| = |Umax | = |Us|, a0k0 = 0.04, Tbreaking = 25.4.
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FIGURE 11. Fully nonlinear results (a) and the corresponding ray diagram (b) due to a
‘rapidly’ varying surface current. |Umin| = |Umax | = |Us|, a0k0 = 0.04, Tbreaking = 14.8.

a ‘near-linear’ current is applied for similar time (see figure 10). The fully nonlinear
results also show that the surface current induced by the eddy couple is sufficient to
cause wave steepening and breaking, but still closer to the peak velocity Umin. The
incident waves are clearly deformed near the maximum and minimum velocity regions,
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FIGURE 12. Variation of (a) wavenumber, (b) amplitude, and (c) wave steepness, according
to linear ray theory (——) and obtained from the fully nonlinear results for a sharp current
gradient (|Umin| = |Umax | = |Us|, a0k0 = 0.04, Tbreaking = 14.8); (d) the reflected waves and
(e) their corresponding velocities extracted from figure 11(a) at the breaking time. Subscript 0
refers to still-water conditions and subscript s to conditions at the stopping velocity.

while their group velocity remains unchanged near the regions where U = 0. These
features are confirmed by the ray diagram in figure 11(b), in which rays slow down
when passing near the Umin region and become more rapid when passing the Umax

neighbourhood, increasing locally their kinetic energy and group velocity.
Surface wave properties measured from the nonlinear calculations at the breaking

time (extracted from figure 11a) and from linear ray theory are compared in figure 12.
The linear results are evaluated through expressions (3.9) and (3.12) based on the
value of the frequency ω of the appropriate ray. From the ray diagram in figure 11(b)
it is possible to see that this corresponds to a ray initially located in the region where
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a0k0 T Maximum No. of surface
ak/a0k0 discretisation pts.

0.00 1.30 107
3.60 2.20 107

0.04 7.20 5.00 59
10.8 8.60 30
14.4 9.80 6
0.00 1.70 244
3.60 3.30 138

0.01 7.20 7.60 66
10.8 10.8 27
14.4 25.5 6

TABLE 1. Number of surface discretisation points of the steepest waves for a0k0 =
0.04 and 0.01 propagating over a sharp current gradient (|Umin| = |Umax | = |Us|) for
various times.

the surface current vanishes. Figure 12(d) shows the discretisation of the breaking
wave, which takes the form of a breaker jet, with the points near the tip tending
to move vertically together. Its amplitude is approximately 4 times a0, the initial
wave amplitude (see figure 12b). Breaking wave tests carried out by Chawla (1999)
also showed that amplitude dispersion plays an important role in determining wave
blocking due to the rapid increase in wave steepness close to the blocking point.
Because of these substantial amplifications, waves become too steep to be described by
an infinitesimal wave theory.

Figure 12(d) also shows the discretisation of the reflected waves formed behind
the breaking wave. Waves 2 and 3 are particularly well resolved with a minimum
of 6 points per wavelength, which represents a reasonable discretisation for gentle
waves (Dold 1992). Indeed a comparison between the wavenumbers reveals a good
agreement between linear and nonlinear results (see figure 12a). A closer look at
figures 12(b) and 12(c) shows that wave steepnesses tend to agree better with
ray theory than wave amplitude results. This agreement becomes even better for
initially more gentle wave steepnesses, as shown in figure 13. The reflected waves
now have a better resolution and thus give better results when compared to linear
ray theory. Incident and transmitted waves have their initial resolution practically
unchanged. From figures 12(c) and 13(a) it is possible to verify that incident waves
have their steepness increased when on adverse currents, leading to wave breaking
close to the stopping velocity, while transmitted waves decrease their steepness
substantially, becoming smoother for positive currents. Finally figure 12(e) illustrates
the corresponding hodograph: the incident linear wave train approaches a circular
velocity diagram whereas the reflected waves follow a spiral path with increasingly
velocities until breaking occurs.

The validity of the numerical results depends on the resolution of the regions of
high curvature. Table 1 shows the resolution of the steepest waves for a0k0 = 0.04
and 0.01 propagating over a sharp current gradient (Umin = Us) at various times.
As expected the steepest waves are located near the region where the opposing
surface current reaches its maximum. Basically the number of surface discretisation
points falls from hundreds to just 6 points per wavelength, which corresponds to the
resolution obtained for a reflected wave.
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For weaker currents (e.g. |Umin| = |Umax | = 0.83|Us|), longer computational runs
are needed, which makes the analysis more difficult since the initial waves do not
break when crossing the whole period (0 6 X 6 2π) for the first time. After that,
the initial waves have their phase velocity substantially changed by the imposed
surface current. Waves get ‘steeper’ in the Umin region with breaking occurring in the
region where rays overlap; upstream of the blocking region waves have their steepness
reduced. Despite the accumulated changes imposed by weaker currents on the initially
uniform wave train along the periodic domain, results show that linear ray theory
can still predict the region where wave steepening and breaking occur, with a high
convergence of rays and caustics being formed within that region. Indeed, for longer
computational runs in a similar spatially periodic domain, Donato et al. (1999) also
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FIGURE 14. Final stages up to wave breaking due to: (a) a ‘slowly’ varying current
(Tbreaking = 5.4); (b) a ‘rapidly’ varying current (Tbreaking = 4.6). In both cases |Umin| =|Umax | = 0.83|Us|, a0k0 = 0.40. No vertical exaggeration.

found a good agreement between linear ray theory and fully nonlinear results despite
all the accumulated changes in the wave pattern.

4.2. ‘Steeper’ initial conditions and wave breaking
The effects of underlying currents on waves with greater steepnesses are of interest
and also investigated here. Figure 14 shows with no vertical exaggeration the last steps
until wave breaking occurs when steep waves (a0k0 = 0.40) interact with a ‘slowly’
and a ‘rapidly’ varying current (Umin = 0.83Us). Under these conditions waves are
noticeably affected by nonlinearity. However the sink–source distribution causes wave
steepening in larger regions than the current induced by the eddy couple. Waves do
steepen locally due to the vortex flow in a way sufficient to stop the computations
before the ‘slowly’ varying current case. In both cases the breaking wave takes the
form of a breaker jet, approaching Stokes’ limiting shape of 120◦ at the crest, with
no overturning being observed. Tanaka (1983) found that regular waves on deep water
break when their steepnesses exceed approximately ak = 0.43, which corresponds to
the maximum value found in the computations. Similar features were also observed for
smaller initial wave steepnesses.

Figure 15 shows the time of breaking of short surface waves propagating over the
non-uniform currents versus three initial wave steepnesses (a0k0 = 0.04, 0.20, 0.40)
with the same resolution (120 points/wave) and accuracy parameters defined in
§ 2.4. In general strong ‘rapidly’ varying currents (Umin/Us = 1.26, 1.0) induce
wave breaking at shorter times than the corresponding ‘slowly’ varying currents. An
exception occurs for weaker currents (Umin/Us = 0.83); in this case the sharp current
gradient seems to be less effective in causing local wave steepening and breaking. In
fact, at a certain instant of time, the total kinetic energy transferred to the surface
waves by the ‘near-linear’ current is greater than the vortex-induced current, which can
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FIGURE 15. Time of breaking against initial wave steepnesses of the surface waves for
‘slowly’ (�) and ‘rapidly’ (4) varying currents, and |Umin| = |Umax | = 1.26|Us| (· · · · · ·);
|Umin| = |Umax | = |Us| (——); |Umin| = |Umax | = 0.83|Us| (– · – · –).

explain the shorter breaking times found for this case. The shorter times to breaking
occur for all the computed cases when a0k0 = 0.40, which agrees with the theory that
regular waves on deep water break when their steepness exceeds ak = 0.43.

4.3. Wave group interactions
Finally the numerical scheme was used to simulate the interactions between wave
groups and currents. The wave groups were constructed by superposing two
monochromatic waves having the same amplitude but slightly different frequencies,
with the difference between the frequencies determining the number of waves in
a group. This spectral approach was also employed by Chawla (1999). Based on
his cleanest wave groups, i.e. bichromatic waves with no energy transferred to the
side bands, we set up our initial condition by superposing two uniform wave train
components with a0k0 = 0.06, 0.084 and k0 = 10, 14, respectively. The evolution
of these wave groups over ‘slowly’ and ‘rapidly’ varying currents is shown in
figures 16(b) and 16(c). For comparison purposes wave groups propagating over still
water are presented in figure 16(a). These results show that partial wave blocking can
occur at the individual wave components in the wave groups and that waves become
almost monochromatic beyond the Umin region, which is clearer from figure 16(b).
In both cases the numerical computations stop due to wave breaking. For sharp
current gradients, wave breaking occurs nearer the Umin region, with no reflection
being observed for the period of time considered. The modulation of weakly nonlinear
water waves is governed by the nonlinear Schrödinger equation. Results of the current-
modified nonlinear Schrödinger equation have shown a good agreement with the fully
nonlinear boundary-integral solver for a periodic surface current with a small, slow
variation from a mean value (Stocker & Peregrine 1999).

5. Summary
The interaction between water waves and currents was investigated numerically

with special attention paid to the effects of nonlinearity at the free surface.
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FIGURE 16. Fully nonlinear results obtained for wave groups propagating over (a) still water,
(b) a‘slowly’ varying current (|Umin| = |Umax | = |Us|, Tbreaking = 13.6) and (c) a ‘rapidly’
varying current (|Umin| = |Umax | = |Us|, Tbreaking = 9.4).

A fully nonlinear model was developed in order to understand the interaction of
stationary submerged currents induced by singularities with a large number of short
surface waves. The nonlinear numerical results show that adverse currents induce
wave steepening and breaking. Furthermore the wave transformation induced by
the underlying flows can be identified by a steep and a smooth region formed,
respectively, downstream and upstream of the Umin region after a certain period of
time. A strong increase in wave steepness is observed within the blocking region,
leading to wave breaking, while wave amplitudes decrease significantly beyond this
region. The numerical simulations also show that wave blocking and breaking are
more prominent for sharp surface current gradients. For these cases the nonlinear
wave properties reveal that reflection does occur near the Umin region for sufficiently
strong adverse currents, thus confirming that at least some of the wave energy that
builds up within the caustic can be released in the form of partial reflection (which
applies to very gentle waves) and wave breaking (even for small-amplitude waves). For
‘steeper’ initial conditions, e.g. a0k0 = 0.40, wave breaking occurs much earlier, with
no reflection being observed and with the breaking wave approaching Stokes’ limiting
shape. In the case of interactions between wave groups and currents, nonlinear results
show that wave blocking can occur for the individual wave components in the wave
groups and that waves evolve from being in groups to being almost monochromatic,
confirming qualitatively the experimental observations of Chawla (1999).
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