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Abstract

In this work, we are interested in the parabolic formulation of the propagation equation of surface gravity waves in terms of

angular capability with respect to the privileged propagation direction. This parabolic formulation is obtained by splitting the

Berkhoff equation operator into two parabolic operators representing progressive and reflected wave propagation. The use of

the quadratic rational approximation permits to derive simultaneously parabolic equations for transmitted and reflected waves.

Two well-known reference examples, which represent the propagation of surface gravity waves when a caustic occurs, will be

studied numerically and results will be compared with those of the literature.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction ary problem (Berkhoff, 1973), which takes into
The method of the parabolic equation has been

introduced to the study of surface gravity waves

propagation by Liu and Mei (1976) and Radder

(1979) and, since that, it has been proven through

the contribution of several authors to be an effec-

tive model for dealing rapidly and accurately with

propagation problems in coastal areas. Basically,

this method transforms the Berkhoff elliptic bound-
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account simultaneously refraction and diffraction

effects, into a parabolic initial value problem. This

method, leading to an approximation of the equa-

tion of Berkhoff (1973), implies that all major

components of the wave field must be confined

in a narrow angle range centred on a prechosen

principal propagation direction.

The equation of Radder (1979) has been widely

used, providing the basis of several scientific or

commercial codes. The technique of Radder (1979)

consists into separating the velocity potential on the

free surface into a progressive and a regressive

potential. It has been shown by Doı̈kas (1990) that

the resulting equation remains valid for propagation
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angles within a cone of angles of F 30j about the

prechosen direction of propagation. Booij (1981)

has given, using a splitting technique, a variant of

the parabolic approximation of Berkhoff’s equation,

for which Kirby (1986) gave a justification based

on Padé approximants. This equation has been

found capable of reproducing the propagation up

to an angle of 50j by Lajoie (1996). However,

using a criterion based on evaluating a maximal

propagating angles from the graphic, Kirby stated

that for an error of 5%, this equation is valid up to

55.9j, whereas for an error of 10%, it is valid up to

61.5j.
In this work and in the framework of mild-

slope Berkhoff’s equation, we develop a parabolic

model based on a splitting method that is different

from the one of Booij (1981). The equation of

Berkhoff is at first transformed into an Helmholtz

equation using a scaling factor (Radder, 1979).

The operator of this equation is split into a

product of two parabolic operators, the first rep-

resenting reflected waves (back-reflected waves)

and the second transmitted waves (progressive

waves), containing both of them a square root

operator of type
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
, where X is a second-

order differential operator called ‘‘orthogonal oper-

ator’’. Only the transmitted wave operator is kept.

We approximate the operator
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
by a qua-

dratic rational function, obtaining thus a mixed

fifth-order partial differential equation with variable

coefficients. We present an implicit finite-differ-

ence approximation scheme for its solution. The

computational code is built in such a way that

computations with a linear rational function may

be automatically performed.

We present an exact criterion for determining

the maximum propagation angle associated with a

given equation, and discuss the dispersion angle

associated with the equation we present in compar-

ison with equations cited above. The good perfor-

mance of the quadratic parabolic wave equation is

proved by comparing with well-known reference

examples. The comparison will be made with

experimental data (Berkhoff et al., 1982; Vincent

and Briggs, 1989), equation of Radder (1979),

rational linear parabolic equation (Kirby, 1986),

and solutions of the equation of Berkhoff (Lajoie,

1996).
2. Theoretical formulation

The propagation of linear, periodic surface waves

over a seabed of mild slope is governed by the

equation of Berkhoff (1973):

!
jh � ðCCg

!
j/Þ þ x2Cg

C
/ ¼ 0 ð1Þ

/(x,y) is the complex bidimensional potential func-

tion, jhu (B/Bx,B/By) is the horizontal gradient op-

erator and x is the angular frequency. C and Cg are

the corresponding local phase and group velocities of

the wave field.

Introducing the scaling factor

u ¼
ffiffiffiffiffiffiffiffiffi
CCg

p
/: ð2Þ

into Berkhoff’s equation yields the Helmholtz

equation

j2u þ k2u ¼ 0; ð3Þ

where

k2 ¼ k20 �
j2ðCCgÞ

1
2

ðCCgÞ
1
2

: ð4Þ

k0 is the wave number that verifies locally the

dispersion relation x2 = gk0tanh(k0h), h being the

local depth and g the gravity. The local phase and

group velocities C and Cg are given by C =x/k0
and Cg=Bx/Bk0, respectively.

Eq. (3) may be written in the operator form:

B
2

Bx2
þ B

2

By2
þ k2

� �
u ¼ 0 ð5Þ

If we assume that the differential operators B/Bx and

(1/k2)B2/By2 commute, the operator of the preceding

equation may be factored to give

B

Bx
þ ik

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p� �
B

Bx
� ik

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p� �
u ¼ 0; ð6Þ

where X, the orthogonal operator, is given by

X ¼ 1

k2
B
2

By2
:
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The first term represents reflected waves (back-

reflected waves) and the second term represents

progressive waves (transmitted waves). If we remain

within the framework of mild-slope Berkhoff’s equa-

tion, the dispersion relation cited above is valid and

we can, in good approximation, consider that the

operator B/Bx and (1/k2)B2/By2 commute which

amounts Bk/Bxbk2. If we assume that waves propa-

gate without significant back reflection, which is the

case for the propagation from offshore to inshore, Eq.

(6) reduces to

B

Bx
� ik

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

p� �
u ¼ 0: ð7Þ

Different approximation of
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
lead to differ-

ent parabolic equations. The most classical approxi-

mation is the development in Taylor series:

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
c1þ X

2
� X 2

8
þ X 3

16
: : :: ð8Þ

The first two terms lead to the equation of Radder

(1979) on a flat seabed, and the first three terms

lead to the equation of Kirby (1986), valid also on

a flat seabed, for which angular capability (70j)
encompasses the equation of Radder (1979). It is

then obvious that using more and more terms of the

series will improve progressively the angular capa-

bility. However, the parabolic equations based on

this approximation remain relatively inefficient. In-

deed, some topographic configurations need to take

into account many terms of the series, which make

their implementation difficult because of the rising

powers of the operator X. The rational function

approximation permits to improve the angular ca-

pability considerably by summing relatively few

terms with regard to Taylor series. In the present

paper, we have chosen a quadratic rational function

which writes

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
g

P1 þ P2X þ P3X
2

q1 þ q2X þ q3X 2
þ oðX 5Þ ð9Þ
where the pi and qi are Padé coefficients and

X 2 ¼ 2

k5
3

k

Bk

By

� �2

� B
2k

By2

 !
B
2

By2
� 4

k5
Bk

By

B
3

By3

þ 1

k4
B
4

By4
:

Now, applying this fourth-order Padé approximation

in Eq. (7), one obtains the new pseudo-partial

differential equation

B/
Bx

¼ ik
P1 þ P2X þ P3X

2

q1 þ q2X þ q3X 2
/: ð10Þ

If we operate formally on the latter equation with

q1 + q2X + q3X
2, then we obtain

ðq1 þ q2X þ q3X
2Þ B/

Bx
¼ ikðP1 þ P2X þ P3X

2Þ/:

ð11Þ

Using the expressions of X and X2, Eq. (11)

becomes

a1 þ a2
B
2

By2
þ a3

B
3

By3
þ a4

B
4

By4

� �
B/
Bx

¼ ik b1 þ b2

B
2

By2
þ b3

B
3

By3
þ b4

B
4

By4

� �
/; ð12Þ

where a1 = q1; a2=( q2/k
2)+(2q3/k

5)[(3/k)(Bk/By)2 �
(B2k/By2)]; a3 =� (4q3/k

5)(Bk/By); a4=( q3/k
4); b1 =

p1; b2 = ( p2/k
2) + (2p3/k

5) [(3/k)(Bk/By)2� (B2k/By2)];

b3 =� (4p3/k
5)(Bk/By); b4=( p3/k

4). Eq. (12) is a fifth-

order partial differential parabolic equation with var-

iable coefficients. This equation may be used to model

the propagation at very wide propagation angles; the

propagation in an environment where the wave num-

ber k varies substantially as a function of space; and

the propagation in very large areas of several wave-

lengths. In the present form, Eq. (12) is intrinsically

implicit and we shall apply a Crank–Nicolson method

to solve it. For propagation problems involving a flat

seabed, coefficients of Eq. (12) need to be calculated

only once. When the seabed is variable, these coef-

ficients must be recalculated at each x where the wave
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number varies or regularly at each x increment if the

seabed varies continuously.

The obtained equation is of the parabolic type. It

contains all equations cited above as special cases: the

set Pr ={ p1 = 1, p2 = 1/2, p3 = 0, q1 = 1, q2 = 0, q3 = 0}

leads to the equation of Radder (1979) on a flat

seabed, and the set Pk={ p1 = 1, p2 = 3/4, p3 = 0,

q1 = 1, q2 = 1/4, q3 = 0} leads to the equation of Kirby

(1986). There are several methods to obtain a given

set of coefficients {p1, p2, p3, q1, q2, q3}. The set

Pa={ p1 = 1, p2 = 5/4, p3 = 5/16, q1 = 1, q2 = 3/4, q3 = 1/

16} is obtained by requiring that the rational function

and its four first derivatives coincide with those of

the operator function
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
at X = 0. The set

Pkni={ p1 = 1.628909, p2 = 2.428289, p3 = 0.8308198,

q1 = 1.628934, q2 = 1.615038, q3 = 0.235499} is ob-

tained using an ad hoc technique of Chebychev (St.

Mary, 1985).
3. Angular capability

It has been shown that the angular capability of

Radder’s equation is 30j (Doı̈kas, 1990; Lajoie,

1996). We shall establish a criterion which uses this

result in order to determinate the maximal propagation

angle that one can associate to a given equation.

Consider the case of the plane wave propagating over
Fig. 1. Variation of kx with th
a flat seabed (k = constant). Solutions of the wave

equation are in this case

exp½FikðkxxFkyyÞ
 ð13Þ

where kx, cosine of the propagation angle h measured

with respect to the privileged propagation direction,

and ky, its sinus, verify the exact relation

k2x þ k2y ¼ 1;

or

kx ¼ F
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2y

q
ð14Þ

Solutions (13) are used to derive the approximate kx
for the parabolic quadratic equations:

kx ¼ Fðp1 � p2k
2
y þ p3k

4
y Þ=ðq1 � q2k

2
y þ q3k

4
y Þ: ð15Þ

Using respectively the sets Pr and Pk in Eq. (15), we

get the approximate kx for the parabolic equation of

Radder (1979):

kx ¼ Fð1� k2y =2Þ;

and of Kirby (1986):

kx ¼ F 1� 3

4
k2y

� ��
1� 1

4
k2y

� �
:

Wedefine the error s(h) by s(h) =Akxe(h)� kxa(h)A.We

associate then as a maximal propagation angle to a
e propagation angle h.



Fig. 2. The propagation domain of the study.
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given equation the most large angle for which s is less
or equal to its value at h = 30j for the equation of

Radder (s30 = 0.009). This criterion permits to associate

an angle of 47j to the equation of Kirby (1986) instead
of 50j, of 65j to the quadratic parabolic Eq. (15) with

the set Pa, and of 77j to the quadratic parabolic Eq. (15)
with the set Pkni. These maximal propagation angles

may also be determinated approximately from the

graphic of Fig. 1 which presents exact and approximate

kx as a function of the propagation angle h. Since the

angular capability of the Pkni coefficients encompass

the one of the Pa coefficients, we shall use the Pkni set

for our numerical computations.
4. Numerical solution

The domain of propagation we use to carry out our

numerical experiments is depicted in Fig. 2. It is a

rectangular wave guide of length L and width B that

are constants. The depth h is variable (h = h(x,y)). The

lateral boundaries, perpendicular boundaries to the

privileged direction of propagation, are rigid. The

boundary conditions on these boundaries and their

numerical treatment are given in the next section.

We choose for the discretization a standard rectan-

gular grid. The constant space steps are denoted Dx

and Dy for directions x and y, respectively. M is an

integer such asM =B/Dy. The integers n and l are used

respectively as indexes on variables x and y. Thus, y0
and yM correspond to the lateral boundaries. For

xn= nDx and yl = lDy, we let /(xn,yl) =/l
n.

We apply to Eq. (12) a standard Crank–Nicolson

scheme for traditional parabolic partial differential

equations. Namely, we take the average of the classi-

cal explicit (forward) difference approximation based

at the point (xn,yl) and the (backwards) implicit

approximation based at (xn + 1,yl) (cf. Fig. 2). The

resulting discretized equation is

a1nl /
nþ1
l�2 þ b1nl /

nþ1
l�1 þ c1nl /

nþ1
l þ d1nl /

nþ1
lþ1 þ e1nl /

nþ1
lþ2

¼ a0nl /
n
l�2 þ b0nl /

n
l�1 þ c0nl /

n
l þ d0nl /

n
lþ1

þ e0nl /
n
lþ2; ð16Þ

l= 0,1,2,. . .,M; n= 1,2,. . .,nmax. The different coeffi-

cients involved in Eq. (16) are given by

a0nl ¼ � 1

4Dy3
½a3Þnþ1

l þ a3Þnl þ iknl Dxb3Þnl 


þ 1

Dy4
½a4Þnþ1

l þ a4Þnl þ iknl Dxb4Þnl 
;

b0nl ¼
1

2Dy2
½a2Þnþ1

l þ a2Þnl þ iknl Dxb2Þnl 


þ 1

2Dy3
½a3Þnþ1

l þ a3Þnl þ iknl Dxb3Þnl 


� 2

Dy4
½a4Þnþ1

l þ a4Þnl þ iknl Dxb4Þnl 
;
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c0nl ¼ a1 þ
iknl Dx

2
b1 �

1

Dy2
½a2Þnþ1

l þ a2Þnl

þ iknl Dxb2Þnl 
 þ
3

Dy4
½a4Þnþ1

l þ a4Þnl

þ iknl Dxb4Þnl 
;

d0nl ¼
1

2Dy2
½a2Þnþ1

l þ a2Þnl þ iknl Dxb2Þnl 
 �
1

2Dy3

� ½a3Þnþ1
l þ a3Þnl þ iknl Dxb3Þ

n
l 
 �

2

Dy4
½a4Þnþ1

l

þ a4Þnl þ iknl Dxb4Þnl 
;

e0nl ¼ þ 1

4Dy3
½a3Þnþ1

l þ a3Þnl þ iknl Dxb3Þ
n
l 
 þ

1

2Dy4

� ½a4Þnþ1
l þ a4Þnl þ iknl Dxb4Þ

n
l 
;

a1nl ¼ � 1

4Dy3
½a3Þnþ1

l þ a3Þnl � iknþ1
l Dxb3Þ

nþ1
l 


þ 1

Dy4
½a4Þnþ1

l þ a4Þnl � iknþ1
l Dxb4Þnþ1

l 
;

b1nl ¼
1

2Dy2
½a2Þnþ1

l þ a2Þnl � iknþ1
l Dxb2Þ

nþ1
l 
 þ 1

2Dy3

� ½a3Þnþ1
l þ a3Þnl � iknþ1

l Dxb3Þnþ1
l 
 � 2

Dy4

� ½a4Þnþ1
l þ a4Þnl � iknþ1

l Dxb4Þnþ1
l 
;

c1nl ¼ a1 �
iknþ1

l Dx

2
b1 �

1

Dy2
½a2Þnþ1

l þ a2Þnl

� iknþ1
l Dxb2Þnþ1

l 
 þ 3

Dy4
½a4Þnþ1

l þ a4Þnl

� iknþ1
l Dxb4Þnþ1

l 
;
d1nl ¼
1

2Dy2
½a2Þnþ1

l þ a2Þnl � iknþ1
l Dxb2Þnþ1

l 
 � 1

2Dy3

� ½a3Þnþ1
l þ a3Þnl � iknþ1

l Dxb3Þnþ1
l 
 � 2

Dy4

� ½a4Þnþ1
l þ a4Þnl � iknþ1

l Dxb4Þnþ1
l 
;

e1nl ¼ þ 1

4Dy3
½a3Þnþ1

l þ a3Þnl � iknþ1
l Dxb3Þnþ1

l 


þ 1

2Dy4
½a4Þnþ1

l þ a4Þnl � iknþ1
l Dxb4Þnþ1

l 
:

The appearance of five unknowns in the general

Eq. (16) indicates that the matrix system to invert is

penta-diagonal.
5. Boundary conditions and matrix formulation

The lateral boundaries being rigid, the boundary

conditions for Helmholtz equation are given by

B/
By

ðx; y0Þ ¼ 0;
B/
By

ðx; yM Þ ¼ 0: ð17Þ

It is important to translate the boundary conditions

(17) related to the second-order derivatives in y into

corresponding ones for the fourth-order Eq. (12).

Since conditions (17) hold for any x, all higher

derivatives with respect to x of B/By at y0 and yM
are equal to 0. It follows by differentiating Eq. (5)

with respect to y and using conditions (17) that

B
3/
By3

ðx; y0Þ ¼ 0;
B
3/
By3

ðx; yM Þ ¼ 0 ð18Þ

for all x. Thus, in addition to basic boundary condi-

tions (17), we have inherited boundary conditions (18).

For the discretization, we introduce the fictitious

points /� 2
n , /� 1

n , /M + 1
n and /M + 2

n . Using a central

finite difference to discretize conditions (17), one

obtain /� 1
n =/1

n and /m + 1
n =/M � 1

n for any n. It then

follows on approximating conditions (18) by a central

difference that /� 2
n =/2

n and /M + 2
n =/M � 2

n for any n.

It is obvious from the discretization of boundary

conditions (17) and (18) that the two first and the two
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last lines of the matrix system must be modified in

order to take into account the boundary conditions. The

general matrix system form is then

A1ðnÞunþ1 ¼ A0ðnÞun;

where, for I = 0,1,

AI¼

cI0 dI0V eI0V

bI1 cI1V dI1 eI1

aI2 bI2 cI2 dI2 eI2

: : :

: : :

: : :

aIM�2 bIM�2 cIM�2 dIM�2 eIM�2

aIM�1 bIM�1 cIM�1V dIM�1

aIMV bIMV cIM

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; unþ1¼

unþ1
0

unþ1
1

unþ1
2

]

unþ1
M�2

unþ1
M�1

unþ1
M

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

and eI0V = eI0 + aI0; dI0V = dI0 + bI0; cI1V= cI1 + aI1;

c I M � 1V = c I M � 1 + e I M � 1 ; a I MV = a I M + e I M ;

bIMV = bIM + dIM.
6. Application to an elliptic shoal—example 1

The first studied example is an experimental ar-

rangement that consists of an elliptic shoal resting on
Fig. 3. Bathymetry of the computational domain for the experiment by Vin

measurements.
a flat bottom topography. The boundary of the elliptic

shoal is given by

x2

ð3:96Þ2
þ y2

ð3:05Þ2
¼ 1;

and the depth in the shoal region is modified accord-

ing to

h ¼ 0:9144� 0:762

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

ð4:95Þ2
� y2

ð3:81Þ2

s
;

(x,y) being Cartesian coordinates. Outside the shoal

region, the constant depth is 0.457 m.

The propagation of surface gravity waves in this

laboratory environment has been studied experimen-

tally by Vincent and Briggs (1989), and investigated

numerically by solving the equations of Berkhoff and

Radder by Lajoie (1996). The initial wave is mono-

chromatic, normal to the main ellipsoid axis, and has a

period T= 1.3 s. Fig. 3 illustrates the experimental

arrangement, which corresponds to the computational

domain, along with the labeled transects 1–6 for

which data from the laboratory experiment of Vincent

and Briggs (1989) are available. The results are

presented as plots of normalized wave amplitude with

respect to the incident wave amplitude (A/A0).

Fig. 4-1 is a comparison between results of the

equation of Radder, the rational linear approxima-
cent and Briggs (1989). Dashed lines indicate the transects of wave



Fig. 4. (1–6) Comparison of the quadratic model results against the results of Radder and Berkhoff equations and experimental data along

sections 1–6, respectively (see Fig. 3).
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tion of Kirby, the rational quadratic approximation,

the solution of the equation of Berkhoff (cf. Lajoie,

1996) and the experimental data. It is obvious that
the rational quadratic model fit with higher agree-

ment the experimental data and results by Ber-

khoff’s equation than does the rational linear



Fig. 5. Bathymetry of the computational domain for the experiment by Berkhoff et al. (1982). Dashed lines indicate the transects of wave

measurements.
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approximation. Therefore, numerical investigations

using the rational linear approximation will not be

presented henceforward.

In Fig. 4-2 to 4-6, we compare solutions of the

quadratic model, the equations of Radder and Berkh-

off and experimental data. All these figures show

that results of the quadratic model are in better

agreement with experimental data. However, some

discrepancy remains due probably to the possible

presence of reflected waves in the experimental data.

Other reason could be nonlinearity which is not

accounted for in the present model. Overhead the

shoal, the focusing occurs more rapidly for the

quadratic model than for Berkhoff and Radder equa-

tions. This is consistent with the trends of the

experimental data as it can be seen from Fig. 4-4

and 4-6. Moreover, the fact that the quadratic model

fit with agreement the experimental data and the

results by Berkhoff’s equation outside the focal

region (Fig. 4-1 and 4-2) is a proof of it’s reliability
Fig. 6. (1–8) Comparison of the quadratic model results against the results

by Berkhoff et al. (1982) along sections 1–8, respectively (see Fig. 5).
to represent diffracted waves with very wide propa-

gation angles.
7. Application to an elliptic shoal—example 2

The second studied example is an experimental

arrangement that consists of an elliptic shoal resting

on a plane sloping bottom with a slope of 1:50. The

slope rises from a region of constant depth (0.45 m)

near a straight wave paddle, and is rotated clockwise

at an angle of 20j from the wave paddle. The slope

topography in the absence of the shoal, the boundary

of the elliptic shoal and the depth in the shoal region

are given respectively by

h ¼
0:45 m; xV > �5:84 m

0:45� 0:02ð5:84þ xVÞ m; xVz� 5:84 m

8<
:

of the linear model of Dalrymple et al. (1989) and experimental data
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xV

3

� �2

þ yV

4

� �2

¼ 1

and

h ¼ h� 0:5 1� xV

3:75

� �2

þ yV

5

� �2
" #1=2

þ0:3;

where the slope-oriented coordinates (xV,yV)
are related to the computational Cartesian coordi-

nates by

xV ¼ ðx� 10:5Þcosð20jÞ � ðy� 10Þsinð20jÞ

yV ¼ ðx� 10:5Þsinð20jÞ þ ðy� 10Þcosð20jÞ

The propagation of surface gravity waves in this

laboratory environment has been studied experimen-

tally by Berkhoff et al. (1982) and numerically by

several authors (Kirby and Dalrymple, 1983; Kirby,

1986; Dalrymple et al., 1989). The initial wave is

monochromatic and of period T= 1 s. Since the depth

near the wave paddle is constant, the initial wave

corresponds to a uniform wave train generated by the

wave paddle. The amplitude of the incident wave is

A0 = 0.0232. Fig. 5 illustrates the experimental ar-

rangement, which corresponds to the computational

domain, along with the labeled transects 1–8 for

which data from the laboratory experiment of Berkh-

off et al. (1982) are available.

Fig. 6-1 to 6-8 presents results obtained by the

quadratic model, those obtained by Dalrymple et al.

(1989) using their linear model, along with experi-

mental data of Berkhoff et al. (1982). As it can be

seen from the whole of the figures, we find that the

quadratic model results are in very closer agreement

with experimental data than do the results of the linear

model (Dalrymple et al., 1989). This fact reassures the

reliability of the quadratic model to reproduce dif-

fracted waves with very wide propagation angles.
8. Conclusion

In the present paper, we have presented a wide-

angle parabolic equation for dealing with surface
gravity waves propagation. It is based on a splitting

technique that is different from the one proposed by

Radder (1979) and Booij (1981). This method yields

two parabolic equations for the transmitted and

reflected waves, and the parabolic equation is

obtained by neglecting reflected waves. The discrete

equation results in a five-diagonal linear system to

which we apply an easily implemented penta-diago-

nal solver that is comparable in running time to tri-

diagonal solvers. We demonstrated in two test situa-

tions that this higher-order equation and associated

equations are accurate at very wide propagation

angles.
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d’Université, Paris Sud.

Kirby, J.T., 1986. Higher-order approximations in parabolic equa-

tion method for water waves. J. Geophys. Res. 91, 933–952.

Kirby, J.T., Dalrymple, R.A., 1983. A parabolic equation for the

combined refraction–diffraction of Stokes waves by mildly

varying topography. J. Fluid Mech. 136, 453–466.

Lajoie, D., 1996. Modélisation de la houle en zone côtière: Prévi-
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