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specular reflector the facets must be flat to within a cer-
tain fraction of a wavelength, say X/16. Whatever the
criterion selected, if it is maintained at all the micro-
wave frequencies, the linear dimensions of the area in-
crements will be proportional to the wavelength, but the
total fraction of the surface occupied by the flat facets,
e, remains approximately constant at all wavelengths.
If these relations are substituted in (7), a' becomes
independent of wavelength, which agrees with the
measured results given in Fig. 7.
That the total fraction of the surface occupied at a

given time and at a particular angle by flat reflecting
facets is the same at all microwave frequencies is further
substantiated by the good correlation shown at large
depression angles among the instantaneous signal am-
plitudes obtained simultaneously at different micro-
wave frequencies.

In these sea-scattering measurements the several
possible sources of error and their magnitudes are as
follows. At each microwave frequency the cross section
measurement of the standard corner reflector contrib-
utes an uncertainty of ±0.6 db; misalignment of the
calibrator in the field, oscillator drift, uncertainty in the
height measurements, and film shrinkage make up an
additional probable error of ±1.0 db; the calibrated
attenuators contribute an uncertainty of ± 0.4 db to the
calibration level; and finally, errors in measuring the

signal amplitude on the microfilm reader probably do
not exceed +0.5 db. Thus a probable error of +2.5 db
seems reasonable for the cross section values obtained
from the film averages. The signal amplitude values ob-
tained from the electronic integration are free of sonie
of the above uncertainties but are probably in error oIn
the high side because the integrator responded some-
what slower to sudden decreases in siginal level thain to
sudden increases in signal level.
As mentioned before, the film samples were only ten

seconds in duration, whereas the integrator values rep-
resent nearly a two-minute sample from a runi. Indi-
vidual differences between values obtained by the two
methods are thus partly due to the different samples
taken. In general the film-read values are probably the
more accurate of the two; but, since the sample for each
run was short in duration, there is a possibility that the
average value obtained by this method is not comlpletely
representative of the entire run.
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Summary-Measurements have demonstrated that, with oc-
casional exceptions, radar return from the ground is largely due to
area scatter, even at angles of incidence near the vertical.

An expression is derived here for a power superposition integral
expressing the mean pulse envelope for the pulse returned from the
ground to a radar. This integral is the convolution of the transmitted
pulse form in power units with a function which includes effects of
antenna pattern, ground properties, and distance. This function is
generalized to include the effects of specular reflection and large
isolated scatterers, as well as the more prevalent area scatter.

While beam-width-limited illumination always results in inverse-
square altitude variation for area scatter, it is shown that the varia-
tion with altitude for pulse-length-limited illumination varies from
inverse-square to inverse-cube, and is a function of altitude as well
as of ground properties and antenna pattern. Mean returned pulses
are presented for various grounds and antenna orientations.
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1. INTRODUCTION

ADAR ALTIMETERS depend uponl return of
signals radiated from an aircraft to the ground.
In order to understand the operation of such

altimeters, it is necessary to understand the processes
by which radar energy is returned from the ground.
A great deal of work has been done on radar return

from aircraft and ship targets, and some fair amount
has been done on radar return from the ground and the
sea at ranges such that the angle of incidence is near
grazing. Very little work has been done in the past on
angles of incidence near vertical; and, so far as the au-
thors can determine, none of the work which has been
done has been published in readily available places. An
early classic on the general field of radar return from the
ground was that of R. E. Clapp.'

1 R. E. Clapp, "A Theoretical and Experimental Study of Radar
Ground Return," M.I.T. Radiation Lab. Rep. 1024; 1946.
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Scattering is the principal process by which radar
energy is returned from the ground to an altimeter. This
process is supplemented on some occasions by specular
(mirror-type) reflection. In references to the perform-
ance of radar altimeters which the authors have en-
countered, it has usually been assumed that the princi-
pal process was reflection. Measurements made at
Sandia Corporation have indicated that these assump-
tions are not correct and that, in fact, reflection is a
rather uncommon mode of radlar returni, even for verti-
cal incidence.2
The usual type of scatterinig process is one in which

large numbers of individual scatterers located on the
ground contribute more or less equally to the total
scattered signal. Occasionally, some scatterer is found
within the pattern of illumination whose signal returni
stands out appreciably above all of the rest. Measure-
ments have shown that very rarely will more than one
such target be located withini the area illuminated by a
radar altimeter using a broad-beam antenna. It should
be noted that this is contrary to the situation en-
countered with search radar equipment carried in air-
craft where the desired informatioln is the distinction
between the strong scattering target and the general
background. The principal reason for the difference is
that a radar altimeter illuminates a much larger patch
of ground than a properly designed search radar since
it must operate when the aircraft performs various
maneuvers and, therefore, must have a wide-beam an-
tenna. This effect is compounded since the geometry of
the situation near vertical incidence is such that even
very short pulses spread out to cover a large area on the
ground by comparison with the area which they cover
at grazing angles of incidence for a reasonable beam
width.

In this paper an integral is developed which is the
mean scattered radar return from a collection of small
scatterers located on a plane ground. It should be noted
that the results here are for a mean returned pulse for a
pulse-radar altimeter; this mean is taken over a large
number of returned pulses. Any individual pulse is likely
to look quite different from the mean described by the in-
tegral developed in this paper. It is interesting to note
that the integral which results is a convolution of the
waveform of the envelope of the transmitted pulse in
power units with another function which includes the
effects of antenna gain, distance, and scattering proper-
ties of the ground.
Examples have been calculated here to show the

effect on the return from the ground of variations of
different parameters of a pulse-radar system. In par-
ticular, it is pointed out for a beam-width-limited situa-
tion (one in which the leading edge of transmitted pulse
passes the outer edge of antenna beam before the trailing
edge of the pulse reaches the ground) that altitude signal
varies inversely as the square of altitude.

2 These experiments have not yet been reported in the literature.

Another example considered is that of a pulse-length-
limited system (one in which the leading edge of the
pulse has not extended to the limit of the antenna beam
by the time the trailing edge reaches the ground); here
the variation of the signal with altitude is inverse cube
(if the variation of the scattering properties of the ter-
rain with angle of incidence is slow). It is shown in other
examples that the variation with altitude is between
inverse square and inverse cube where the scattering
capability of the ground drops off more rapidly with
change in angle of incidence. With any scattering varia-
tion, the signal variation is inverse cube at higher alti-
tudes and inverse square at low altitudes.
The above examples all assume that the antenna is

pointed vertically. In the case where the antenna is not
pointed vertically, either because the aircraft is tilted, or
because the antenna's main function has to do with
radar mapping or ranging on targets at a distance, the
variation with altitude and the shape of the mean return
pulses have been calculated for several examples.

In order that one may evaluate the integral for mean
returned signal, it is necessary to know something about
the nature of the ground as a scatterer. If the signal from
the ground is made up of the resultant of signals from a
large number of scattering elements, olne may express
its properties, on the average, by a quantity known as
the scattering cross section per unit area, ao. This is a
number which expresses the average amount of power
radiated back from a unit area on the ground, provided
the incident power density is known.3 The quantity ao
used here is essentially that defined by Herbert Gold-
stein.4

It must be emphasized again that the expressions
calculated here for returned pulse shapes for a radar
altimeter are averages over many pulses. Individual
pulses will look quite different from the average pulse as
the returns from the various scatterers may combine as
phasors in such a way as to produce a wide range of
amplitudes for individual points in individual pulses.
The problem of combination of large numbers of signals
of similar amplitude but random phase has been treated
statistically by Rayleigh and others.5', This is a problem
known to statisticianis as the two-dimensional random-
walk problem; Rayleigh's treatment is for the random
walk with an infinite number of steps. At any given
range, the different phasor sums for different pulses re-
sult in fading of the signal. The signals at any two
ranges corresponding to different illuminated areas fade
independently. For a Rayleigh distribution the range of
fading from the signal level exceeded 5 per cent of the
time down to that exceeded 95 per cent of the time is

3 Note that some other writers use slightly different definitions
of CO.

4D. E. Kerr (ed.), "Propagation of Short Radio Waves,' Mc-
Graw-Hill Book Company, Inc., New York, N. Y., p. 483; 1951.

6 Rayleigh, "Scientific Papers of Lord Rayleigh," Cambridge,
London, vol. I, p. 491, vol. IV, p. 370; 1899-1920.

8 J. L. Lawson and G. E. Uhlenbeck, "Threshold Signals,'
McGraw-Hill Book Co., Inc., New York, N. Y., p. 54; 1950.
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18 db. Hence, the average pulse may be quite different
from any single pulse.

In the situation where specular reflection and scatter
are present together, the specular signal may be much
greater than any of the individual scattered signals. If
it, or one of the scattered signals, stands out above the
rest so that the total power in the one large signal is
comparable with that due to all small scatterers, the
distribution of the returned signal amplitude is appre-
ciably altered. This problem is the same as that of a
large sinusoidal signal in noise and has been treated
extensively by Rice ;7 it will not be discussed here.

II. DERIVATION OF EXPRESSION FOR
SCATTERED RETURN

To determine the return from a scattering ground, it
will first be necessary to derive the formula for the re-
turn from a single scatterer. It will then be demon-
strated that the return from two scatterers is such that
the total return power is the sum of the powers in the
two components, on the average. This will be generalized
to the case of large numbers of scatterers, and it will be
shown that the total returned power is the sum of the
powers returned from the individual scatterers. Next we
will show that, for practical purposes, the power sum
may be represented as an integral over the illuminated
area on the ground by use of the concept of average
scattering cross section per unit area. Finally, it will be
shown that this integral is actually a convolution inte-
gral involving the shape of the pulse envelope of trans-
mitted power and a function including the effect of the
ground, antenna, and distance.

A) Return from a Single Scatterer

Let us consider a pulse radar which at periodic or
quasi-periodic intervals delivers a voltage pulse to its
antenna given by

VD(d) = Ret VD(d)eiwd},

The average rf power of the signal returned by the
mth scatter is

/ 2r.\
PDl d -- Gm

P\(d)Gc 1 GmX2
PRm(d) = crm -___

4wrm2 4rrm2 4r

PD (d --2rm) Gm2X20m

(47r) 3rm

(3)

New quantities introduced in this expression are:

rm =the range to the mth scatterer from the radar,
c=the velocity of light,

om = the scattering cross section of the mth scatterer,
Gm=the gain of antenna in the direction of the mth,

scatterer (assuming the same antenna for trans-
mitting and receiving),

X = the wavelength of the carrier radiation.

The equation has been written first to show the way in
which it is built up and then in a more compact form.
The first factor of the first expression shows the trans-
mitted power radiated in the appropriate direction as a
power density at the receiving point (except that argu-
ment would be d-rm/c). The second factor is the
scattering cross section, a quantity which determines
the portion of the incident energy which is reradiated
toward the radar. The third factor shows the effect of
the dispersion with distance on the reradiated power
density, and the fourth factor shows the receiving an-
tenna aperture.

Utilizing the results of (3), we may write for the re-
ceived voltage

VRmn(d) = Re { A/2PRm, (d)ebim(d-2rm /c) eiam }

(1)

where

VD(d) = 0, (d < 0).

Lower case letters will be used to represent instantane-
ous voltages and powers, while upper case letters will be
used to represent voltage envelopes or power averaged
over an rf cycle. Hence, VD is the envelope of the trans-
mitted voltage pulse; d represents delay from the start
of the transmitted pulse-that is, it is not assumed that
phase is preserved from pulse to pulse.
The power averaged over an rf cycle is, then, for a real

impedance of one ohm, given by

= Re {VRm(d)eiOm} . (4)

Here the phase shift has been taken into account, both
that due to the travel time and the phase shift a,m on
reflection. It should be realized that the frequency
Om=CO+,Awm used here is not just the carrier frequency
C, but is the carrier frequency as modified by the Dop-
pler shift. Evidently,

G; = (co + Am) (d - )+ a

and

PD(d) -VD2(d)
2 (2)

7 S. 0. Rice, "Mathematical analysis of random noise," Bell Sys.
Tech. J., vol. 23, p. 282; July, 1944; vol. 24, p. 46; January, 1945.

VRm(d) = \/2PRm(d).

B) Return from Two Scatterers

The return from two scatterers is given by
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VR(d) = VRl(d) + VR2(d)

= Re {I Rl(d)eji" + VR2(d)eiO2}.

The product of the complex voltage above with
conjugate gives the square of the envelope of VR(d):

VR2(d) = VR12(d) + VR22(d)

+ 2VRl(d)VR2(d) cos (01 - 02)-

This expression gives the envelope of a single ret
from two scatterers. The average over many retu
will be designated by a bar and is

Then

(5) PRR(d) A - VR2(d)
2

its
M

= E PRim(d)
m=1

(6) M [PD(dd-)Gm2X2a]
urn m=l (4r) 3rm4
[rns

X2 M[M 2a,4

VR2(d) = VR12(d) + VR22(d) (7)

provided Om has a uniform statistical distribution, since
VR1, VR2, 01, and 02 are statistically independent, and
cos (01-02)= 0. The statistical distribution of Gm is, of
course, a result of the geometry.

In taking the average above, an average is taken at
each position d in the return pulse. For that reason, the
average VR2(d) remains a function of d. Further, in
order for d to represent the same position from return
to return in the signals from both scatterers, it is neces-

sary to assume that the two scatterers remain in the
same position with respect to the radar during the
averaging period. Actually, of course, the range varies
from pulse to pulse and it is this very variation of range

which causes the angle 0 to vary. However, there can be
a large phase variation for a small range variation and
this is the required assumption.
From another point of view the result (7) may be

supposed to be due to the effect of Doppler frequencies.
Since the returns from the two scatterers are sinusoids
at different frequencies as indicated by (4), the applica-
tion of the theorem which allows superposition of power

will give the result.
Pulse-to-pulse variation may be explained in terms of

sampling a pattern in space. For each point in space

which may be occupied by the radar, there is a specific
combination of relative phase and amplitude of the re-

turn from the two scatterers, the phase being deter-
mined by the round-trip distance and phase-shift on

scattering and the amplitude by the directivity of the
scatterers and antenna as well as by distance. The
radar samples this pattern at the points where pulses
are transmitted.

C) Return from Many Scatterers

Eq. (7) may be readily generalized to the case of
many scatterers. The result is

M
VR2(d) = E VRm2(d)

m=

£ 2PRm(d). (8)
m-1

In the last expression above, the only quantity which
must be averaged is o(m; o-m for a given scatterer may

vary from pulse to pulse due to the changing orientation.
The other quantities are all constants with the assump-

tions that rm4 and PD [d -(2rm/c) ] vary negligibly from
return to return for a fixed m. Note that this can only
be so if each scatterer remains almost fixed in position
in the return pulse during the averaging; the slight
change in position must provide the phase variation.

If the phase variation is not sufficient from pulse to
pulse, the samples obtained are not independent. Thus,
at low frequencies, it is difficult to obtain a sufficiently
large sample to determine the statistical properties of
the terrain. In fact, it is almost impossible to meet both
assumptions of negligible change in PD [d-(2rm/c)]
during averaging and of large phase change from pulse
to pulse at low frequencies.

D) Signal Returned from Scatterers on a Plane Surface

In many cases, the earth may be considered as plane
for the purposes of calculating radar return. In such
cases the development below may be used in its en-

tirety. In some situations, as in flying over steep moun-

tains or valleys, such an assumption is not justified and
a summation is required over a more complex surface
than a plane to obtain the mean power returned. This
case will not be considered here but the approach used
may be generalized to cover it.

Fig. 1 illustrates the geometry involved in this dis-
cussion. Consider a small region AAAm (to become dA in
the limit) containing N scatterers and which is within
the total illuminated area A. According to (9) the mean
power returned from such a region is

X2 N PD (d--)Gn2UnAAm

[APR(d)]mJ-1=

(47r)3 n=i rn4/.Am
(10)

where the area AAm has been placed in both numerator
and denominator. Now if the variation of r is small
enough over AAm so that PD, G, and r4 can be considered
constant over the area, the mean power can be written

(9)
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x

ff ve use ihe definition of (12), we obtain fronm (l I)
the followiing expression for the incremental average,
power:

X,2
[,APR(d)jm = ( _-(4r) 3

PD (d --2) G.2oomA m

rm4
(13)

This is the power returned from the incremental area
,AAm. The same argument which allowed us to combinie
the many returned signals in (10) or (8) permits us to
add the average powers returned from the M different
incremental areas illuminated:

M _X2

PR(d) = : [ALPR(d) ]m = )
m=-1 4rI

M PD (d--) Gm2f0m/\nA Mr
* EE

m=l r.4Fig. 1-Illustration of illuminated area A in one quadrant. (14)

[APR (d) ( ) N

I2 D~ -C ) Gm2 E /\Am
(4ir)3 rm4 n=1 LAAm

(11)

where rm is the average distance to AAAm and Gm is the
antenna gain in the direction of AAm.
One may now define an average scattering cross sec-

tion per unit area over this small area by

0Om = v . (12)
n=1 AAm

This is a very important quantity in the theory of radar
terrain return. It is not, in general, easy to determine
the characteristics of individual scatterers on the
ground; in fact, it is not even easy to determine what
the individual ground scatterers are. Hence, the use of
some sort of average scattering cross section per unit
area is almost a necessity. Of course, it is possible for
the cross section to be quite different in different parts
of the illuminated area simply because of the fact that
homogeneous regions on the ground are hard to finld.
One would expect that, if the entire illuminated area
were a forest, 0o would be essentially constant within
the entire illuminated region. The same rmight hold true
for a wheatfield, or perhaps even for a city, in which case
the individual scatterers would be represented by build-
ings. On the other hand, one can also conceive of the
situation where the average scattering cross section per
unit area is quite different in different parts of the illumi-
nated region. For example, over farm land one has dif-
ferent types of fields, roads, fences, small streams, and
farmyards, all illuminated simultaneously. Over cities
one may have industrial, residential, park, and boule-
vard areas illuminated simultaneously.

Note that the sum carried out in this case must include
the transmitted pulse shape and its delay within the
summation because of the fact that different delays will
occur over different parts of the illuminated area; and,
therefore, different incremental areas will be illuminated
with different intensities. In addition, it should be noted
that the gain function and the distance function are in-
cluded within the summation. This is because both of
these may vary appreciably over a total illuminated
area. The antenna gain Gm is a function of the coordi-
nates of the particular incremental area AAAm in terms
of a spherical coordinate system centered on the air-
craft (see Fig. 1). The scattering cross section is a func-
tion of these coordinates because of the fact that a wave
incident upon the scatterer at one angle will reradiate
differently from a wave incident upon the scatterer at a
different angle; thus, its positioni relative to the altime-
ter is material. XVe write theni,

Gm = G(Om Im)I LOmn = Uo(Om cP5M) (15)

where Om is angle from vertical to area element AXAm and
0kin is azimuth to AAm. (See Fig. 1.)

Usually one may choose a value AAm which is small
enough so that all the radar parameters are reasonably
constant across this area. It is then possible to pass to
the limit of increasingly small inicremental area and
write (15) as an integral:

PD (d - -) G2(0, 4)co(0, 4)dA
72

(47) 3 A( d)
. (16)

It should be noted that this is possible even though the
concept of an average cross section per unit breaks down
if the differential area is made small enough. This is be-
cause the only thing which varies with small changes of
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the size of the incremental area is the product of 00 and
the area.
The integral of (16) is over A (d), the area illuminated,

which depends on d as indicated. At the beginning of
this section reference was made to Fig. 1 as an illustra-
tion of the illuminated area. It should be noted that, in
this coordinate system and for a plane, the area element
may be taken as rdrdo. Thus, we may rewrite (16) for
this particular case as

PR(d)

X2 2T cd/2 PD (d --)G2(G, 4)ko(o, )drdk---r r- -- ~~~~~~~(17)
(4ir3) JO J r3

Reference to Fig. 1 indicates that the limits in the inte-
gration on r should be ri to r2=rl+cr/2, where r is the
transmitted pulse width. However, the limits shown
are correct since PD(A) = 0 for , <0 and for ,u> r, and
since r1->h. In other words, the exact area of illumina-
tion is taken care of by the transmitted pulse function
PD.
The integral of (16) is valid even though the surface

is not a plane. If the surface is nonplanar, the area
illuminated will not have a simple shape as in the
planar case, but integration over this area by numerical
means should be quite feasible.

E) Mean Return Signal as a Superposition Integral

It will be recognized that the integral of (17) is a
superposition integral. This may be shown more readily
if one converts this integral into a somewhat simpler
appearing form and changes the variable of integration.
Let us introduce the new variable T given by

, 2(r - h)
T= . ~~~~~~~(18)

c

T is the radar delay time for the difference between
range r and the altitude h. Now, we define a function
which includes all the effects of antenna, distance, and
ground:

a CX2 2r
Bs(T)-= G2(,4)od )+ (T >-°) *(9

2(4.7r) Irs to ~~~~(19)
-°' (T<0)}

This integral is a functioni of T since r is a function of T
through (18) and 0 is a function of T through (18) and

r = h sec 0.

Now, (17) may be written

(20)

- r ~d-2h/c 2h
PR(d) = J hPD d- T - B8(T)dT. (21)

o\ ~~~~~c

If we change from a function of delay time to a function
of a modified delay time, i.e., replace d-(2h/c) by d,
this may be written

2hk 1 d
PR d + = |PD(d -T)B,,(T)dT.

C/ JO
(22)

The lower limit is still zero since B8(T)=0 for T<O.
This is recognizable as a convolution or a superposition
integral. B.(T) can be seen to represent the return sig-
nal which would be received if the transmitted pulse
were an impulse or delta function. Thus, the signal re-
ceived at any given time is representable as the sum of
the signals received from a set of different impulses
having weight given by the shape of the transmitted
pulse and being transmitted at times corresponding to
the times of delay of the various parts of the pulse from
its leading edge.
That this is valid with power is a situation which is

unique to the case in which the average signal is not de-
pendent upon cross products of the various components.
Normally, such a convolution integral can be used only
with voltages or currents in linear systems.

III. SPECULAR REFLECTIONS AND LARGE TARGETS

A) Specular Reflections
As stated in the introduction, it is occasionally possi-

ble to find a surface which is smooth over a large enough
area so that specular (mirror-type) reflections can take
place. The mechanism of specular reflection is different
from that of scattering and must be treated separately.
It is not expected that any specularly reflecting surface
will occur anywhere except directly beneath the radar
because of the fact that its size must be so great that a
surface which would be perpendicular to the incident
radiation at any other point would not likely be of suffi-
cient size. An exception may occur where corner reflec-
tor action between the ground and a wall of a large
building is involved.

Specular reflection is normally treated on the image
basis. In such a case, the received power is given by

/ 2h\2(,OPDd- -G2(, +)X2
PR(d) - 4 K

(47r)2(2h)2
(23)

where K is the reflection coefficient of the surface and
G(0, 4) the antenna gain straight down. It is con-
venient to express the specularly reflected wave in the
same notation used for the scattered waves. In order to
do this, we define a space-time function B(T) in a simi-
lar manner to that defined by (19):

G2(G, 4)X2K
Bm(T) -2 (T)*(4ir)2(2r)2

(24)

This is the B function for mirror-like reflection; this ex-
pression uses the Dirac delta function to indicate that
the only range at which a return is expected is that cor-
responding to vertical incidence where T=0, 6=0 and
r = h. One may apply this ground function just as in the
case of the ground function for scattering to obtain
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P d-2h/c ( 2hT
PR(d) = | PDZ d- T-- )Bm(T)dT

Jo\ 6/~~~~
(25) It should be noted that (28) yields a sum of L terms of
(25) the form of (3), one for each of the L targets.

or

/ 2h rd
PR(d+d | PD(d - T)BmL(T)dT. (26)

It should be noted, of course, that (25) is directly equiv-
alent to (23) because of the property of the delta func-
tion that

rX
f(x)a(x)dx = f(0)

-00

for any analytic function f(x).

B) Large Targets
It was pointed out in Section II that there may oc-

casionally be individual targets that stand out ap-
preciably above the other scatterers. Such targets,
while uncommon, may be present, and should be
treated separately since only one is likely to be present
in any given incremental area, and it is unlikely that
one will be present in more than two or three of the in-
cremental areas involved in summing up the total
scattered return. Furthermore, such a target may be
physically larger than an incremental area of the type
described in the second section. Also, the statistics of
signal returns when all the signals have roughly compar-
able amplitudes are the same as noise statistics, whereas
the statistics for one large target and a background of
smaller ones correspond to a cw signal in noise.

It was shown in Section hIA that the radar return
from one target is given by

/2r\
PD (d --GIX

PR(d) (4=)3r4
where G is the antenna gain in the direction of the target
and o- is its scattering cross section. Now if there are L
large targets in the illuminated area, we define the
B function for them by

a G2(, Op)X2 L
B1(T) = > o i6(T - Ti, 4- i) (27)

(4w7) 34r4

where oi is the scattering cross section of the ith large
target and where the two-dimensional delta function is
zero everywhere except at values T= Tj and =0i
which correspond to the position of the ith large target.
Then, the return due to the L large targets may be
written

P d-9h/c ( 2hT
PR(d) =J PD d - T - - )BI(T)dT (28)

o \ ~~~~~c/

or

PD d++- PD(df - T)B1(T)dT.
co

C) Combined Return

In Sections IID, IIIA, and IIIB, we have shown
how to set up a power impulse response function for the
ground which takes into account antenna gain, scatter-
ing cross section, and distance. The function has been
set forth for the three cases of area scatter, mirror-like
reflection, and large individual targets. Because of the
additive properties of power functions taken with ran-
dom phases as described in Section II, the total return
power is the sum of the powers due to the three cases.
This leads to the definition of a combined B function:

B(T) ]B3(T) + Bm(T) + Bl(T)
OA2 c r27r

(47r)2 2(47rr3) foG2(, O)ao(O, p)do

+ KG2(6, ) 5(T)(2r)2

(30)+ G )Efoi6(T-Ti -i)47rr4 ij=a

The total mean power due to the three types of return
is, then,

2h) =d
PR d +-) = JPD(d -T)B(T)d T.

c/
(31)

It should be noted that this power is averaged over
many separate pulses. The component associated with
mirror-type reflection is a steady one and does not
fluctuate from pulse to pulse. The component associated
with a large target does not by itself fluctuate. However,
if two large targets are present at the same position in
the return, there is fading between them so that averag-
ing is required for this result. In addition, the scattered
components add phasorially to the other two com-
ponents and cause fading of the resultant. In computing
the statistical variations, it is necessary to consider the
distribution function of the resulting voltage. Fortu-
nately, because of the properties described in Section II,
it is possible to utilize the power superposition integral
of (31) to obtain the average pulse returii. Note, how-
ever, that this average pulse is bound to be far differenit
in appearance from any individual pulse.

IV. EXAMPLES

In this section, examples of the various types of
limitation of ground illumination and their effects oln
the return signal will be discussed. With cw or long-
pulse systems, it is possible to have the illuminated
region on the ground determined by the beam width of
the antenna pattern, even though the pattern may be
quite broad. With narrow-beam antennas, even short-
pulse systems may find their illuminated areas deter-
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mined by the beam width. On the other hand, with
pulse systems, and fm systems which are equivalent to
pulse systems, one finds frequently that the return is
limited by the pulse length rather than the beam width.
The variation of the illuminated area with height and
range for the beam-width-limited case is different from
the variation for the pulse-length-limited case.

Of course, with nonsquare pulses and nonsymmetrical
antenna patterns, the situation is somewhat more com-
plicated, and some examples are quoted here which show
this effect also. This situation becomes particularly in-
teresting when the antenna is pointed nearly horizon-
tally instead of vertically.

A) Beam- Width-Limited Illumination

For radars operating with long pulses or narrow beam
antennas, or for certain types of cw systems, the illumi-
nation may be considered limited by the antenna beam.
The simplest case to be considered here is one in which
we assume the scattering cross section per unit area to

PR(d) = 0,

PR(d) = XGo00Po si(-) ],

X2 02A opo

4(4ir) 2h2

PR(d) X2G02rPl 2__\2_2 1
PR(d) = )h c(- r)) -O204(4 Lc(d-

PR(d) =0,

wrill be used ra-ther thano those involving the convolution
integral as described later in Section II. In dealing with
symmetrical beams and square pulses, the original form
of the integral is somewhat easier to use since it is diffi-
cult to express B(T) compactly for these cases. For con-
venience, we repeat

PR(d)

X2 2r cd/2
PD d - - G2(0, 4))o(0, q5)drdq5

(47r) Jo h r3(17)

The result, when stated in full, requires three separate
nonzero expressions. The first corresponds to the time
before the trailing edge of the transmitted pulse reaches
the ground while the illuminated circle expands on the
ground. The second represents the period during which
the illuminated circle remains constant; its outer bound-
ary is determined by the antenna. The third is the period
during which the trailing edge of the pulse moves out-
ward to the edge of the antenna beam. The result is

(d<!)2h
c

/2h 2h
<d< -sec O
-cc )

/2h 2kh
-sec 00 < d <-+ r
sc c0/

/2h 2h
-+ i- < d <- sec 00 +

\c c

/2h
sec 00 + r < d±
\c/

(36)

(37)

(38)

(39)

(40)

be constant, the gain to be constant (antenna isotropic
in region of interest, gain zero elsewhere), and the trans-
mitted pulse to be square but of sufficient length so that
it could illuminate a region bigger than the antenna will
allow it to. Mathematically, these conditions are ex-
pressed as

0_'(0, 4) = o, a constant,
G(0, q5) = Go, (0 < a < So),

= O, (Oo < 0 _ r) I

PD(d) = Po, (O < d < r),
= O, (otherwise).

(32)

(33)

(34)

The pulse length is assumed to be r and the other quan-
tities are self-explanatory. The condition that the limita-
tion be due to beam width is given by the inequality

cr
1+-> sec0o. (35)

2k

In (35) Go is the angle defined by (33).
In order to determine the mean return power and

consequently the mean pulse shape of the return, (17)

These results are shown for
Fig. 2.

.03 -

<b, 02

.01
I-

a particular example in

Pulse Length X =0. 5 isec
Altitude h =2000 meters

Gain G(9, 0) = GO(9 ' go)

=0 (0 > 0)

0 10=
a() v, a c on stan t0 0 211T -d--

T (psec)

Fig. 2 Example of mean returned power for beam-limited scatter.

Note in (38) that the variation of the signal with alti-
tude h is inverse square. (This statement applies to the
peak return for the angle-limited case but does not, in
general, apply to the peak return for the pulse-length-
limited case.) Specular reflection also yields an inverse-
square altitude variation. It is possible then, to express
the scattering properties of the ground for this type of
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limitation in terms of an equivalent reflection (:oeffic.enlt.
One must note, however, that in doing so -he iim-plica-
tion is that there is no fading, whereas, in point of fact,
the fading is just as severe for beam-angle-limited scat-

ter as for any other type of scatter, while a true specu-

larly-reflected signal does not fade.
It should also be noted that the distinctioni between

beam-angle-limited and pulse-length-limited cases is
itself a function of altitude. For altitudes below those
given by

cr
1 +-= sec6o

2h (41)

the return will be beam-angle limited. On the other
hand, for altitudes above that obtained by solving this
equation, the illumination will be pulse-length limited.

B) Pulse-Length-Limited Illumination, u0 Constant

As stated above, the condition for pulse length limita-
tion of illumination is that

Cr

1+-< secOo. (42)
2/i

In this first example, we shall assume that all conditions
are the same as in the preceding example with beam-
width limitation except for (42); that is, the conditions
of (32), (33), and (34) apply here.

In this case, two separate nonzero expressions are

needed to state the result. The first corresponds to the
interval before the trailing edge of the transmitted
pulse reaches the ground. The second is the period after
the trailing edge reaches the ground and during which
the illuminated annulus on the ground spreads out. The
result is, for 6o = 900,

PR(d) = 0,

;GOaOP ~ 2h\2
PR(d)= 4(4 )2h2 _,

PR(d) X2Go2&oP:[(1 - T/d)2 1],

X2G02&APo 2T

(4r) 2c2 d3

Eq. (45) is included since this gives the peak of the mean

return. Eq. (47) follows directly from (46). Eq. (47)
states that at any fixed altitude h the mean returned
pulse decays as 1/d3, i.e., as the inverse cube of range.
An example which behaves according to (43) through
(47) is shown in Fig. 3.
We now make the assumption that the pulse length

P,,ls,e Lerigth l = O. I psec
Altitude h = 1000 meters

G,ain G(Q, 0) - G., a const.,,t

e(H-(, 0) - &,, ao. al

T 2h

T (psec)

Fig. 3-Example of mean returned power for pulse-limiited scatter.

in space is considerably shorter than twice the altitudRe,
i.e., that

cT << 2/h.

Then, (45) becomes

X2Go2-oPocr
PR(d) =

4(4- ) 2/3

(48)

(49)

for the peak of the mean return. This equation states
that the peak of the mean return power varies as the
inverse cube of altitude h. The inverse cube relationship
here should be contrasted with the inverse square rela-
tionship for beam-width limitation of illumination.
Again it should be pointed out that these are merely
mean pulse shapes and that there will be much fading
about the mean.

Because the variation of signal strength with altitude
is different for the pulse-length-limited case from that
for the beam-width-limited scatter or specular reflection
cases, it is not possible to describe the properties of a
scattering grounid, insofar as a pulse-width-limited radar
is concerned, by an effective reflection coefficient. Hence,
measurements made at one altitude and interpreted in

2h
d <

c

/2h 2h \
< d <-+ -r

\c c

2h \
(d = -+ s)
\ c /

/2h\
+ r < d)

\c

/2h\
t-+ 7 < d, r<<d -
\c

(43)

(44)

(45)

(46)

(47)

terms of signals at another altitude must specify the
mechanism involved in the radar return so that the
proper type of extrapolation may be used in going from
one altitude to another. Assumption of either specular
reflection or constant-o-o, pulse-limited scatter may lead
to difficulties in extrapolating measurements to different
altitudes.
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C) Pulse-Length-Limited I,un'ination, ac Variable

The example of Section 1VB, assumed that ao was
independent of depression angle. This assumption is not,
in general, justified, although types of ground have been
seen for which it seems fairly reasonable, particularly at
the higher frequencies. Most types of ground which
have been observed in the Sandia Corporation experi-
mental program have a ao which decreases as the angle
with the vertical is increased. Some examples have been
calculated for different types of variation of uo with
angle and it has been ascertained that neither an inverse
square or an inverse cube altitude variation applies to
all such situations.

Variations of the exponent associated with the change
of signal with altitude have been determined for the
cases where

O0 ¢O-e-0/150

and

for a rectangular transmitted pulse of duration r and for
an antenna gain which is constant over the region of
interest. The results are shown in Fig. 4, where

Fig. 4-Variation of peak mean return PR with altitude h;
rectangular transmitted pulse of duration r.

d(log PR)/d(log h) is plotted vs 2h/cr. PR is the maxi-
mum of the mean return. This expression does give the
exponent, since, if

PR = khn,

then

log PR = log k + n log h,

and

d(log PR) _
- nI

d(log h)

It is readily apparent that the inverse cube law pre--
vails at high altitudes and the inverse square at low alti--
tudes. This mnight be expected since a very small change
in 0o across the region illuminated by the pulse ap-
proaches the case of paragraph B) of this section, where
o is independent of angle. This small change occurs at
high altitudes since for this case the angle that defines
the illuminated region corresponding to peak return is
quite small. On the other hand, for low altitudes, the
area illuminated by a pulse corresponds to a very large
angle and the limitation of return is due to decrease of
0%r with angle rather than pulse length. Hence, an inverse
square variation occurs.

Another example of the variation of maximum mean
return with altitude has been calculated for

SO = aO cos6 n6a

and

GI = Go2 coSn 0

(i.e., for uoG2 = 0oG02 cos6 0) and for a rectangular trans-
mitted pulse of duration r. The results are also shown in
Fig. 4.

In this case, as in the two previous cases, the variation
becomes proportional to 1/h3 as 2h/cr-* oo, and becomes
proportional to 1/h2 as 2h/cr->0. The latter case corre-
sponds to 2h<<cr and is of little interest for a pulse
altimeter since the minimum altitude for which it is
useful is h=ccr12. However, the case is of general in-
terest.

D) Mean Return for Nonsquare Transmitted Pulse; Effect
of A ntenna Orientation
The pulse shown in Fig. 5 is taken as the transmitted

1. C

G- 0.

0.I.2 3

d (p^sec )

Fig. 5. Envelope of transmitted pulse in power units.

pulse. The antenna gain G and 0o are assumed to be

G = 6 sin2 y cos2 3 (one lobe only)

where y and a are longitude and colatitude in a coordi-
nate system based on the antenna, and

Tt =(oe-f/15 f

The mean returned pulse (normalized) for fouir different

I95 t,4
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Fig. 6-Example of mean returned power.

Fig. 7-Example of mean returned power.

altitudes, 0.122, 0.305, 1.22, and 3.05 km, is then given
by Figs. 6, 7, 8, and 9. In each figure, two values of
angle : are used. This angle represents the antenna
orientation; 1=900 represents the case where the an-

tenna is directed vertically downward and 3=00 corre-

sponds to a horizontally directed antenna.

V. CONCLUSION

Radar return from the ground at near-vertical inci-
dence is usually due to area scattering; but it may be
due, at least in part, to specular reflection and scattering
from individual large targets. It has been shown that
the mean return to a pulse radar can be expressed by a

power superposition integral involving the transmitted
pulse envelope and a function including effects of
ground properties, antenna gain, and distance.
With beam-width limitation of illumination, the mean

peak signal varies inversely with the square of altitude.
With pulse-length limitation of illumination, the mean

peak signal varies inversely as the square of altitude for
specular reflection, between inverse square and inve;se

T (gsec

Fig. 8-Example of mean returned power.

4 S 1. 2 1. 6 2. 0 2. 4 2.' 8 3.

T (a,sec)

Fig. 9-Example of mean returned power.

cube for area scatter, and inversely as the fourth power
for large target scatter. Curves have been presented
showing altitude variation for various area scattering
coefficients, and examples showing the effect of antenna
tilt have been included.
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