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ABSTRACT 

Einstein's viscosityequation for an infinitely dilute suspension of spheres is extended 
to apply to a suspension of finite concentration. The argument makes use of a functional 
equation which must be satisfied if the final viscosity is to be independent of the sequence 
of stepwise additions of partial volume fractions of the spheres to the suspension. For a 

monodisperse system the solution of the functional equation is ~r = e x p ( ~ ) ,  

where yr is the relative viscosity, ¢ the volume fraction of the suspended spheres, and k 
is a constant, the self-crowding factor, predicted only approximately by the theory. The 
solution for a polydisperse system involves a variable factor, k~i, which measures the 
crowding of spheres of radius ri by spheres of radius r~. The variation of h~i with r~/r~ is 
roughly indicated. There is good agreement of the theory with published experimental 
data. 

INTRODUCTION AND THEORY 

Since the publicat ion of Einste in 's  basic analysis of the viscosity of a 
dilute suspension of rigid spheres in a viscous liquid, numerous equations 
have  been developed in efforts to extend Einstein 's  formula  to suspensions 
of higher concentrat ions (1-4). The  various resulting formulas differ 
considerably f rom each other;  and  no one of them agrees with bo th  sets of 
experimental  da ta  discussed later  in this paper.  Some papers  deal with 
nonspherical  particles, or wi th  nonrigid particles such as dissolved polymer  
molecules. 

The  present  analysis is l imited to rigid, spherical particles. Also, the  
approach  is pa r t ly  empirical  in tha t  the interact ion paramete rs  are left for 
experimental  determinat ion,  no effort being made  to obtain their  values 
f rom hydrodynamic  theory.  W h a t  the  present  analysis does consider is the  
space-crowding effect of the suspended spheres on each other;  and  there is 
no restriction imp os ed  on the concentra t ion or particle size distribution. 

The Crowding Factor 

The Einstein viscosity equat ion postulates  a suspension so dilute t ha t  
there is no appreciable interact ion between the spheres. In  extending this 

1 Presented at the Annum Meeting of the Society of Rheology, New York, N. Y., 
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equation to higher concentrations, we must take into account at least the 
first-order interaction. We may describe this interaction as essentially a 
crowding effect. That is, in a two-component system, for example, spheres 
of size rt and partial volume concentration ¢1 crowd spheres of size r2 
into the remaining free volume 1 - X12 ¢1. The crowding factor, X12, may 
be different from unity as will be explained later. 

We assume that X12 is a function of the ratio rl/r2, but is independent 
of the value of @. In making this assumption we are neglecting second and 
higher order interactions. We shall use/c to denote the particular value 
X,, the self-crowding factor. 

Monodisperse Suspension of Finite Concentration 

If spheres all of radius rl are added to a suspension in two volume 
fractions ¢1 and ¢2, the addition of the first fraction will increase the viseos- 

ity by a factor H(¢1) = 71. All we know at present concerning H is that 
r]0 

it must reduce to Einstein's formula for the relative viscosity at small 
values of ¢1. 

If the second fraction, ¢~, is now added, there will be a further increase 
in viscosity. Part  of this increase we may consider as being an increase, 
caused by ¢2, in the viscosity of the remaining liquid in the space not 
occupied by 41. This increase will therefore be of the form H(~21), where 

¢2 is the concentration of ¢2 in this remaining liquid, allow- 
¢21 = 1 - k¢i 
anee being made for a crowding factor, k, different from unity. 

But the crowding of fractions ¢1 and 42 being mutual, introducing 42 
reduces the free volume accessible to ¢1, and the effective concentration of 

41 TO take account of this effect we ¢1 in the liquid is then ¢1~ - 1 - /c¢2" 

must now replace H(¢1) by H(~12). The product H(¢1~) × H(~21) is the 
viscosity of a suspension of total concentration, ¢1 + ¢2, and hence this 
product must be equal to H(¢1 + ¢2). This is 

H ( ~  + ¢~) = n~ = H(~I~) X H ( ¢ ~ )  

( ¢2 o1 H I I 

,, 1 - k¢2 

It  is found that this functional equation is satisfied if H has the form 

H(x) = exp 1 - k x  " F2] 

H(x), in conventional terminology, is the relative viscosity, T/n0. The 
constant 2.5 is chosen to agree with Einstein's equation for very dilute 
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suspensions, when ¢ approaches zero. To check Eq. [2~ mathematically, 
it can be verified that 

exp ( 2.5¢ ~ = 2.5(¢1 -f- ¢2) 

[ I[ 2E 
ol ) 

2.5 ( 1 - -  k¢2 
exp ¢1 1 k ( - ~ -  E3~ 

More generally, if ¢ is divided into n small fractions, it is easily verified 
that 

1 - k ( ¢ - ¢ 1 )  E4 ~ 2.5¢ _ f l  exp k¢~ . 
exP l  , k¢ - -  1 1 -- 1 -- k ( ¢ - ¢ ) i  

Suspension of Spheres of Two Different Diameters 
For spheres of different diameters, the crowding factor will be different 

from k, and will be different, also, depending on which spheres are con- 
sidered as being crowded, the large ones or the small ones. Hence in modi- 
fying the right-hand member of Eq E3J to fit this case, we must substitute 
h21 ¢2 for k¢2 in the first exponential term, and M2 ¢/)1 for k¢1 in the second 
exponential. Simplification of the resulting expression then leads to 

( H(¢I + ¢2) = exp 1 - -  k ~ b l  - -  ~21¢2 1 -- k-~--22 ~ hi:C1 

Polydisperse Suspension 
I f  we have a suspension of n groups of spheres, each group of a different 

diameter, we may write, by extension of Eq. E5~, 

lu H(¢) = 2.5 ~ 0' E6J 

j=l 

For a continuous distribution of diameters, Eq. E6~ becomes in the 
limit 

In H(¢) = 2.5 f f  d¢~ [7~ 

Y 1 - -  X~MCj 
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Let 

o = in ~, 

d~ = P(~)do-, [8J 

.~j~'" P(a)d(T = 1, 

where ~ is a mean radius, defined anyhow, and ~: and al are the upper dnd 
lower limits of ~. Then Eq. ~7~ takes the form, 

f~]2 P id~ In ~ = In H = 2.5¢ ~ .~  [-9~ 
1 - 4 ~  ~i~Pjdz 

[ 

With regard to the physical significance of the preceding equation, it 
may be clarifying to point out that  the first integral sign does not represent 
the successive additions of the different components of the suspended 
material. Rather, it represents the successive evaluations of the effects of 
the different components, each component operating in the presence of all 
of the other components. 

Properties of ~j ( ~ ) 

While there will be no attempt here to determine by theoretical analy- 
sis the precise properties of ko" as a function of the radius ratio, piy=ri/~, 
we can easily deduce certain important features of this function. For the 
case p~j--+ 0, pj~-~ oo, the suspension of the small spheres in the liquid 
between the large spheres behaves towards the large spheres like a 
homogeneous liquid of increased viscosity. Hence the large spheres are 
not crowded at all by the small ones; and the small spheres are crowded 
into the space left unoccupied by the large ones. Therefore 

lira ~ .  = 0, E10~ 
p~i---~O. 

lira k~j = 1, [11~ 

If we use these values of k~j in Eq. r5~, letting ¢~ be the component of 
small radius and ¢2 the component of large radius, we find 

2.5¢1 exPl 2.568 [-12~ = 70 exp 1 -- k¢1 -- ~2 -- k~2" 

The same equation can be obtained from two applications of Eq. E2~, 
if we recognize only that  the volume accessible to the fraction 41 is 
1 - q~2. Thus Eqs. El03 and [-111 are checked. 
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The value of ~,,, or k, is obviously of considerable importance. We 
can make a rough estimate of k from the following considerations. 
Densely packed spheres, in a face-centered cubic lattice, for example, 
would exhibit infinite viscosity, simply because of mechanical interlocking. 
The fractional volume, ¢o, of the spheres in such packing is 0.74. Hence, if 
H(¢c) by Eq. [2] is to be infinite, we must have 

h -- 1/0.74 = 1.35. [-13] 

This method of estimating k gives a lower limit. A rough estimate of 
an upper limit can be similarly obtained by assuming that the densest 
packing which will permit continuous movement is simple cubic. For this 
case q~c = ~r/6, a n d  

k -  6 / r  = 1.91. [14] 

From this purely geometric argument we therefore conclude that 

1.35 < k  < 1.91. [15] 

This simple analysis of space-filling and crowding action at high con- 
centrations does not in itself prove much about the value of k at low 

/ 
J 

Fla. 1. Properties of ~., the effective crowding of spheres 
of radius ri by spheres of radius r ,  

concentrations. However, space-filling action cannot vary greatly with 
concentration, and if the associated crowding action is a major part of 
particle-to-particle hydrodynamic interaction, then we may expect that k 
will vary only slightly with ¢, if at all, and will have a value of approxi- 
mately 1.5. Presumably the function ~J(m~) has a maximum at or near 
P~i---- ]. 

The properties of h~j, so far as they have been deduced, are shown in 
Fig,. 1. 

EXPERIMENTAL CHECK 

The above theory provides three equations, [2], [5-], and [9] or [6], 
by which the theory can be tested. Unfortunately the published literature 
does not provide the data necessary for rigorous tests of the more general 
equations. Relatively l i t t lework has been done at high concentrations of 
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rigid suspended spheres; and the control of particle diameter leaves much 
to be desired. Particles small enough to form colloidal solutions are in- 
creased in size by an adsorbed stabilizing layer of unknown thickness. 

The best experimental data for testing Eq. [-2] are those published by 
V. Vand (3) on nearly monodisperse suspensions of glass spheres, of diam- 
eters ranging from 0.010 to 0.016 cm. His suspension medium Was an 
equally dense solution of zinc iodide in a mixture of water and glycerol. 

The upper curve of Fig. 2 shows Vand's data for relative viscosity, 
v,, or in our notation, H(¢), plotted against ¢. The curve fitted to these 
points represents Eq. E2] with k = 1.43. The agreement seems to be 
within experimental error over the full range of the data. The two branches 
of the experimental curve above ~ = 0.35 represent two variations in 
experimental technique. Curve S was obtained by stirring the suspension 
immediately before measuring; curve N by not stirring. 

Ioo I 

80-  / /  
60- 

40- ,// J 

o__21; / 

1/: I 
VAND'S DATA I/,/ / 

~/~^, exp ( 2.5~ ~ /L" o /  

,o !// 
8- 

6- / /° 
4 - -  / o 

/x ' / ~  EILER'S DATA 

1 /x/° I I I 
0.2 '0.4 0.6 

FIG. 2. Theoretical curves fitted to experimental data 
by Vand (x) and by Eilers (o). 
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The comparison between observed  and calculated viscosity is shown 
more exactly in Table I. 

This  experimental  test  of the theory  shows that ,  in spite of the slight 
spread in diameter  of Vand's glass spheres, the theoretical equation fits 
t he  data  with a constant  value of k over the to t a l  variat ion in ¢.from 0 to 
0.5. Fur thermore ,  the value of k comes within the limits set by  the inequal- 
ities (see Eq.  [-153). 

H. Eilers (5) has published a series of viscosity measurements  on 
Concentrated emulsions of a bi tuminous material  of high softening point,  
such tha t  at  room tempera ture  the droplets were essentially rigid. The 

TABLE I 

V a n d '  s Da ta :  Observed and  Calculated ~ • 

Concentration 7 
¢, % ~(obs.) ~r (calcd.) 

0 1.000 1.000 
5 1.145 1.144 

10 1.342 1.340 
15 1.621 1.613 
20 ' ' 2.024 2.016 
25 2.632 2.648 
30 3.636 2.716 
35 5.556 1.75 
40N 10.53 10.36 
40S b 11.77 10.36 
4 5 N  b 18.18 23.48 
45S b 33.33 23.48 
5 0 N  b 33.33 80.35 
5 0 S  b 200.00 80.35 

Calculations by the formula In~, 2.5¢ 1 - 1.43~" 
b S signifies that suspension was stirred just before being measured; N signifies not 

stirred. 

diameters varied from 1.6 to 4.7 u, except for about  1% by  volume of 
diameter  less than  1.6 ~. The emulsions must  therefore be considered as 
polydisperse. If  we knew the h~j function in detail, and if we knew the 
P(z)  function for Eilers' material,  we could then use Eq. [-9~ to express the 
viscosity as a funct ion of the concentration. Lacking this information, we 
proceed to develop Eq. [-91 as a power series in ~, obtaining 

where 

I n ~  = 2 " S q ~ [ l + ~ ¢ " X " ]  ' ~ / 0  1 [16] 

E17~ 
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To the second degree in q), Eq. [16-] may be written 

In v 2.54 [18] 
70 1 - -  ) k l ( ~ '  

which is of the same form as Eq. [2]. The lower curve in Fig. 2 shows 
Eilers' data, and also Eq. [18] with hi = 0.75. The agreement is quite 
satisfactory in view of the fact that Eq. [18] is only an approximation, 
not expected to be valid at high concentrations. The fact that ~1 (Eilers) 
< k (Vand) also is in agreement with the theory. 

DISCUSSION 

The crowding theory of viscosity that has been presented here yields 
an equation for the relative viscosity of a monodisperse suspension of 
spheres which agrees with the best published experimental data over the 
full concentration range from 0 to 0.5. In addition to the Einstein coeffi- 
eient for dilute Suspensions, the equation involves one adjustable param- 
eter which is correctly predicted as to order of magnitude. In view of this 
success of the theory, the conclusion seems justified that the interaction 
between the spheres in a suspension is primarily the simple geometric 
crowding action which is the basis of the theory. The mutual disturbance 
of flow lines around two near particles is therefore a matter of secondary 
importance. 

From Eqs. [17] and [18], and also from the two curves in Fig. 2, it is 
clear that the second-degree coefficient in the viscosity-concentration 
equation must be a function of the particle size distrubution. This is a 
point which has been ignored in other published theories. For example, we 
have the following paradoxical situation. In de Bruijn's theory of viscosity 
(1) an unknown parameter is determined by assuming infinite viscosity 
for a suspension of spheres of volume concentration 0.74, corresponding to 
close packing of spheres of uniform size (just as, for example, we obtained 
Eq. [-13] above). De Bruijn's fluidity formula was found to give excellent 
agreement with Eilers' data on bitumen suspensions. We would here 
consider these suspensions to be polydisperse systems, and would not 
expect good agreement. De Bruijn's formula should agree, on the other 
hand, with Vand's data, published in 1947; but  the disparity between the 
two curves of Fig. 2 above shows that de Bruijn's formula agreeing with 
Eilers' data could not agree with Vand's data. 

Presumably the equations of the present theory could be elaborated to 
apply to other than rigid, spherical particles; but before such an extension 
of the theory is attempted it would be desirable to have the necessary 
experimental data for a rigorous test of the theory as it now stands. This 
requires close control of praticle size, and measurements on single-, 
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dual-, and mul t ip le-component  suspensions covering a wide range of 
particle diameters  and  concentrat ions.  

While this manuscr ip t  was in prepara t ion  a recent paper  by  James  V. 
Robinson (6) came  to the writer 's  a t tent ion.  Robinson measured the 
viscosities of suspensions of glass spheres in S. A. E. No. 30 motor  oil, 
S. A. E. No. 50 motor  oil, castor oil, e thylene glycol, a sucrose solution, 
and corn sirup. Sphere diameters  were most ly  f rom 10 to 30 ~. All  of 
Robinson 's  da ta  are well fitted by  Eq. ['181 with hi = 0.833, except for the 
initial points, a t  ¢ = 0, on the curves for ethylene glycol, sucrose solution, 
and corn sirup. These three initial points do not  fit well with the  other  
experimental  points on their  respective curves, and some sys temat ic  error  
in the  da ta  seems to be indicated.  

Robinson developed a theoretical  viscosity equat ion of the form 

7o 1 - - S ¢ '  

where A and S are adjustable  constants.  The product  S¢ is in terpreted as 
the  sedimentat ion volume of the  glass spheres, a n d 1  - S¢ as the " f r ee "  
volume of liquid. Obviously, in order to agree with Einstein 's  equation, A 
mus t  have  the  value 2.5; bu t  Robinson finds that ,  in order to f i t  his 
exper imental  data,  he m u s t  choose various values of A f rom 3 to 5. 

The  concept of free volume introduced by  Robinson is developed more  
rigorously in the present  paper.  The improvement  in the present  analysis,  
compared  with Robinson's ,  is indicated in one way  by  the fact  that ,  while 
fitting experimental  da ta  a t  high concentrations,  we still agree w i t h  
Einste in 's  equat ion a t  low concentrat ions.  

Note added in proof, As a result of some correspondence with Professor F. R. Eirich~ 
the author wishes to add a remark concerning V. Vand's (3) theoretical work. Equa- 
tion [-2] of the present paper occurs as an intermediate equation in Vand's theory. 
However, Vand's theory gives a value for k of .61, which is too low to make the equa- 
tion fit his data. After further theoretical development Vand arrives at a final equation 
which fits his data quite well, but is in the form of a power series terminating with the 
second degree in the concentration. 

There is, in this author's opinion, a serious error in Vand's theory of the collision 
effect. Vand assumes that after collision two spheres will separate along rectilinear 
paths; but it can be shown that the paths of recession must be curvilinear and are the 
mirror images of the paths of approach. Correction of this error in Vand's theory 
would lead to a higher theoretical value 6f k. 
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