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A theoretical model is used to study wave energy attenuation and directional spreading
of ocean wave spectra in the marginal ice zone (MIZ). The MIZ is constructed as
an array of tens of thousands of compliant circular ice floes, with randomly selected
positions and radii determined by an empirical floe size distribution. Linear potential
flow and thin elastic plate theories model the coupled water–ice system. A new
method is proposed to solve the time-harmonic multiple scattering problem under
a multidirectional incident wave forcing with random phases. It provides a natural
framework for tracking the evolution of the directional properties of a wave field
through the MIZ. The attenuation and directional spreading are extracted from
ensembles of the wave field with respect to realizations of the MIZ and incident
forcing randomly generated from prescribed distributions. The averaging procedure
is shown to converge rapidly so that only a small number of simulations need to be
performed. Far-field approximations are investigated, allowing efficiency improvements
with negligible loss of accuracy. A case study is conducted for a particular MIZ
configuration. The observed exponential attenuation of wave energy through the MIZ
is reproduced by the model, while the directional spread is found to grow linearly
with distance. The directional spreading is shown to weaken when the wavelength
becomes larger than the maximum floe size.
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1. Introduction
There is now growing evidence that ocean surface waves have a significant impact

on the seasonal advance and retreat of sea ice in the Arctic and Southern Oceans.
Satellite observations have shown that the energy content of wave spectra in the polar
oceans has been trending upwards in the last three decades, more significantly than
at lower latitudes (Young, Zieger & Babanin 2011). Recent in situ observations and
hindcasts of energetic wave fields at high latitudes (Kohout et al. 2014; Thomson
& Rogers 2014; Collins et al. 2015) support these long-term trends and suggest an
increasing impact of waves on the morphology of ice-covered oceans. In particular,
waves contribute to the rapid decline of sea ice extent and thickness observed in the
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Arctic region (Laxon et al. 2013; Meier, Gallaher & Campbell 2013) by fracturing the
elastic ice cover under sufficient flexural load (see Squire et al. 1995; Squire 2007, for
reviews), and therefore accelerating the melting of sea ice. This contribution is most
pronounced within, say, 100 km of the ice edge, a region referred to as the marginal
ice zone (MIZ), which typically consists of a disordered array of floating ice floes
with various shapes and characteristic horizontal dimensions O(10–100 m).

The presence of a broken-up ice cover with a certain ice concentration (the fraction
of sea surface covered by ice), thickness and floe size distribution (FSD) governs
the evolution of wave spectral properties (energy content, frequency and direction)
within the MIZ. When ocean waves enter an MIZ they are attenuated and, for modest
seas, much evidence now supports the assertion that ocean wave energy decays at
an exponential rate with distance from the ice edge (see Squire & Moore 1980;
Wadhams et al. 1988; Meylan, Bennetts & Kohout 2014, for field measurements in
both the Arctic and Southern Oceans). Moreover, the rate of attenuation tends to
increase with decreasing wave period. Concomitantly, the range of directions over
which waves travel in the MIZ appears to increase with distance from the ice edge,
so that the wave spectrum tends to become fully isotropic. Directional spreading in
the MIZ has been observed during the field work of Wadhams et al. (1986) and has
also been inferred from synthetic aperture radar imagery (see, e.g., Liu, Vachon &
Peng 1991b). Both wave energy attenuation and directional spreading are governed by
a combination of scattering effects and dissipative processes. Wave energy dissipation
occurs in many different forms, e.g. collisions (Shen & Squire 1998; Bennetts &
Williams 2015), turbulence (Liu & Mollo-Christensen 1988), wave overwash (Bennetts
et al. 2015; Skene et al. 2015), floe breakup (Williams et al. 2013a) and inelastic
bending (Squire & Fox 1992). Estimation of their effects on wave energy attenuation
is a difficult task, as most are nonlinear processes. Although simplified empirical
parameterizations have been developed to model the MIZ as a homogeneous linearly
viscoelastic layer (Wang & Shen 2010), their validity is unresolved and calibration
presents a major challenge that requires more data than are currently available (Mosig,
Montiel & Squire 2015). In contrast, wave scattering is conservative and redistributes
the wave energy over the directional domain. The exponential attenuation of wave
energy and directional spreading is a direct consequence of linear multiple scattering
theory for waves propagating in random media. This effect has been observed and
modelled in many areas concerned with such processes (see, e.g., Ishimaru 1978).

Herein, a three-dimensional model of wave energy attenuation and directional
spreading in the MIZ is proposed. Our goal is to reproduce the observed wave
attenuation and directional spreading of ocean wave spectra as they propagate
through the MIZ, by modelling the random nature of open ocean sea states and
the disorder of the distribution of ice floes in the MIZ. The primary outcome will
be an improved parameterization of wave/sea ice interactions in ice/ocean models
(IOMs), e.g. TOPAZ, and spectral wave models (SWMs) such as Wavewatch IIIr or
WAM. We plan to use our model simulations to generate attenuation and directional
spreading parameters in the form of look-up tables. We note that at present only
two-dimensional approaches (i.e. ones with one wave direction) are employed to
model wave energy attenuation in such large-scale models, with no exchange of
energy between different wave directions (see Doble & Bidlot 2013; Rogers &
Orzech 2013; Williams et al. 2013a,b, for implementation in SWMs and IOMs).

Unidirectional wave energy attenuation in the MIZ, i.e. neglecting directional
spreading, due to multiple scattering by arrays of ice floes has been described
theoretically a number of times within the framework of linear potential flow theory
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(see Squire et al. 1995; Squire 2011, for reviews). The most common representation
of each floe is a thin elastic plate. For example, Kohout & Meylan (2008) considered
transmission of waves through multiple elastic plates floating with no submergence,
using a two-dimensional model with one vertical dimension and one horizontal
dimension. They used ensemble averaging to show that selecting floe lengths and
floe spacings randomly from Rayleigh distributions leads to exponential attenuation
of the proportion of mean wave energy transmitted with respect to the number of
floes, and that the effective rate of attenuation increases with decreasing wave period.
These behaviours mirror those of ocean waves in the MIZ. Kohout & Meylan further
showed that their scattering model predicts attenuation rates comparable to those
measured in the MIZ for midrange wave periods (approximately 6–15 s), but that
it underpredicts the attenuation rates of longer period waves by at least an order of
magnitude. Bennetts & Squire (2012b) derived a semianalytic expression for the rate
of exponential attenuation predicted by the two-dimensional model based upon the
reflection produced by a solitary floe, assuming that the wave phase between floes is
random, as opposed to varying the floe lengths and spacings. They also included a
parameterization of wave energy dissipation due to interaction with the floes via the
viscoelastic plate model of Robinson & Palmer (1990) to correct for attenuation of
long-period waves. Bennetts & Squire (2012a) subsequently went on to consider how
sensitive the rate of exponential decay was to physical parameters in their model, with
the direct purpose of intelligently assimilating wave–ice interactions in a contemporary
IOM for the first time. Williams et al. (2013a,b) used the model of Bennetts & Squire
(2012b) to move towards this goal. Although these authors considered wavevectors
from different directions, the scattering was inherently one-dimensional, with no
changes to the directional structure of the wave spectrum being possible.

Several papers have outlined three-dimensional scattering models (two-dimensional
waves) to predict attenuation through the MIZ. However, for the thousands of floes
needed to simulate the MIZ, the computational expense of the additional dimension
has led to the use of approximations and/or simplifications of the geometry. For
example, Meylan, Squire & Fox (1997) approximated the wave interactions between
floes using the transport theory of radiative transfer in random media (based on
the Boltzmann equation; see Ishimaru 1978), which does not resolve wave phases.
They used the solitary circular elastic floe model of Meylan & Squire (1996) to
calculate the scattering kernel. They showed that, without an energy dissipation
term, i.e. for scattering alone, wave energy attenuates for a finite distance only, after
which it remains constant. Meylan & Masson (2006) showed that the model of
Meylan et al. (1997) is almost identical to that of Masson & Leblond (1989), who
restricted their ice floe model to be a floating rigid cylinder. Bennetts et al. (2010)
proposed a model based on full potential flow theory, using the methods devised
by Bennetts & Squire (2009) and Peter & Meylan (2009). They considered square
elastic floes in addition to circular floes, but found that the shape had minimal effect
on predicted attenuation rates. They showed that the model gave excellent agreement
with the measurements of Squire & Moore (1980) for midrange periods but, again,
significantly underestimated the attenuation on long-period waves. Further, they
studied the evolution of the directional spectrum of plane incident waves through
the MIZ. However, for computational expediency, they imposed artificial periodic
repetitions of a floe or groups of floes. This meant that the wave field was composed
of plane waves travelling in a handful of different directions, where the exact number
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changed at certain wave periods. This led to artificial jumps in the attenuation rate
with respect to the wave period, and no spreading of energy over the directional
range was observed.

The three-dimensional model of wave attenuation and directional spreading in the
MIZ proposed here is a solution of the full linear equations of potential flow theory
and does not invoke artificial periodicity on the geometry. It extends the solution
method proposed by Montiel, Squire & Bennetts (2015a) for a two-dimensional
problem of acoustic wave propagation through a large finite array of identical
circular obstructions. We include a realistic power-law FSD, which is based on
the observational studies of Rothrock & Thorndike (1984), Toyota, Takatsuji &
Nakayama (2006) and Toyota, Haas & Tamura (2011). Moreover, we model the
incident wave forcing as a random sea state with a prescribed directional energy
distribution. Ensemble averaging is then used to compute the wave energy attenuation
and directional spreading through the MIZ.

2. Preliminaries
2.1. Governing equations

Consider a three-dimensional seawater domain with infinite horizontal extent and
constant finite depth, h say. Points in the water are located by Cartesian coordinates
(x, y) in the horizontal plane and z in the vertical direction positively oriented upwards.
We assume that the free surface at rest coincides with the plane z= 0, so the seabed
is defined by z = −h. Irregularities in the seabed are not considered here, as h is
assumed to be large compared with the wavelength throughout this study.

We seek to model the propagation of a directional ocean wave spectrum through
an MIZ composed of thousands to tens of thousands of randomly positioned floating
compliant ice floes with circular shape and uniform thickness. We only consider
circular ice floes for simplicity, conjecturing that the shape of the floes has a small
effect on the mean properties of wave propagation through large random arrays.

The solution method described in § 3 requires clustering of the array of floes into
multiple slabs. Without loss of generality, we align the slabs with the y-axis. Let S
denote the number of slabs, and let slab q be bounded by ξq−1 6 x 6 ξq, 1 6 q 6 S,
have width Lq= ξq− ξq−1 and contain Nq floes. A sketch of the geometry is given in
figure 1. It should be noted that a floe belongs to a slab if its centre is in the slab
bounds.

Ice floe radii aq
p, 16 q6 S, 16 p6Nq, are drawn from a prescribed power-law FSD

as observed in the field (Toyota et al. 2006). A parameterization of the FSD will be
described in § 5.2. Further, we assume that all floes have constant thickness D and
uniform density ρ≈ 922.5 kg m−3. We do not include floes with different thicknesses
and densities in the model in order to limit the number of parameters, although the
method we propose can accommodate these extensions.

We consider a multidirectional wave field with small amplitude compared with
the wavelength and prescribed angular frequency ω. The water is approximated as
an inviscid and incompressible fluid with constant density ρ0 ≈ 1025 kg m−3 and
irrotational flow. The linear theory of water waves can then be used to describe
the water motion. Assuming time-harmonic conditions, we express the velocity field
in the water domain as (∇, ∂z)Re{(g/iω)φ(x, y, z)e−iωt}, where ∇ ≡ (∂x, ∂y) and
g ≈ 9.81 m s−2 is the acceleration due to gravity. The complex-valued (reduced)
potential, φ, is governed by Laplace’s equation,

∇2φ + ∂2
z φ = 0 (−∞< x, y<∞,−h< z<−d), (2.1)
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FIGURE 1. Schematic of the geometry in the horizontal plane z= 0.

where z=−d describes the upper boundary of the fluid domain, such that d= 0 when
a free surface is present and d = (ρ/ρ0)D (i.e. the Archimedean draught) when the
surface is covered by a floe. On the impermeable seabed, we prescribe a no-normal-
flow condition

∂zφ = 0 (z=−h). (2.2)

In fluid regions bounded above by a free surface (i.e. d = 0), the potential satisfies
the boundary condition

∂zφ = αφ (z= 0), (2.3)

where α =ω2/g is a frequency parameter.
We prescribe an ambient incident wave field φIn travelling in the positive

x-direction and defined by a superposition of plane waves with amplitudes that
depend continuously on the angle of incidence τ (with respect to the x-axis). We
express it as

φIn(x, y, z)= ζ0(z)
∫ π/2

−π/2
AIn(τ )eik0((x−ξ0) cos τ+y sin τ) dτ , (2.4)

where the incident wave directional spectrum AIn(τ ) characterizes the angular
distribution of ambient wave amplitude at x= ξ0. The function ζ0(z)= cosh k0(z+ h)/
cosh k0h describes the vertical motion of the incident wave field. The quantity k0
denotes the propagating wavenumber for a wave travelling in the free-surface region
and will be defined shortly. Scattering of the ambient wave field by the array of floes
gives rise to reflected and transmitted wave components which are expressed as

φ(x, y, z)≈ φIn(x, y, z)+ ζ0(z)
∫ π/2

−π/2
AR(τ )eik0(−(x−ξ0) cos τ+y sin τ) dτ (2.5a)
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as x→−∞ and

φ(x, y, z)≈ ζ0(z)
∫ π/2

−π/2
AT(τ )eik0((x−ξS) cos τ+y sin τ) dτ (2.5b)

as x→∞. The reflected and transmitted wave directional spectra, AR(τ ) and AT(τ ),
are unknowns of the problem. They characterize the angular distribution of the
reflected and transmitted amplitudes at x= ξ0 and x= ξS respectively.

We model the motion experienced by the ice floes using the Kirchhoff–Love theory
of thin elastic plates, which assumes that the thickness is small compared with the
diameter and vertical deformations are small relative to the thickness. At the water–
floe interface the potential then satisfies

(β∇
4 + 1− αd)∂zφ = αφ (z=−d), (2.6)

for a floe with thickness D and draught d = (ρ/ρ0)D. The stiffness parameter
β=F/ρ0g is defined in terms of the flexural rigidity of the plate, F=ED3/12(1− ν2),
where E ≈ 6 G Pa is a typical value for the effective Young’s modulus of sea ice
(Mellor 1986) and ν ≈ 0.3 denotes Poisson’s ratio.

We complete the description of the ice floe model by imposing free edge conditions.
These are most conveniently expressed using polar coordinates (r, θ) with the origin
at the centre of the floe. For a floe of radius a, we have

[r2∇2
r,θ − (1− ν)(r∂r + ∂2

θ )]∂zφ = 0 (r= a) (2.7a)

and
[r3∂r∇2

r,θ + (1− ν)(r∂r − 1)∂2
θ ]∂zφ = 0 (r= a), (2.7b)

where ∇r,θ ≡ (∂r + 1/r, (1/r)∂θ). In addition, we assume that the floes do not respond
in surge and sway, so that

∂rφ = 0 (r= a, − d< z< 0). (2.7c)

2.2. Scattering by a single floe
Each floe scatters the local wave field incident on it, which is the combination of the
ambient incident wave field and the wave fields scattered by all other floes. For a
given floe, which, as above, is assigned the polar coordinate system (r, θ), these local
incident and scattered wave potentials are expressed as the truncated eigenfunction
expansions

φI(r, θ, z)≈
M1∑

m=0

ζm(z)
N∑

n=−N

am,nJn(kmr)einθ (r> a) (2.8a)

and

φS(r, θ, z)≈
M1∑

m=0

ζm(z)
N∑

n=−N

bm,nHn(kmr)einθ (r> a) (2.8b)

respectively, which are solutions to (2.1)–(2.3) in cylindrical coordinates (see, e.g.
Peter, Meylan & Chung 2003, for a detailed derivation). We have introduced Jn and
Hn to denote the Bessel and Hankel functions of the first kind of order n respectively.
The amplitudes am,n and bm,n, 0 6 m 6 M1, −N 6 n 6 N, are unknowns of the
scattering problem. We define the vertical modes as ζm(z)= cosh km(z+ h)/cosh kmh.
The wavenumbers km, m > 0, are the solutions k of the dispersion relation for an
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open water region, that is
k tanh kh= α. (2.9)

We denote the positive real root of (2.9) by k0. It is associated with a wave
mode travelling in the horizontal plane. As the water depth h is assumed to be
large compared with the wavelength, we have k0 ≈ α, so that the wavelength is
approximately independent of h. All other km, m > 1, are purely imaginary with
positive imaginary part and are ordered such that −ikm <−ikm+1. They are associated
with evanescent vertical wave modes which decay exponentially in the horizontal
directions, such that the rate of decay increases for increasing m. In contrast to k0,
the values of km, m > 1, depend on h. It should be noted that the sums in (2.8) are
truncated versions of the corresponding series expansions, with M1 and N chosen in
order to obtain a sufficient degree of accuracy (see below).

Montiel et al. (2013) proposed a solution method for the single-floe scattering
problem. Using equations (2.1), (2.2), (2.6), (2.7a) and (2.7b) they expressed the
potential below the floe (i.e. r< a) as a truncated series of eigenfunctions similar to
(2.8a), but with different wavenumbers characterizing wave modes in the ice-covered
water domain. They then used a version of the eigenfunction matching method
(EMM) which accommodates the draught of the floe, through (2.7c), in order to
extend the zero-draught EMM of Peter et al. (2003). The EMM produces a mapping
between the amplitudes am,n and bm,n for each angular mode n; the axisymmetry of
the problem decouples the angular modes. In matrix form, the mapping is expressed
as

bn = Snan, (2.10)

for −N 6 n 6 N, where an and bn are column vectors of size M1 + 1 containing the
amplitudes am,n and bm,n respectively for a given n. The matrices Sn are squares of size
M1+ 1 and form the diffraction transfer matrix (DTM) of the floe when concatenated
in a block-diagonal matrix. Extensions of our model to arbitrarily shaped floes could
be accommodated following Peter & Meylan (2004), who devised a numerical method
to compute the DTM of such floes. It should be noted that in this case the DTM loses
its block-diagonal property.

We choose the truncation limits N and M1 to achieve three-digit accuracy for the
scattered energy. In the regime of interest here, k0a = O(1), this typically requires
M1=O(100) vertical modes and N=O(1) angular modes, as demonstrated by Montiel
(2012).

2.3. Multiple scattering and limitations of the direct approach
Our goal is to solve the wave scattering problem deterministically for a large number
of floes. Apart from truncations, no approximation will be made with regards to
multiple scattering by the array, so that the scattered field due to each floe acts as
an incident field on all of the other floes.

The so-called self-consistent approach (or direct matrix method) provides an exact
representation of multiple scattering processes and was introduced in the context of
ocean wave interactions with floating structures by Kagemoto & Yue (1986), noting
that this approach is standard in many areas concerned with wave scattering by arrays
of scatterers (see, e.g., Martin 2006). The method is briefly summarized below, and
the reader is referred to the investigations cited here for additional details (see also
Peter & Meylan (2004) in the context of wave interactions with elastic ice floes).

The method describes the wave forcing φ(p)
I incident upon a floe p, which has its

centre located at (x, y)= (xp, yp), as the coherent sum of the ambient incident wave
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φIn and the scattered wave fields originating from all of the other floes, i.e.

φ
(p)
I = φIn +

∑
j, j6=p

φ
( j)
S , (2.11)

where φ
( j)
S is the scattered wave potential due to a floe j, with centre located at

(x, y) = (xj, yj), and the sum over j runs for all floes in the array except p. The
incident and scattered wave components are expressed in terms of the eigenfunction
expansions (2.8), using the relevant local polar coordinates (rp, θp), defined by
(x, y)= (xp + rp cos θp, yp + rp sin θp). Subsequently, the expressions for the scattered
waves φ

( j)
S in (2.11) are mapped into the local coordinates (rp, θp) of floe p.

Application of the (reduced) boundary condition (2.10) around floe p then yields
the following matrix equation:

b(p)
n −

∑
j, j6=p

N∑
s=−N

S(p)
n T ( j,p)

n,s b( j)
s = S(p)

n f (p)
n , (2.12)

which can be obtained for all floes p. Numerical experiments (see § 4) have shown
that only O(1) vertical modes are necessary in (2.8) to resolve wave interactions
in an array of floes accurately, assuming that the single-floe solutions are obtained
with sufficient accuracy (which requires M1=O(100) vertical modes). The vectors of
scattered wave amplitudes b(p)

n and matrices S(p)
n in (2.12) are then chosen to have

size M2 + 1, where M2 = O(1). They are obtained by truncating the corresponding
quantities of size M1 + 1 defined for the single-floe solution.

The resulting system of equations is solved for the scattered wave amplitudes b(p)
n

for all floes p and angular modes n. Here, the forcing vectors f (p)
n , −N 6 n 6 N,

contain the amplitudes of the ambient incident potential (2.4) expressed in the local
cylindrical coordinates of floe p. The square matrices S(p)

n are analogous to the
matrices defined in (2.10) for each floe p. We have also introduced the diagonal
matrices T ( j,p)

n,s = diag{Hs−n(kmRj,p)ei(s−n)$j,p, 0 6 m 6 M2} of size M2 + 1, where
(Rj,p, $j,p) are the polar coordinates of the centre of floe p in the local system
associated with floe j. These matrices describe the change of local polar coordinates
from floe j to floe p, and their entries are calculated using Graf’s addition theorem
(Abramowitz & Stegun 1970), which couples the angular modes.

The size of system (2.12) grows linearly with the number of floes in the array,
and direct inversion will lead to a computational cost increasing with the cubic
power of the number of floes. The order-of-scattering method, based on the original
paper by Twersky (1952), has been used to approximate the solution of (2.12) by
successive orders of multiple scattering events (see, e.g., Ohkusu 1974; Mavrakos &
Koumoutsakos 1987). Mathematically, this is equivalent to solving (2.12) using an
iterative scheme, e.g. the Jacobi or Gauss–Seidel method. This method usually leads
to performance improvements, although the computational cost is strongly affected by
the concentration of floating bodies in the array (Kagemoto & Yue 1986). Numerical
experiments conducted by the authors have shown that direct inversion or iterative
approaches are limited to arrays of O(100) floes.

3. Slab-clustering method
We remedy the practical shortcomings of the self-consistent approach by imple-

menting the slab-clustering method, described by Montiel et al. (2015a) for a cognate
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(a) (b)

FIGURE 2. (Colour online) (a) The integration contours Γ0 (blue solid) and Γe (green
dashed) in the complex χ -plane, which describe the domains of the amplitude functions
A±m;q(χ) for travelling (m = 0) and evanescent (m > 1) vertical modes respectively. The
arrows indicate the directions of the contours. (b) The corresponding truncated contours
Γ̃0 (blue solid) and Γ̃e (green dashed) used in the numerical approximation discussed in
§ 3.2.

canonical acoustic problem. While much of the method presented by Montiel et al.
may be applied straightforwardly to the present problem, the existence of evanescent
vertical modes adds a complication that needs to be dealt with carefully.

The method consists of dividing the array of floes into slabs as described in § 2.1.
We seek a solution for the wave field between two adjacent slabs as the coherent
superposition of the left-travelling and right-travelling directional wave fields. In its
most general form, the field at x= ξq can be expressed as

φq(x)= φ(+)q (x)+ φ(−)q (x), (3.1)

where

φ(±)q (x)≈
M2∑

m=0

ζm(z)
∫
Γm

(A±m;q(χ)e
ikm(±(x−ξq) cos χ+y sin χ)) dχ, (3.2)

for 0 6 q 6 S. The A±m;q(χ) represent rightward (+) and leftward (−) amplitude
functions corresponding to wave modes travelling (m= 0) and decaying (m > 1). The
amplitudes A+m;q−1 and A−m;q are incident on slab q from its left and right respectively,
and A−m;q−1 and A+m;q are scattered by it to the left and right respectively.

The integration contour Γm differs for the travelling (m= 0) and evanescent (m> 1)
modes. For a travelling mode, it runs from −π/2 + i∞ to π/2 − i∞ through the
origin and is parameterized by

χ(ς)=
−π/2− i(1+ ς) (−∞6 ς 6−1),

π/2ς (−1 6 ς 6 1),
π/2+ i(1− ς) (1 6 ς 6∞).

(3.3)

The contour Γ0 is depicted in figure 2(a) as a blue solid line. The integration contours
Γm (m > 1) for the evanescent vertical modes are all identically equal to Γe, which
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spans the imaginary axis from i∞ to −i∞, as shown in figure 2 (see the green dashed
line in a). The integration contours Γ0 and Γe arise from decomposing a surface wave
source into a superposition of plane waves continuously depending on the complex
angular parameter χ , as will be shown in § 3.1.

The complex branches of Γ0 correspond to wave components that decay exponen-
tially in the x-direction. The rate of decay increases as the imaginary components of
χ get larger. In this regard, these components are similar to the evanescent modes.

We introduce an approximation for computational purposes, by truncating Γe and
the complex branches of Γ0 to ±γ i and ±(π/2− γ i) respectively, where γ > 0. The
truncated contours are denoted by Γ̃0 and Γ̃e and are shown in figure 2(b). It should
be noted that the special case γ = 0 represents a far-field approximation, for which all
x-decaying wave components are neglected in interactions between slabs. Its validity
depends on the spacing between slabs and will be discussed further in § 4.

3.1. Reflection and transmission by a single slab
Montiel, Squire & Bennetts (2015b) derived a set of relationships (for the special case
γ = 0) between the incident and scattered amplitude functions A±0;q(χ) on either side
of a given slab q as a result of reflection and transmission. Here, we extend these
relationships to include evanescent vertical modes (i.e. m > 1) and x-decaying wave
components (i.e. γ > 0).

We consider the scattering by slab q due to the incident forcing from its left-hand
side, φ(+)q−1, only. The response to incident forcing from its right-hand side, φ(−)q ,
follows similarly, and the total response to forcing from both sides is calculated via
superposition.

The forcing field may be expressed in the local polar coordinates of floe p
analogously to (2.8a). For each angular mode n and vertical mode m, the forcing
amplitudes are then given by

[ f (p)
n ]m = in

∫
Γm

A+m;q−1(χ)e
−inχeikm((xp−ξq−1) cos χ+yp sin χ) dχ. (3.4)

The self-consistent method outlined in § 2.3 is used to solve the multiple scattering
problem within the slab. It results in a system of equations analogous to (2.12) which
yields the mapping

b[q] = D[q] f [q], (3.5)

where b[q] ( f [q]) is a vector of length (M2 + 1)(2N + 1)Nq that contains all of the
scattered (incident) wave amplitudes contained in b(p)

n ( f (p)
n ), for −N 6 n 6 N and

1 6 p 6 Nq. The square matrix D[q] has size (M2 + 1)(2N + 1)Nq and is the DTM of
slab q.

We seek the reflected and transmitted amplitude functions in the form

A−m,q−1(χ)=
M2∑
l=0

∫
Γl

R+m,l;q(χ : τ)A+l;q−1(τ ) dτ (3.6a)

and

A+m,q(χ)=
M2∑
l=0

∫
Γl

T +
m,l;q(χ : τ)A+l;q−1(τ ) dτ (3.6b)

respectively. The functions R+m,l;q(χ : τ) and T +
m,l;q(χ : τ) are respectively reflection and

transmission kernels for each pair of vertical modes m and l.
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In order to evaluate the reflection and transmission kernels, we re-express the
scattered wave field (2.8b) due to each floe in the slab as a superposition of plane
waves. This is achieved using the following plane wave representation of the outgoing
cylindrical harmonics:

Hn(kmr)einθ =


(−i)n

π

∫
Γm

einχeikm(x cos χ+y sin χ) dχ (x > 0),

in

π

∫
Γm

e−inχeikm(−x cos χ+y sin χ) dχ (x 6 0),
(3.7)

where (x, y) = (r cos θ, r sin θ). This identity is derived from Sommerfeld’s integral
representation of the Hankel function (Sommerfeld 1949) for m= 0, while an integral
representation of the modified Bessel functions of the second kind Kn has been used
for m > 1 (see Linton & Evans 1992, equation (2.12)). To the best of the authors’
knowledge, the two cases have not been unified in this manner before. By substituting
(3.7) into (2.8b) for all floes and modes simultaneously, and using (3.5) and (3.4)
in turn, we obtain the following semianalytical expressions for the reflection and
transmission kernels after algebraic manipulations:

R+m,l;q(χ : τ)= (vS−
m;q(χ))

trPD[q]P−1vIn+
l;q (τ ) (3.8a)

and
T +

m,l;q(χ : τ)= (vS+
m;q(χ))

trPD[q]P−1vIn+
l;q (τ )+ eikmLq cos χδ(χ − τ), (3.8b)

where a superscript tr indicates transpose and δ(·) denotes the Dirac delta.
In these expressions we have defined the vector vIn+

l;q−1(τ ) of length Nq(2N + 1)
(M2+ 1), which provides a change from Cartesian to polar coordinates of the forcing
field in the local system of each floe in the slab. Its entries are

[vIn+
m;q(τ )]ind(l,p,n) = ine−inτeikl((xp−ξq−1) cos τ+yp sin τ)δm l, (3.9a)

where ind(l, p, n) = lNq(2N + 1) + (p − 1)(2N + 1) + N + n + 1 defines the modal
hierarchy (vertical mode, floe number, angular mode) in ordering entries, and δm l is
the Kronecker delta. In contrast, the vectors vS−

m;q−1(χ) and vS+
m;q(χ) provide a change

from polar to Cartesian coordinates of the scattered field due to each floe, travelling
in the leftward and rightward direction respectively. Their entries are

[vS−
m;q(χ)]ind(l,p,n) = in

π
e−inχeikl((xp−ξq−1) cos χ−yp sin χ)δm l (3.9b)

and

[vS+
m;q(χ)]ind(l,p,n) = (−i)n

π
einχe−ikl((xp−ξq) cos χ+yp sin χ)δm l. (3.9c)

The matrix P is a permutation matrix of size Nq(2N + 1)(M2+ 1) used to change the
modal hierarchy from that used in the slab DTM D[q] (i.e. floe number, angular mode,
vertical mode) to that used in (3.9). It should also be noted that the second term in
(3.8b) represents the contribution from the forcing field to the transmitted field.
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3.2. Multiple slabs
At the boundary x= ξq, the left- and right-travelling amplitude functions take the form

A−m,q(χ)=
M2∑
l=0

∫
Γl

(R+m,l;q+1(χ : τ)A+l;q(τ )+T −
m,l;q+1(χ : τ)A−l;q+1(τ )) dτ (3.10a)

and

A+m,q(χ)=
M2∑
l=0

∫
Γl

(T +
m,l;q(χ : τ)A+l;q−1(τ )+R−m,l;q(χ : τ)A−l;q(τ )) dτ , (3.10b)

where the kernel functions R±m,l;q and T ±
m,l;q are found using the method described

in § 3.1. Given that the forcing is provided by (2.4) only, we have A+0;0(χ)= AIn(χ),
A+0;m(χ)= 0 for 1 6 m 6 M2 and A−S;m(χ)= 0 for 0 6 m 6 M2.

A numerical scheme is implemented by discretizing the amplitude and kernel
functions using a uniform sampling of the angular parameters χ and τ . Amplitudes
and kernels associated with a travelling vertical mode (m = 0) are defined on the
truncated contour Γ̃0 introduced at the beginning of § 3 (see figure 2b). Contour Γ̃0 is
then discretized by selecting 2Ntr + 1 samples χi, −Ntr 6 i6Ntr. Different resolutions
are taken for the subinterval [−π/2,π/2] of Γ̃0 and its complex branches. Typically,
the resolution chosen for the complex branches is five times as coarse as that of
[−π/2,π/2]. Likewise, contour Γ̃e is discretized using 2Nev + 1 samples.

Combining all the vertical modes, we can define vector versions of the amplitude
functions A±q containing the value of the corresponding continuous functions
A±m,q(χi) at all angular samples χi. Likewise, we obtain matrix versions of the
kernel functions after discretization. At this point, a numerical quadrature must
be chosen to approximate the integrals involved in (3.10). Although high-order
schemes, e.g. Simpson’s rule or Gaussian quadrature, are very accurate for relatively
smooth functions, we expect our spectra to be noisy for large random arrays of floes
(confirmed by numerical experiments), in which case lower-order quadratures provide
more accurate and more efficient estimates. We found that a composite trapezoidal rule
gave the best results in terms of convergence. The weighting factors of the trapezoidal
rule can be assembled in a diagonal matrix of size Nang = 2Ntr + 1 +M2(2Nev + 1),
which multiplies the matrix versions of the kernel functions to give the reflection and
transmission matrices R±q and T±q . Consequently, (3.10) is written in the discretized
form

A−q = R+q+1 A+q + T−q+1 A−q+1 and A+q = T+q A+q−1 + R−q A−q . (3.11a,b)

The solution to the slab interaction problem is obtained using an efficient iterative
technique, which is an extension to the one described by Montiel et al. (2015a) for
travelling modes only. Following this approach, at each slab boundary x = ξq, the
unknown amplitude vectors are given by

A+q =
(
I − R−1,qR+q+1,M

)−1
T+1,q A+0 (3.12a)

and
A−q =

(
I − R+q+1,MR−1,q

)−1
R+q+1,MT+1,q A+0 , (3.12b)

where I denotes the identity matrix of order Nang, and R±p,q and T±p,q are the reflection
and transmission matrices respectively for the stack of slabs p to q. These reflection
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and transmission matrices are computed iteratively, starting from slab 1 alone, which
initializes the procedure, to the stack of slabs 1 to S, adding one slab to the stack at
each iteration.

We establish a convergence criterion for the numerical integration scheme consi-
dered here, based on the energy conservation relation∫ π/2

−π/2
|AR(χ)|2 dχ +

∫ π/2

−π/2
|AT(χ)|2 dχ =

∫ π/2

−π/2
|AIn(χ)|2 dχ (3.13)

being satisfied within a tolerance of 10−4, where the reflected and transmitted
amplitude functions are given by AR(χ) = A−0;0(χ) and AT(χ) = A+0;S(χ) respectively
for −π/26χ 6π/2. It should be noted that we have restricted the integration domain
to include travelling wave components only, as they are the only ones to affect the
energy balance of the system. We refer to the restriction of the amplitude functions
A±0;q(χ), q= 0, . . . , S, to −π/2 6 χ 6π/2 as directional spectra. In particular, AR(χ)

and AT(χ) are the reflected and transmitted directional spectra respectively.
We further note that although the energy conservation relation (3.13) is necessary

for convergence of our numerical method, it is not sufficient to obtain convergence
to the desired solution. In particular, we can always obtain energy conservation for
sufficiently high Nang, regardless of the value taken for the truncation parameter
γ and the resolution of the complex branches in our numerical approximation of
the integration contours Γ̃e and Γ̃0. Convergence of the solution within the desired
tolerance is obtained for a sufficiently large γ , as will be shown in § 4.

4. Far-field approximations
The far-field approximations neglect evanescent/decaying wave components in wave

interactions between floes. The first far-field approximation (FFA1) we consider
consists of neglecting the vertical evanescent modes (i.e. setting M2 = 0) to calculate
wave interactions between floes in the slabs. To the best of the authors’ knowledge,
the convergence properties of the self-consistent approach for wave interactions
between floes with respect to the number of vertical modes used have not been
investigated previously. In comparison, the convergence properties of the EMM for a
single floe with respect to the vertical modes are well understood (see, e.g., Montiel
2012).

Consider a large array of 20 slabs, each containing 51 identical floes with radius
a= 150 m and thickness D= 1.5 m. The relatively large floes in this array test the
convergence properties of the method to a greater extent than the range of floe radii
in the natural FSDs used in the simulations presented in § 6. The floes are assumed
to be equally spaced and aligned in both the x- and y-directions, forming a regular
square grating symmetric about the x-axis. We define the non-dimensional spacing of
the grating as the ratio of the centre-to-centre distance between two adjacent floes and
the floe diameter. It is denoted by σ and equals L/2a > 1, where L = L1 = · · · = Lq
is the width of the slabs. We prescribe the incident directional spectrum AIn(τ )= cos τ ,
the wave period T = 2π/ω and set the fluid depth to h = 200 m. We define the
reflection coefficient of the array to be

R=
√(∫ π/2

−π/2
|AR(χ)|2 dχ

)/(∫ π/2

−π/2
|AIn(χ)|2 dχ

)
. (4.1)

It is used to analyse the convergence with respect to the vertical modes.
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T = 6 s T = 9 s T = 12 s
M2 σ = 1.05 σ = 1.5 σ = 1.05 σ = 1.5 σ = 1.05 σ = 1.5

0 0.86332 0.92510 0.71195 0.49577 0.10933 0.14183
3 0.86345 — 0.71154 — 0.10936 —
6 0.86365 — 0.71126 — — —
9 0.86371 — 0.71124 — — —
12 — — — — — —

TABLE 1. Convergence of the reflection coefficient with respect to the number of vertical
modes M2 for three wave periods (T = 6, 9 and 12 s) and two grating spacings (σ = 1.05
and 1.5). A long dash signifies a value identical to the one directly above.

Table 1 shows values (to five significant digits) of the reflection coefficient for the
three wave periods T = 6, 9 and 12 s, and two spacings σ = 1.05 (dense array) and
1.5 (loose array). It indicates that floe spacing is the dominant influence on the rate
of convergence with respect to the number of vertical modes used. For the loose
array (large spacing), all evanescent waves decay rapidly and do not interact with
adjacent floes for all wave periods considered, as the reflection coefficient is accurate
to five digits with the FFA1 (M2 = 0). For the dense array, M2 = 9 evanescent modes
are required to reach five-digit accuracy for the two shorter wave periods, T = 6 and
9 s, while only M2 = 3 evanescent modes are needed for longer waves (T = 12 s).
Shorter waves are expected to experience more scattering and therefore to generate
more intense evanescent modes than longer waves, which is consistent with our
observations. It should also be noted that the FFA1 provides three-digit accuracy for
all wave periods in the dense array case, which is the level of accuracy sought as
part of this investigation. It is thus reasonable to consider the FFA1 valid for at least
T > 6 s for the array considered here or ka 6 16 more generally. Consequently, the
FFA1 will be invoked for the remainder of this paper.

In § 3 the integral expressions for the wave fields at the slab boundaries were
approximated by discretizing the parameterized contours Γ0 and Γe. Specifically, the
complex branches were truncated to ±(π/2− γ i) for Γ0 and ±γ i for Γe. The value
taken for the truncation parameter γ determines the proportion of x-decaying wave
components taken into account for a slab. These decaying waves do not affect the
far-field solution (|x| →∞) of the single-slab problem. Therefore, a second far-field
approximation (FFA2) is proposed, in which the x-decaying wave components are
neglected in the interactions between slabs, i.e. we set γ = 0. We investigate the
validity of FFA2 below which, to the best of the authors’ knowledge, has not been
been conducted before.

We consider the same 20-slab arrays as in the previous analysis. The problem is
solved for increasing values of γ with 0 6 γ 6 2.5. The accuracy of the solution
is estimated by the absolute error between successively calculated values of the
reflection coefficients. These are plotted in figure 3 for wave periods T = 6, 9 and
12 s, and grating spacings σ = 1.05 and 1.5. Although the error curves are all noisy,
we detect clear convergence trends. Error estimates all reach machine precision within
the interval 0 6 γ 6 2.5, but the convergence rate depends strongly on both wave
period and spacing. In particular, faster convergence is observed at shorter wave
periods for a given spacing, while the denser array tends to slow the convergence for
each period. In all cases considered here, a 10−5 error (four-digit accuracy) is reached
with γ ≈ 1.2. Therefore, we will use this value for the remainder of our investigation,
i.e. we do not employ FFA2.
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FIGURE 3. Estimated error on values of the reflection coefficient against the truncation
parameter γ . The convergence analysis is conducted for (a) T = 6 s, (b) 9 s and (c) 12 s,
and two grating spacings.

5. Simulations and randomness
5.1. Random sea states

We model the forcing wave field as a random directional sea state, in which wave
components travelling at different angles do not interfere coherently, i.e. their phases
are uncorrelated. Numerical tests (not shown here) indicate that the reflection
properties of an array of floes depend strongly on the directional coherence of
the forcing field. Specifically, the reflection coefficient (and therefore the attenuation
rate of wave energy) computed for a coherent forcing field is typically higher than
that obtained for an incoherent field with the same prescribed incident spectrum. In
addition to incoherence, we require the simulated directional sea state to be ergodic
in the sense that the wave statistics over the spatial domain are uniform and can be
deduced from its properties at a single point in the domain. This property is needed
to reduce the variability of the response of the system to a random forcing, as will
be discussed below.

A number of methods exist to simulate ergodic directional sea states deterministically
(see, e.g., Jefferys 1987; Miles & Funke 1989). Most methods are based on multiple
frequency wave spectra, for which a realization of the random sea state is generated by
a double sum over the directional and frequency range of plane waves with random
characteristics. As we assume a monochromatic wave forcing, the double sum is
replaced by a single sum over Ntr directions, giving a free-surface displacement

ηIn(x, y, t)=
Ntr∑
i=1

ai cos(k0(x cos τi + y sin τi)−ωt+ εi). (5.1)

For each wave component travelling at angle τi with respect to the x-axis, the
amplitude ai is defined deterministically from an energy spreading function D(τ ),
and the phase εi is a random parameter with uniform distribution between 0 and 2π.
For the remainder of the investigation we prescribe a standard cosine-squared energy
spreading function, i.e.

D(τ )= 2
π

cos2(τ ) (−π/2 6 τ 6π/2), (5.2)

where the constant factor is chosen so that the total energy of the wave field is∫ π/2

−π/2
D(τ ) dτ = 1. (5.3)
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The energy spreading function (5.2) and the amplitudes of (5.1) are related by
ai =

√
2D(τi)1τ for 1 6 i 6 Ntr in (5.1), with 1τ = π/(Ntr − 1) and τi =

(i− 1)1τ −π/2.
Although directional incoherence is directly satisfied in (5.1) through the random

parameter εi, following Jefferys (1987) we show in appendix A that this equation does
not simulate an ergodic field, i.e. much spatial variability exists in the mean energy of
a generated sea state (≈100 % relative standard error). A simple remedy is to perform
averaging over an ensemble of random realizations of the wave field. The method
converges slowly, however, and approximately 10 000 realizations of the sea state are
necessary to approximate ergodicity with 1 % relative standard error on the incident
field mean energy.

We compute the corresponding reflected energy, R2, for the 20-slab grating
considered in § 4, with spacing constant σ = 1.5. The forcing is defined by the
random sea state (5.1) with period T = 9 s and an energy spreading function given
by (5.2). Using an ensemble of 1000 realizations of the random forcing field, we
calculated the relative standard error on a single estimate of the reflected energy to
be approximately 7 %. Averaging over many realizations of the random wave forcing,
the relative error of the average estimate then drops as the inverse square root of the
number of realizations, so it is approximately 1 % for 50 realizations. This contrasts
with the 10 000 simulations required to estimate the incident field mean energy
with the same tolerance. Similar results were obtained for other wave periods. This
analysis suggests that the scattering properties of large arrays have a low sensitivity
to random variations in the phase of the wave forcing. For a regular array of ice
floes, a relatively small number of random realizations of the sea state then suffices
to obtain accurate estimates of the scattering properties of large arrays.

5.2. Simulation of a natural FSD
We model the MIZ as a randomly selected array of floes with different sizes, such
that the diameters obey a power-law distribution, which is a standard empirical model
of the FSD (see, e.g., Rothrock & Thorndike 1984; Toyota et al. 2006, 2011). This
is a unique feature of our three-dimensional attenuation model. Further, it allows us
to simulate an MIZ with a high concentration, which would otherwise not be possible
with a single floe size, e.g. the mean floe size.

We use an approach similar to that of Kohout & Bertino (2011) and Williams et al.
(2013a) to parameterize the FSD, in which a bounded power-law distribution is used.
We define the probability density function (a/amin)

−κ for amin 6 a 6 amax, where κ is
a constant parameter. Therefore, the probability that a floe has a radius a< a is then
given by

P(a< a)= a1−κ − a1−κ
min

a1−κ
max − a1−κ

min
. (5.4)

The distribution is then discretized so that a small finite number, Nb say, of unique
floe sizes is considered.

An algorithm to generate a distribution of ice floes in a slab using the bounded
power-law FSD described here is described in appendix B. As the MIZ generated in
our model is obtained by stacking together a large number of slabs, the same FSD
is satisfied for the whole MIZ. The parameters of the algorithm are the dimensions
of the ice-covered region in the slab, i.e. the width Lx and breadth Ly, the number of
bins Nb, the ice concentration c, the minimum and maximum floe radii amin and amax,
and the exponent in the power-law distribution κ . An example of a random
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FIGURE 4. (a) Example of array generated using the random array generator described in
appendix B. (b) Ensemble averages of reflection coefficients plotted against the minimum
floe radius of the power-law FSD used to generate random realizations of the arrays.
Results are given for single- and 10-slab arrays (solid and dashed lines respectively) and
wave periods T = 6 and 9 s (circle and square markers respectively). The wave forcing is
a random sea state with normalized cosine square energy spreading.

array generated using this algorithm is shown in figure 4(a) for parameter values
Lx= 220 m, Ly= 8Lx, Nb= 11, c= 0.7, amin= 10 m, amax= 100 m and κ = 1.84. The
last three parameters are the same as those used by Williams et al. (2013a). This
range of floe sizes is comparable to the floe sizes typically observed in real MIZs
(see, e.g. Toyota et al. 2006).

To generate a highly concentrated MIZ, our algorithm populates each slab with
a large number of small floes. The effect of these small floes on wave interactions
is likely to be negligible, however, while it increases the computational cost of the
self-consistent method used to calculate the multiple scattering within each slab.
Accordingly, we devise below a numerical test to determine the minimum floe size
amin contributing to scattering by a large array.

Consider a randomly selected array in a single slab parameterized as before, but
with larger breadth Ly = 51Lx. The array generated contains 488 floes. We compute
ensemble averages of the reflection coefficient R due to random realizations of the
incident sea state with an energy spreading function given by (5.2). The calculations
are repeated after removing all of the floes with the smallest floe size successively
until amin = amax, in which case the concentration is approximately 5 %.

Figure 4 shows ensemble averages of the reflection coefficient against the minimum
floe radius amin, for wave periods T = 6 and 9 s (solid lines with circle and square
markers respectively). Each data point is calculated as the average of 100 simulations,
each of which is characterized by a random realization of the array and the incident
sea state. For small amin, the reflection coefficient remains roughly constant for
both wave periods considered, suggesting that very small floes do not influence the
scattering properties of the slab. A change of regime occurs for amin ≈ 28 m at
T = 6 s and amin ≈ 55 m at T = 9 s, beyond which the reflection coefficient decreases
as amin increases, so that the smallest floes start to contribute to scattering by the slab.
These values of amin are used to define the critical minimum floe size Dcrit = 2amin,
corresponding to the change of regime described above.
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Our estimates of the critical minimum floe size, Dcrit≈ 56 and 110 m, are similar to
the corresponding open water wavelengths, λ0 = 2π/k0 ≈ 56 and 126 m, for T = 6 s
and 9 s respectively. This suggests that scattering by floes smaller than the forcing
wavelength is negligible and that these floes need not be included in the FSD.

We repeat the analysis for arrays composed of 10 slabs. To reduce the computing
time, we solve the single-slab problem for 50 random realizations of the array and
then perform random permutations of the pool of single-slab arrays to generate
random 10-slab arrays (the validity of this approach will be discussed in § 5.3).
Ensemble averages of the reflection coefficient for varying amin are plotted in figure 4
for T = 6 and 9 s (dashed lines with circle and square markers respectively). We
observe a two-regime dependence on amin, similar to the single-slab array, with Dcrit
taking the same value for both wave periods, noting that the transition between the
regimes is much smoother for T = 6 s. We deduce that the critical minimum floe size
does not depend on the size of the array but seems to be an intrinsic property of the
FSD, varying with wave period and possibly ice thickness (not studied here).

5.3. Averaging
The multiple-slab interaction technique described in § 3.2 performs efficiently as the
computational cost depends linearly on the number of slabs. Computing the reflection
and transmission matrices of each slab is more time-consuming, however, as a 2D
multiple scattering problem, which is O(N3

q) expensive, needs to be solved for each
slab q containing Nq floes. To reduce the number of single-slab solutions to compute,
we calculate the reflection and transmission matrices of a fixed number Su of unique
slabs and store them, requiring O(SuN2

ang) memory space. Each realization of a
multiple-slab array is then generated from random permutations (allowing repetitions)
of the Su unique slabs. Bennetts (2011) used this method in a related acoustic problem,
where each slab was composed of an infinite regular array of scatterers with different
in-row spacings, and found that Su = 50 was sufficient to take ensemble averages of
wave transmission by 100-slab arrays. In our case, the slabs contain only a finite
number of scatterers, and the scatterers are of different sizes and not positioned in
a regular manner. Therefore, it is unclear whether a value of Su similar to that of
Bennetts (2011) will be appropriate.

We devised a numerical test to determine a suitable value of Su. Consider a 100-
slab array with slab dimensions Lx = 220 m and Ly = 51Lx, and an FSD in each
slab parameterized as in § 5.2. We compute the reflection coefficient of the array for
different values Su at wave periods T= 6 and 9 s with amin= 37 and 55 m respectively
(using our findings from § 5.2). For each value of Su considered, a single sample
of Su unique slabs is generated to perform random permutations, and independent
samples are used for different values of Su. Each computed value of the reflection
coefficient is the mean of an ensemble of 50 realizations of the array, where each
realization is obtained by randomly permuting unique slabs from the same sample of
slabs generated. The results of these computations are shown in figure 5, where error
bars indicate the standard error of the mean.

We observe a remarkable consistency in the computed values of the reflection
coefficient, with two significant digit accuracy being obtained even for a small number
of unique slabs, i.e. Su = 10 and 2 for T = 6 s and 9 s respectively. Specifically, the
standard error of the mean values of R for Su > 10 and 2 (for T = 6 s and 9 s
respectively) is <0.1 %. It should be noted that each point is computed using an
independent set of unique slabs, so that points obtained with different values of
Su are uncorrelated. This suggests that a small value of Su is sufficient to simulate
scattering by large random arrays of floes. In particular, the heterogeneity introduced
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FIGURE 5. Ensemble average of the reflection coefficient by a 100-slab array computed
for different values of Su. The array in each unique slab is generated using the FSD
described in § 5.2 with dimensions Lx = 220 m and Ly = 51Lx. Results are shown for
(a) T = 6 s and (b) T = 9 s. Averages are computed from 50 random realizations of the
array and wave forcing (with a cosine square spread).

in each unique slab (random floe packing) translates to larger scales when the slabs
are stacked together. We fix Su= 10 for the remainder of the investigation, so that the
memory space required to store the reflection and transmission matrices is O(N2

ang).
We also find that the procedure is very accurate, as each estimate of the reflection

coefficient (i.e. for a single random realization of the array and wave forcing) has a
relative standard error of the mean of approximately 2.5 and 1 % for T = 6 s and 9 s
respectively. Therefore, after averaging over 50 random realizations, the error drops
to approximately 0.35 % and 0.15 % (respectively). We account for some variability in
the values of R for Su >10 by reducing the ensemble size used to average. Specifically,
we use an ensemble of 10 random realizations, which gives a relative standard error
below 1 % for both wave periods.

6. Attenuation and directional spreading
We describe wave energy attenuation and directional spreading through the MIZ by

considering the evolution of the forward propagating directional wave field. Backward
propagating wave components are not analysed here because their dependence on
the finite extent of the simulated MIZ distorts the rate of energy decay – the larger
the array the more backscattered wave energy exists across the array, until full
reflection, R= 1, is achieved. However, these backward travelling components affect
the attenuation and directional spreading of the forward propagating components.
In particular, the limited extent of the MIZ in the x-direction minimizes backward
components near the end of the array, which in turn accelerates the attenuation rate
of forward wave energy (discussed subsequently).

At each slab boundary x = ξq, q = 0, . . . , S, the wave energy of the forward
propagating components is defined by

E+(xq)=
∫ π/2

−π/2
S+q (χ) dχ, where S+q (χ)= |A+0,q(χ)|2 (6.1)
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FIGURE 6. (a) Ensemble average of the forward propagating wave energy E+ and (b) the
directional spread σ1 through ≈50 km of simulated MIZ, for T = 6, 9 and 12 s. In
(b) the dashed line corresponds to the theoretical value of σ1 characterizing an isotropic
directional wave field. This value is independent of the wave period.

is a directional energy density function. It should be noted that S+q (χ) characterizes the
directional energy density of the forward propagating components on the line x= ξq,
as opposed to at the point (x, y)= (ξq, 0).

The method to extract wave energy attenuation and directional spreading is
demonstrated on a case study parameterized to represent a realistic MIZ, as described
in § 5.2. Consider an array of ice floes composed of S = 220 slabs formed by
random permutations of Su= 10 unique slabs. Each unique slab is parameterized with
Lx = 220 m, Ly = 220× Lx, c= 0.7, Nb = 19, D= 1.5 m (for all floes), amin = 10 m,
amax = 100 m and κ = 1.84, so that the extent of the simulated MIZ is approximately
50 km× 50 km. For all wave periods, we then remove from the array the floes with
a radius smaller than 35 m, which have negligible effects on the evolution of wave
properties. The forcing is given by a normalized cosine-squared directional sea state,
as described in § 5.1. We consider the range of wave periods T = 6–15 s.

We implement an averaging procedure over 10 random realizations of the array
and wave forcing. For each realization: (i) we generate independent random copies
of the array and the directional sea state; (ii) we compute S+q (χ) for q = 0, . . . , S;
and (iii) we calculate the wave energy E+(xq) and directional spread σ1(ξq) (defined
later) for q= 0, . . . , S. The average of E+(xq) and σ1(ξq) for each ξq is then obtained
from the arithmetic mean over the 10 random realizations. We note that this averaging
procedure differs significantly from that of Kohout & Meylan (2008) and Bennetts
et al. (2010), in which averages of the transmitted energy for increasingly long MIZs
are used to analyse wave energy attenuation.

Figure 6(a) shows the average wave energy profile E+(x) across the simulated MIZ
for T = 6, 9 and 12 s. We observe a clear exponential decay of wave energy for
T = 9 and 12 s. For T = 6 s, the wave energy profile is more complicated with three
observable regimes: (i) a rapid quasiexponential attenuation for x < 10 km; (ii) a
slower quasiexponential attenuation for 10 km < x < 40 km; and (iii) an acceleration
of the decay for x> 40 km. Numerical simulations (not displayed here) showed that
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the transition between the first and second regimes arises because of the limited
extent of the array in the y-direction. Specifically, the two regimes merge into a
single attenuation regime as Ly increases, with an attenuation rate between those of
the first and second regimes. This situation is difficult to achieve, however, as it
is positively correlated to the extent of the MIZ in the x-direction. Acceleration of
the wave energy attenuation for x > 40 km is observed for the three wave periods
considered here, although the effect becomes weaker as the wave period increases.
As discussed earlier, the existence of this regime may be explained by the lack of
backscattered waves near the end of the array, which in turn reduces the forward
propagating wave energy (due to reflection from these backscattered components in
this region).

To quantify the spreading experienced by the wave field through the MIZ, we use
the so-called directional spread

σ1(ξq)=
√

2(1− r1(ξq)) (q= 0, . . . , S), (6.2)

where

r1(ξq)=
((∫ π/2

−π/2
cos(χ)S̃+q (χ) dχ

)2

+
(∫ π/2

−π/2
sin(χ)S̃+q (χ) dχ

)2
)1/2

, (6.3)

with S̃+q (χ)= S+q (χ)/E
+(ξq) the normalized forward energy density at x= ξq.

Our definition for σ1 is the forward-only spectrum version of the standard definition,
in which the integrals in (6.3) range from −π to π to account for the full directional
range (see Krogstad 2005, (2.16)). The original definition of σ1 is the standard
deviation of a random variable with periodic probability density function, in this case
the energy spreading function D(τ ) defined in (5.2). For forward propagating waves,
D(τ ) is then simply replaced by S̃+q (χ).

The directional spread is plotted in figure 6(b) across the simulated MIZ, for
T = 6, 9 and 12 s. We observe a jump in σ1 for T = 6 and 9 s as the cosine-squared
directional wave field enters the MIZ, indicating a positive correlation between the
amount of scattering and directional spreading. After the initial jump, the directional
spread increases linearly with x for these two wave periods. For T= 12 s, σ1 increases
at a linear rate from the start of the array. To the best of the authors’ knowledge,
the constant rate of directional spreading (according to the σ1 measure) within the
random array has not been previously observed or simulated.

The theoretical value of σ1 for an isotropic field is denoted by σ
(iso)
1 . It is

calculated by setting S̃+q (χ) = 1/π in (6.3) (so it integrates to 1), which gives
σ
(iso)
1 = √2(1− 2/π) ≈ 0.8525. This value is indicated by a dashed horizontal line

in figure 6(b). It is seen that, for T = 6 and 9 s, σ1 increases beyond that line,
suggesting that the directional spectrum becomes distorted after reaching its isotropic
state. To interpret the behaviour of these curves, we analyse the directional spectrum
at different locations in the array.

Figure 7 shows the normalized forward energy density S̃+q (χ) for q=45,89,133,177
and 221, corresponding to x≈ 10, 20, 30, 40 and 50 km respectively. Panels (a,c,e,g,i)
and (b,d, f,h,j) show the evolution of the energy density (running from (a,b) to (i,j))
through the array for T = 6 s and 9 s respectively. The curves are generated by
averaging over the 10 realizations of the array and smoothing (using a moving
average). We observe a gradual spreading of the densities towards isotropy for both
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FIGURE 7. Ensemble average of the normalized forward energy density function S̃+q (χ)
for T = 6 s (a,c,e,g,i) and 9 s (b,d, f,h,j). The energy densities are plotted for (a,b) q= 45
(i.e. x≈ 10 km), (c,d) q= 89 (i.e. x≈ 20 km), (e, f ) q= 133 (i.e. x≈ 30 km), (g,h) q= 177
(i.e. x≈ 40 km) and (i,j) q= 221 (i.e. x≈ 50 km).

wave periods, as the most energetic incident wave components (at the small- to
midrange angles |2χ/π| / 0.8) attenuate while the lower-energy components (at
large angle) grow slightly. After reaching a quasi-isotropic state, the wave energy at
the midrange angles keeps decreasing, while large-angle components keep growing,
which explains the values of σ1 larger than σ (iso)

1 in figure 6(b). Numerical tests (not
displayed here) have shown that this behaviour originates from the limited extent
of the array in the x-direction; extending the array in the x-direction, we observe
the same linear growth of σ1 until σ (iso)

1 is reached, at which point the directional
spread remains quasiconstant before it begins to grow again near the end of the array.
We conjecture that the acceleration of the energy decay near the end of the array,
as observed in figure 6(a), affects the midrange angles more than the large angle
components, resulting in the distorted energy densities seen in figure 7(i,j).

6.1. Attenuation coefficient
The key quantity of existing wave attenuation models in the MIZ is the attenuation
coefficient, which defines the rate of exponential attenuation of wave energy in
an ice-covered sea. At present, this is the only quantity used to parameterize
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FIGURE 8. Wave energy attenuation coefficient a as a function of wave period T in the
range 6–15 s. The error bars represent the standard error of each estimated value of a,
and account for the goodness of the least-square fit and the variability in the ensemble of
simulations.

wave–sea-ice interactions in large-scale IOMs (e.g. Williams et al. (2013a,b) using
the scattering/viscous model of Bennetts & Squire (2012b)) and SWMs (Rogers &
Orzech (2013) using the viscous models of Liu, Holt & Vachon (1991a) and Wang
& Shen (2010)).

To extract the attenuation coefficient from our simulations, we fit an exponential
curve to the computed data E+(ξq), q= 0, . . . , 220, i.e.

E+(x)≈ E+(0)e−ax, (6.4)

where a is the attenuation coefficient of wave energy and E+(0)= exp(aξ0). We then
use linear least-square regression to estimate the expected value a(T) for each wave
period T (with the overbar denoting the expected value of a random variable). Our
approach is similar to experimental measurements, in which the attenuation coefficient
is extracted from the actual wave energy profile through a realization of the MIZ.

For each estimated a value, we compute the standard error that accounts for the
goodness of the least-square fit and the variability of the ensemble averaging process.
The statistical method used to estimate the standard error is based on the random
effects model and the maximum likelihood method. It is described by Brockwell &
Gordon (2001) in the context of medical science.

Figure 8 shows the attenuation coefficient as a function of wave period, in the range
T = 6–15 s. It should be noted that the order of magnitude of a is O(10−6–10−5),
which is slightly lower than attenuation coefficients estimated from field observations
(see, e.g., Wadhams et al. (1988), Meylan et al. (2014), observing that our simulations
have not been parameterized to match these data sets in regard to the physical moduli
involved). This is not surprising as scattering is the only physical process considered
here, while in nature other dissipative processes would contribute to the decay of wave
energy in the MIZ. The relatively wide incident directional spectrum used for the
simulations (i.e. the cosine-squared spreading function) may also contribute to these
low values of the attenuation coefficients.

Qualitatively, the dependence of the attenuation coefficient on the wave period is as
expected, as a decreases for increasing T . As the wave period becomes smaller, the
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FIGURE 9. (a) Rate of directional spreading s as a function of wave period T in the range
6–15 s. (b) Distance to isotropy x(iso) plotted over the same range of wave periods. Error
bars are computed as in figure 8.

attenuation coefficient seems to level off. Interestingly, this feature looks similar to the
onset of the rollover effect observed in several data sets reported by Wadhams et al.
(1988). We do not claim, however, that our model is capable of reproducing this effect,
which was hypothesized to be a consequence of local wind wave generation, nonlinear
wave–wave interactions or dissipative processes, none of which are considered in our
model. An extensive sensitivity analysis would be required to interpret this feature in
our model, which is beyond the scope of the present case study. We also observe
an increase of the attenuation coefficient for T = 15 s, which is probably due to the
relatively large variability of the attenuation coefficient between individual simulations
when the attenuation rate is very small. It should be noted, however, that a similar
effect has been reported by Wadhams et al. (1988) in their field data, although these
authors did not comment on this feature.

6.2. Rate of spreading and distance to isotropy
As observed in figures 6(b) and 7, our model is capable of reproducing the directional
spreading experienced by the wave field as it travels through the MIZ. We utilize the
apparent linear relationship between σ1 and x observed in figure 6(b) to quantify the
directional spreading, by fitting a linear curve to the subset of computed data σ1(ξq),
q= qmin, . . . , qmax. Thus,

σ1(x)≈ σ 0
1 + sx, (6.5)

where s is the (constant) rate of directional spreading, σ 0
1 = σ1(0), and the lower and

upper bounds, qmin and qmax, are determined manually for each T . A linear least-square
regression is used to estimate s(T), as for the attenuation coefficient. The standard
errors are also calculated using the statistical method mentioned in § 6.1.

The mean rate of directional spreading, s, is plotted as a function of wave period
in figure 9(a). For T 6 10 s, the rate of spreading only depends weakly on the wave
period, with s=5–6×10−6 m−1. The minimum observed at T=8 s and the maximum
at T = 10 s are difficult to interpret physically, although random variability may be a
factor as there are relatively large error bars in this regime. For longer wave periods
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(T > 10 s), s decreases monotonically for increasing wave period, which is sensible as
directional spreading is caused by scattering, which diminishes for increasingly long
waves.

We now use the more tangible quantity of the distance to isotropy, denoted x(iso), to
describe the spreading. We stated earlier that the wave field becomes isotropic when
σ1 = σ (iso)

1 ≈ 0.8525, so using (6.5) we can infer the distance from the ice edge to
reach isotropy to be

x(iso) = σ
(iso)
1 − σ 0

1

s
. (6.6)

Care must be taken in estimating x(iso) and its variance for each simulation, as σ 0
1

and s are random variables with an underlying probability distribution, for which we
have calculated the expected values and covariance matrix. Equation (6.6) is actually
the first-order approximation of the expected value of the ratio distribution. A (better)
second-order formula for estimating the expected value of the distance to isotropy is
given by

x(iso) ≈ σ
(iso)
1 − σ 0

1

s
− Cov(σ 0

1 , s)
s2 + Var(s)(σ (iso)

1 − σ 0
1 )

s3 , (6.7)

where Var and Cov denote the variance and covariance of random variables
respectively (see, e.g., Stuart & Ord 1999). A first-order formula can also be derived
for the variance of x(iso), i.e.

Var(x(iso))≈
(
σ
(iso)
1 − σ 0

1

s

)2 [
Var(s)

(σ
(iso)
1 − σ 0

1 )
2
− 2

Cov(σ 0
1 , s)

(σ
(iso)
1 − σ 0

1 )s
+ Var(σ 0

1 )

s2

]
. (6.8)

Figure 9(b) depicts the expected value of the distance to isotropy x(iso) against
wave period. The transition between the low-period and high-period regimes is
clearly observed here. Isotropy is reached within the first 40 km of the simulated
MIZ for T 6 10 s, and x(iso) varies little with T in this regime. On the other hand, x(iso)

increases abruptly for T > 11 s, where the wave field spreads very slowly towards
isotropy. For T > 12 s, values of x(iso) greater than 500 km are computed, suggesting
that long waves experience next to no spreading within the extent of a typical MIZ,
i.e. over O(10–100) km. The transition between the two regimes correlates with the
prescribed maximum floe diameter of 200 m, which is the open water wavelength of
an 11.3 s wave. This finding suggests that waves longer than the maximum floe size
do not experience significant directional spreading in the MIZ, which agrees with the
observations of Wadhams et al. (1986).

7. Conclusion
In this paper we have devised a linear three-dimensional model of ocean wave

attenuation and directional spreading in the MIZ, governed by conservative scattering
effects alone. The simulated MIZ is composed of a large random array of floating
ice floes, modelled as circular thin elastic plates. A random sea state with prescribed
directional spreading function defines the wave forcing. The solution to the scattering
problem was obtained using an extended version of the slab-clustering method,
recently developed by the authors in the context of acoustic wave scattering (see
Montiel et al. 2015a), which in this case accounts for evanescent vertical modes
generated at each floe edge. This allows us to (i) solve the deterministic multiple
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scattering of directional wave spectra by thousands to tens of thousands of floes for
a manageable computation cost, (ii) simulate the propagation of random sea states in
randomly generated arrays of ice floes and (iii) track the evolution of the wave field
directional properties through the array.

Numerical convergence tests were conducted, with the key findings that

(i) evanescent wave modes have little effect on the multiple scattering solution, even
for k0a as large as O(10), and tightly packed arrays, suggesting that the far-field
approximation that neglects these modes is valid for a wide range of parameters,
and

(ii) a small proportion of the complex branches of the directional domain accurately
capture wave interactions between slabs.

Ensemble averaging was used to extract the attenuation and directional spreading
properties of realistic random sea states through a random array of ice floes that
resembled a real MIZ. Randomness was included in the wave forcing, as an incoherent
and ergodic directional sea state with a prescribed energy spreading function. Random
arrays of ice floes were produced, with floe sizes drawn from an empirical power-law
FSD. An analysis of these random features and the ensemble averaging process was
conducted to identify potential sources of computational savings. The following was
shown.

(i) Only a small number, i.e. O(1), of unique floe sizes need to be considered in the
FSD, thereby reducing the number of single-floe solutions to compute.

(ii) For each wave period a critical floe size can be defined, such that smaller floes
have negligible effect on the scattering properties of an array, suggesting that the
smallest floes can be removed from the array. The critical floe size was found
to be similar to the open water wavelength. This reduces the number of floes in
each slab and, concomitantly, the computational cost of solving the single-slab
problem.

(iii) Only a small number of unique slabs (<10) need to be considered to generate
large multiple-slab arrays by taking random permutations of the unique slabs,
reducing the number of single-slab solutions to compute.

(iv) The introduction of randomness in the array and the directional forcing reduces
the variability of the solution, so that a small number (e.g. 10) of random
realizations of the array and forcing are required to obtain less than 1 % relative
standard error on the solution.

The method to extract wave energy attenuation and directional spreading in large
random arrays was presented for a 50 km× 50 km simulated MIZ (composed of 220
slabs). A directional energy density function was defined at each slab boundary to
characterize the directional content of wave energy there. The total wave energy
was then obtained by integrating the density over the directional range, while
the directional spread was defined as the standard deviation of the normalized
density interpreted as a probability density function. The profile of wave energy and
directional spread were then plotted for a number of wave periods and analysed. The
key findings of this analysis are summarized below.

(i) Wave energy profiles at midrange and long wave periods showed clear trends
of exponential decay, which is consistent with field observations. A more
complicated three-regime attenuation profile was observed at the lower end
of the range of wave periods, probably due to the limited extent of the array.
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(ii) The directional spread increases linearly with distance from the ice edge, until
it reaches an isotropic state. For short wave periods, the limited extent of the
array causes the directional spread to take values higher than that for theoretical
isotropy near the end of the simulated MIZ, as the directional energy density
becomes distorted.

(iii) By fitting an exponential decay model to the wave energy profile at each wave
period, we estimated the attenuation coefficient of wave energy, which is the
most important quantity parameterizing wave–sea-ice interactions in large-scale
operational models. Our estimates were found to be slightly smaller than
those obtained from field observations, which is sensible recalling the other
mechanisms of wave energy attenuations that are known to exist in MIZs.

(iv) By fitting a linear growth model to the directional spread profile, we estimated
the rate of directional spreading (slope of the linear model) and the distance from
the ice edge to reach isotropy. It was shown that two regimes of spreading exist.
For short wave periods, significant spreading is observed, although the amount
of spreading experienced varies little with wave period. For long wave periods,
the degree of directional spreading diminishes for increasing wave periods. The
transition between the two regimes was found to occur when the wavelength
becomes larger than the maximum floe size.
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Appendix A. Ergodicity of random directional sea states
Jefferys (1987) demonstrated that unrealistic standing wave patterns develop when

simulating single realizations of the random sea state (5.1). This is due to coherent
interference between wave components of the same frequency at different angles,
which is referred to as the phase locking phenomenon. This was also shown to be
independent from the number of wave directions Ntr chosen to simulate the sea state.
As a consequence, the sea state is not ergodic, which can be verified by expressing the
time average of the wave energy as the autocorrelation of the signal (5.1) evaluated
at the origin (see Ochi 1998), i.e.

P= 1
2

Ntr∑
i=1

a2
i +

1
2

Ntr∑
i=1

Ntr∑
j=1, j6=i

aiaj cos Aij(x, y), (A 1)

where
Aij(x, y)= k0(x(cos τj − cos τi)+ y(sin τj − sin τi))+ εj − εi. (A 2)

The first term in (A 1) corresponds to the target mean energy of the incident
spectrum, which we seek to generate uniformly over the domain. The second term
contains all interactions between waves travelling at different angles and depends
on the space variables, so the wave energy is not uniform and the sea state is not
ergodic. The target mean energy can be partially recovered by taking an ensemble
average over many random realizations of the sea state (5.1). The wave energy error
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then decays as the square root of the sample size (a property of ensemble averaging),
with the second term in (A 1) averaging out to zero.

In practice, the uniformity of the wave energy in the spatial domain (i.e. the
ergodicity condition) can only be approximated by averaging over a sufficient number
of realizations. We perform Monte Carlo simulations to analyse the variability of
the mean energy (A 1) at the origin. We simulate a monochromatic sea state with
period T = 9 s and energy spreading function given by (5.2), recalling that no ice
cover is present for these simulations. Simulating (5.2) for 1000 realizations of the
sea state (5.1) evaluated at (x, y)= (0, 0), we find that the 95 % confidence interval
for estimating the mean wave energy P̄ is 0.06 < P̄ < 3.7, with expected value 1,
accounting for the fact that P is exponentially distributed (Jefferys 1987). This shows
the significant variability of the mean wave energy on the random variable of the
sea state model. The variability can be reduced by averaging over a sample of mean
energy estimates. We generate a new distribution of mean energy P̄ by estimating
(A 1) at different locations of the open ocean, where each mean is obtained by
averaging over 50 realizations of the sea state. Invoking the central limit theorem,
the distribution of P̄ is normal, with 95 % confidence interval P̄ ≈ 1 ± 0.28. This
theoretical result was confirmed by numerical experiments.

We extend the analysis by estimating the error on the mean energy introduced by
the ensemble averaging method to approximate ergodicity. Using the 1000 simulated
sea states generated earlier, we estimate the relative standard error of the mean energy
on a single realization of the sea state to be ≈100 %. On the other hand, the relative
standard error of the mean energy estimated by averaging over 50 random realizations
of the sea state is reduced to ≈14 %. From the slow convergence property of Monte
Carlo simulations, we estimate that it would take approximately 10 000 simulations to
further reduce the relative error to 1 %.

Appendix B. Random array generator
We generate the FSD in a given slab using a binning approach, whereby a small

number of floe radii (or bins) are considered, henceforth reducing the number of
single-floe solutions to compute. The inputs of the procedure are the dimensions
of the ice-covered region in the slab, i.e. the width Lx and breadth Ly, the number
of bins Nb, the ice concentration c, the minimum and maximum floe radii amin and
amax, and the exponent in the power-law distribution κ . Given these parameters, we
determine the number of floes Ni with radius ai, for 16 i6Nb, and randomly position
each floe in the slab using a circle packing algorithm. The algorithm is outlined as
follows:

(1) define uniformly distributed bins ai, 1 6 i 6 Nb, with a1 = amin and aNb = amax;
(2) compute proportionality constants for each bin,

λi = ā1−κ
i+1 − ā1−κ

i

a1−κ
max − a1−κ

min
; (B 1)

(3) compute the total number of floes in the slab,

Nf =


cLxLy

π

Nb∑
i=1

λia2
i


; (B 2)
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(4) compute the number of floes in each bin,

Ni = dλiNf e; (B 3)

(5) adjust the ice-covered domain dimensions to obtain the desired ice concentration,

L=
π

Nb∑
i=1

Nia2
i

cLy
; (B 4)

(6) position each floe iteratively at random in the ice-covered domain, such that
floe/floe boundaries and floe/domain boundaries do not intersect (circle packing
algorithm).

In step 2, we have defined āi = (ai−1 + ai)/2, 2 6 i 6 Nb − 1, with ā1 = a1 and
āNb = aNb . In steps 3 and 4, d.e denotes the ceiling function, which then introduces a
discrepancy in the concentration of ice floes. Step 5 adjusts the width of the domain
to generate an FSD with concentration as specified in the inputs. In step 6, floes are
positioned in the domain iteratively in decreasing order of size, allowing us to reach
higher concentrations.
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