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A model of ice floe break-up under ocean wave
forcing in the marginal ice zone (MIZ) is proposed to
investigate how floe size distribution (FSD) evolves
under repeated wave break-up events. A three-
dimensional linear model of ocean wave scattering
by a finite array of compliant circular ice floes is
coupled to a flexural failure model, which breaks
a floe into two floes provided the two-dimensional
stress field satisfies a break-up criterion. A closed-
feedback loop algorithm is devised, which (i) solves
the wave-scattering problem for a given FSD under
time-harmonic plane wave forcing, (ii) computes the
stress field in all the floes, (iii) fractures the floes
satisfying the break-up criterion, and (iv) generates
an updated FSD, initializing the geometry for the
next iteration of the loop. The FSD after 50 break-
up events is unimodal and near normal, or bimodal,
suggesting waves alone do not govern the power law
observed in some field studies. Multiple scattering
is found to enhance break-up for long waves and
thin ice, but to reduce break-up for short waves and
thick ice. A break-up front marches forward in the
latter regime, as wave-induced fracture weakens the
ice cover, allowing waves to travel deeper into the
MIZ.

1. Introduction
The Arctic marginal ice zone (MIZ) that separates open
ocean from the interior pack ice is experiencing rapid
changes as a result of high-latitude climate change.
During summer, for example, its extent relative to
the total sea ice area is expanding [1], suggesting an
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increasing presence of thinner, loosely packed ice floes. Changes in environmental forcings,
e.g. heat, winds and ocean waves, acting in partnership with positive feedback processes, are
responsible for this transformation. Ocean waves, in particular, have been observed to break up
the sea ice under flexural failure and, therefore, to contribute to the increasing extent of the MIZ,
which is, in turn, more sensitive to summer melting because of the increased total perimeter of
the ice floes created [2]. Correspondingly, sea ice loss increases open water extent and allows for
more energetic swell to develop in the Arctic Basin [3,4], with the potential to fracture the sea ice
further and cause additional melting. Although indirect observational evidence of this positive
feedback mechanism was proposed by Kohout et al. [5] in the Antarctic MIZ, its impact on sea ice
extent has not been quantified. Modelling the two-way coupling between the wave and sea ice
systems on oceanic scales is needed to remedy this shortcoming.

The vast majority of modelling studies on ocean wave interactions with sea ice have attempted
to quantify wave attenuation and directional spreading as a result of scattering [6–9] and
dissipation [10,11] by the constituent ice floes, within the scope of linear water wave theory. These
effects have recently been parametrized in spectral wave models, e.g. WAVEWATCH III�, to
complement the description of physical processes influencing ocean wave propagation on a global
scale and assess the role sea ice has on wave climate in the polar seas [12–16], acknowledging that
the validity of such parametrizations is still the subject of much current research.

By contrast, very little is known about the impact of ocean waves on the break-up of sea
ice floes in the MIZ. Observations have shown that floe size distribution (FSD), defined as the
statistical distribution of floe sizes (e.g. mean caliper diameter or diameter of a circular floe with
the same surface area) in the MIZ, satisfies a power law for floes with size larger than O(10–100 m)
[17–19], while a regime shift often occurs for smaller floes. Although the latter regime has also
been fitted to a power law, typically with a smaller power exponent than that fitted for large floes,
uncertainty exists about whether scale invariance is a defining feature of the FSD. For instance,
Herman [20] fitted a Pareto distribution to a collection of FSD datasets and was able to capture
different scaling characteristics for small and large floe sizes.

It is unclear how waves contribute to the emergence of these observed power-law regimes,
as flexural failure is not expected to occur below a critical floe size of order O(10 m) [21], which
would suggest that the floe number distribution should decrease to zero as floes become small
unless other break-up mechanisms are imposed. In this study, we address this question by
modelling the break-up of an ice cover under a sustained wave event, with the goal of establishing
the FSD emerging from wave forcing alone, i.e. isolated from wind, collisions and any other
sources of sea ice break-up.

Very few models have attempted to describe the break-up of sea ice in the MIZ due to waves
alone. Dumont et al. [22] were the first to propose a numerical model for the transport of ocean
waves in the MIZ due to scattering by the constituent ice floes, in which a parametrization of ice
floe break-up was included. In each cell of the discretized spatial domain, the FSD was described
by a power law and parametrized by its minimum, mean and maximum floe size. At each time
step, the FSD was updated according to a break-up criterion (discussed later) depending on
wave amplitude in the cell and floes repeatedly fracturing in half with a prescribed probability,
preserving the power-law distribution. Williams et al. [23,24] extended the work of Dumont et al.
[22] by considering a more realistic break-up criterion, but used the same parametrization of
the FSD. These authors focused their analysis on estimating the maximum distance from the ice
edge where break-up can take place, which they define as the MIZ width, and did not examine
the evolution of the power-law FSD during the break-up process. Implementation of two-way
coupling between large-scale sea ice models, e.g. CICE or neXtSIM, and spectral wave models
based on these modelling approaches is currently being investigated [25,26].

Other modelling studies have considered the evolution of the FSD in the framework of
large-scale sea ice models. Horvat & Tziperman [27] and Zhang et al. [28] independently
proposed a continuum transport equation for the FSD, extending a similar approach for ice
thickness distribution used for describing ice thickness in large-scale sea ice models. The FSD
is advected in time and space subject to a prescribed horizontal ice velocity field and a number
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of sources and sinks that describe the effects of thermodynamics (melting and freezing), lead
opening, ridging and fragmentation, noting the latter phenomenon is parametrized in a highly
simplified manner (uniformly redistributed floe sizes). Horvat and Tziperman provide the most
advanced approach, by considering the joint floe size and thickness distribution and process-
informed parametrizations of the source and sink terms, particularly wave-induced floe fracture,
which accounts for the strain field generated by a wave spectrum. Also note that Herman
[20] showed that the Pareto distribution used to fit observational FSD data (discussed earlier)
emerges as a stable solution to a stochastic model of FSD evolution based on the generalized
Lotka–Volterra equation.

Here, the three-dimensional phase-resolving scattering model of wave energy attenuation in
the MIZ reported by Montiel et al. [9] is enhanced with a floe break-up model, allowing us to
investigate the two-way wave–MIZ coupling in an idealized setting. The MIZ is constructed
as an array of circular elastic floes with prescribed FSD and the forcing field is approximated
by a monochromatic plane wave. The solution to the wave interaction problem provides a full
description of (i) the wave field throughout the MIZ and (ii) the bending experienced by each
floe. The latter information is used to derive a measure of elastic deformation in each floe which,
if larger than a critical value, results in floe fracture. The post-break-up updated FSD is then
fed back into the geometrical description of the MIZ, leading to a new solution of the wave
interaction, which is in turn used to approximate ice floe break-up. Running this feedback loop
simulation a sufficient number of times, we reach a steady-state FSD, which depends on the ice
and wave parameters. The main goals of this investigation are to (i) study the evolution of the
FSD towards its steady state under repeated wave break-up events, (ii) determine the effect of
multiple scattering on the steady-state FSD, and (iii) examine the dependence of the FSD on the
ice and wave parameters of this model.

A key novel feature of the flexural failure model proposed here is that it accounts for the
two-dimensional stress field defined over the surface of each deformed floe. It is based on the two-
dimensional Mohr–Coulomb (MC) stress criterion, which assesses mechanical failure from the
combined level of tensile and compressive deformations at each point of the floe. The MC stress
criterion has been used to estimate fracture in the elasto-brittle rheological sea ice model neXtSIM
under horizontal deformations and wave-induced flexure [26]. The latter fracture model is a
simplified one-dimensional version of the MC criterion used here, as wave-induced ice flexure is
approximated using an elastic beam model of ice floe. This is in line with previous flexural failure
models [22–24,27,29,30], in which deformation at each point of the beam is simply quantified by
the curvature of its vertical displacement function. To our knowledge, the wave-induced break-up
model of ice floes considered here is the first one to account for the additional spatial dimension.

We do not attempt to compare our model with experimental measurements in this
investigation. Ice floe break-up by ocean waves in the MIZ has been reported via either in situ,
e.g. [13,30–32], or remote-sensing, e.g. [12,33,34], observations. These papers describe qualitative
or quantitative changes in the FSD after a large wave event breaks up the MIZ. It is unclear,
however, which physical processes have contributed to the observed changes in the FSD, as it
is not possible to isolate the effect of waves. For this reason, we focus our analysis on gaining a
theoretical understanding of how ocean waves may influence sea ice break-up in the MIZ and the
associated FSD.

2. Preliminaries
We consider a three-dimensional seawater domain with constant finite depth h and infinite
horizontal extent. Cartesian coordinates x = (x, y, z) are used to locate points in the water domain,
such that the planes z = 0 and z = −h coincide with the unperturbed free surface and the flat
impermeable seabed, respectively. The seawater is approximated as an inviscid and homogeneous
incompressible fluid with density ρ0 ≈ 1025 kg m−3.

A finite array of Nf compliant sea ice floes is assumed to be freely floating at the equilibrium
surface of the water domain. Each floe is circular with uniform thickness D and Archimedean
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draught d = (ρ/ρ0)D, where ρ ≈ 922.5 kg m−3 is the density of sea ice. The radius of floe i is ai
and its centre has coordinates in the horizontal plane (xi, yi). The horizontal region of seawater
covered by a floe is defined by

Ωi = {(x, y) ∈ R
2 : (x − xi)

2 + (y − yi)
2 ≤ a2

i }, (2.1)

for any i ∈ I, where I = {1, 2, . . . , Nf}. We further denote their union as Ω =Ω1 ∪Ω2 ∪ · · · ∪ΩNf

and the horizontal region covered by a free surface as Ω0 = R
2 \Ω .

We consider time-harmonic perturbations in the water with prescribed radian frequency
ω. Assuming the flow is irrotational, the velocity field in the water domain is expressed as
(∇, ∂z) Re{(g/ iω)φ(x) e− iωt}, where ∇ = (∂x, ∂y) and g ≈ 9.81 m s−1 is the acceleration due to gravity.
The complex-valued potential field φ then satisfies Laplace’s equation in the water domain

∇2φ + ∂2
z φ = 0 for x ∈ (Ω0 × (−h, 0)) ∪ (Ω × (−h, −d)). (2.2)

The condition of no normal flow on the seabed yields, in addition, the Neumann boundary
condition

∂zφ = 0 on z = −h. (2.3)

We assume that the perturbations in the water induce a flow characterized by a vertical
displacement at the free surface that is small compared with the horizontal characteristic length
of the flow. The linearized free surface boundary condition then takes the form

∂zφ = αφ on z = 0 for (x, y) ∈Ω0, (2.4)

where α=ω2/g.
We introduce a coupling between the vertical deformations experienced by each ice floe and

the flow in the water domain. Horizontal motions of the floes are neglected, a valid assumption in
the regime considered here [35]. We model the ice floe vertical deformations using the Kirchhoff–
Love thin-elastic plate theory. This model is valid provided (i) ice floe diameters are large
compared with the thickness and (ii) vertical deformations are small compared with the thickness.
The boundary condition on the underside of the ice floes is then given by

(F∇4 + ρ0g − ρDω2)∂zφ = ρ0ω
2φ on z = −d for (x, y) ∈Ω , (2.5)

where F = ED3/12(1 − ν2) is the flexural rigidity of the floe, which depends on the effective
flexural modulus E [21] and Poisson’s ratio ν. The values E ≈ 6 GPa and ν ≈ 0.3 are commonly
used for sea ice.

The requirement that each floe i ∈ I has no horizontal motion is written as

∂riφ = 0 on ri = ai for − d< z< 0 (2.6)

and the free edge conditions of zero bending moment and zero vertical shear stress at the edge
are, respectively,

[r2
i ∇2

ri,θi
− (1 − ν)(ri∂ri + ∂2

θi
)]∂zφ = 0 on (ri, z) = (ai, −d) (2.7)

and
[r3

i ∂ri∇2
ri,θi

+ (1 − ν)(ri∂ri − 1)∂2
θi

]∂zφ = 0 on (ri, z) = (ai, −d), (2.8)

where (ri, θi) are the local polar coordinates with origin at the centre of floe i, defined by (x −
xi, y − yi) = (ri cos θi, ri sin θi). The operator ∇ri,θi = (∂ri + 1/ri, (1/ri)∂θi ) has also been introduced.

An ambient flow in the water domain is prescribed with potential

φam(x) =ψ0(z)
∫π/2
−π/2

Aam(τ ) e ik0(x cos τ+y sin τ ) dτ , (2.9)

which satisfies (2.2)–(2.4) and forces a non-trivial solution to the boundary-value problem (2.2)–
(2.8). Equation (2.9) defines the coherent superposition of plane waves travelling in the positive
x-direction at the surface of an open ocean and with amplitudes depending continuously on the
propagation angle τ with respect to the x-axis. The flow in the vertical direction is described by the
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function ψ0(z) = cosh k0(z + h)/ cosh k0h, where k0 denotes the wavenumber of travelling waves
in the open ocean (defined later).

We seek a solution of the boundary-value problem (2.2)–(2.8) of the form φ = φam + φS, where
φS is the potential of the scattered wave field due to the presence of the ice floes in response to the
ambient wave potential φam. In the far field, the scattered wave potential satisfies the Sommerfeld
radiation condition √

r(∂r − ik)φS → 0 as r → ∞, (2.10)

where r =
√

x2 + y2.

3. Wave-scattering model

(a) Single floe scattering
We decompose the potential in the exterior open water region adjacent to any floe i ∈ I (i.e. for
ri > ai) as φ ≡ φ

(i)
ext = φ

(i)
in + φ

(i)
sc , where φ(i)

in is the local incident wave potential generated by sources

away from the floe and φ(i)
sc is the scattered wave potential generated due to the presence of floe i.

Standard cylindrical eigenfunction expansions are used to express these potentials (e.g. [36])

φ
(i)
in (x) =

∞∑
m=0

ψm(z)
∞∑

n=−∞
a(i)

m,nJn(kmri) e inθi for x ∈Ω0 × (−h, 0) (3.1a)

and

φ
(i)
sc (x) =

∞∑
m=0

ψm(z)
∞∑

n=−∞
b(i)

m,nHn(kmri) e inθi for x ∈Ω0 × (−h, 0). (3.1b)

The potential φ ≡ φ
(i)
int in the interior region to floe i is expanded as

φ
(i)
int(x) =

∞∑
m=−2

ζm(z)
∞∑

n=−∞
c(i)

m,nJn(kmri) e inθi for x ∈Ωi × (−h, −d), (3.1c)

in which the summation over m starts at −2 to account for the contribution of two vertical wave
modes not present in the open water region. In (3.1), Jn and Hn denote the Bessel and Hankel
functions of the first kind of order n, respectively.

The eigenfunctions describing the fluid flow in the vertical direction in the open water and
ice-covered regions are given by

ψm(z) = cosh km(z + h)
cosh kmh

, m ≥ 0 and ζm(z) = cosh κm(z + h)
cosh κm(h − d)

, m ≥ −2,

respectively.
The quantities km, m ≥ 0, are solutions of the open water dispersion relation

k tanh kh = α. (3.2)

We denote by k0 the only positive real root of (3.2), and by k1, k2, k3, . . . the infinite number
of purely imaginary roots with positive imaginary part ordered such that Im(km+1)> Im(km)
for all m ≥ 1. The real root k0 is the wavenumber of horizontally travelling wave modes at
the free surface of the open water region, while the imaginary roots km, m ≥ 1, are associated
with horizontally evanescent wave modes decaying exponentially faster from their source for
increasing values of m.

The quantities κm, m ≥ −2, introduced in (3.1c) are solutions of the ice-covered dispersion
relation

(βκ4 + 1 − αd)κ tanh κ(h − d) = α. (3.3)

The scaled elastic constant β = F/ρ0g has been introduced in (3.3). We denote by κ0 the only
positive real root of (3.3), which is the wavenumber associated with horizontally travelling wave
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modes at the water–ice interface. In addition, κ1, κ2, κ3, . . . designate the infinitely many imaginary
roots with increasingly large imaginary parts associated with evanescent waves, and κ−2 and κ−1
denote the two remaining complex roots with positive imaginary part that are associated with
damped travelling wave modes.

A relationship exists between the unknown coefficients a(i)
m,n, b(i)

m,n and c(i)
m,n of the eigenfunction

expansions given in (3.1), as a consequence of the boundary conditions prescribed on the surface
ri = ai. In addition to the condition of no horizontal motions (2.6), continuity of fluid pressure and
normal velocity is imposed at the interface between the open water and ice-covered regions, i.e.

φ
(i)
ext = φ

(i)
int and ∂riφ

(i)
ext = ∂riφ

(i)
int on ri = ai for − h< z<−d. (3.4)

A numerical solution is obtained by approximating the series expansions in (3.1) as partial
sums, such that m ≤ M and |n| ≤ N, where M and N are convergence parameters. We apply the
eigenfunction matching method (EMM) proposed by Montiel et al. [35]. It provides the following
matrix relations between the coefficients:

b(i) = S(i)
exta

(i) and c(i) = S(i)
inta

(i), (3.5)

where a(i), b(i) and c(i) are the column vectors containing the coefficients a(i)
m,n, b(i)

m,n and c(i)
m,n,

respectively. The vectors a(i) and b(i) have dimension (M + 1)(2N + 1), while c(i) has dimension
(M + 3)(2N + 1). Therefore, the matrices S(i)

ext and S(i)
int have dimensions ((M + 1)(2N + 1))2 and

(M + 3)(2N + 1) × (M + 1)(2N + 1), respectively, and are referred to as the exterior and interior
diffraction transfer matrices (DTMs). The DTMs describe the scattering properties of each floe.

(b) Multiple scattering
We use a self-consistent method to resolve wave interactions with the array of Nf ice floes, in
which the incident field φ

(i)
in on each floe i ∈ I is given by the coherent superposition of the

prescribed ambient field and the field scattered by all the other floes. This is expressed as

φ
(i)
in = φam +

∑
j∈I,j�=i

φ
(j)
sc for all i ∈ I. (3.6)

This system of Nf equations can be solved after (i) writing the truncated cylindrical eigenfunction
expansion of φam in the local coordinate system associated with floe i, (ii) applying Graf’s addition

theorem [37] to express φ(j)
sc in the local coordinate system associated with floe i, and (iii) using

the exterior DTM of floe i to express the expansion coefficients of φ(j)
sc in terms of those of φ(i)

in .

This procedure yields a coupled system for the coefficients a(i)
m,n, which can be inverted directly

[35,38,39] or solved iteratively [40,41]. The local scattered field coefficients b(i)
m,n and c(i)

m,n are then
computed directly using (3.5).

Numerical issues discussed by Montiel et al. [9,42] arise when the number of floes becomes
larger than O(100) and/or when the floes are closely spaced. As a remedy, Montiel et al. proposed
an algorithm that combines the direct approach with a domain decomposition technique, referred
to as the slab-clustering method (SCM), in order to resolve wave interactions with O(104–105)
floes. We only give a brief summary of the key steps of the SCM here and the reader is referred to
the original papers [9,42] for further details.

(i) We cluster the array of floes into Ns slab regions parallel to the y-axis, so that each slab q
is bounded by x = ξq−1 and x = ξq, with ξq−1 < ξq, and contains the centre of N(q) floes. In
each slab q, we apply the direct method summarized above to obtain the matrix mapping

aq = Sqfq (3.7)

between the vectors aq containing the coefficients of the locally incident field φ(i)
in on each

floe i = 1, . . . , N(q) in slab q, and fq containing the coefficients of the forcing field composed
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of the ambient field and the field scattered by adjacent slabs expressed in the local polar
coordinates of each floe in slab q.

(ii) We decompose the potential at each interface x = ξq, 0 ≤ q ≤ Ns, as φ = φ+
q + φ−

q , where
φ±

q is a field propagating or decaying in the positive/negative x-direction. Neglecting
the vertical evanescent wave modes associated with the imaginary roots of (3.2), we
approximate these components as

φ±
q (x) ≈ψ0(z)

∫
Λ

A±
q (χ ) e ik0(±(x−ξq) cosχ+y sinχ) dχ . (3.8)

The validity of this approximation was confirmed by Montiel et al. [9]. We have
introduced the unknown amplitude functions A±

q (χ ) and the directional parameter χ ∈Λ,
whereΛ is the integration contour which extends into the complex plane. It is defined by
Λ=Λ−

i ∪Λr ∪Λ+
i , where Λ±

i = ±π/2 ∓ (0, ∞) and Λr = [−π/2,π/2]. A value of χ ∈Λr

corresponds to a plane wave travelling at angle χ with respect to the x-axis, while χ ∈Λ±
i

corresponds to an evanescent wave decaying exponentially with x. Such evanescent wave
components are generated by wave sources of the form (3.1b) from floes present in the
adjacent slabs.

(iii) The amplitude functions A±
q−1(χ ) and A±

q (χ ), respectively, defined on the left and right
boundary of slab q, are related through the following integral scattering relationships:

A−
q−1(χ ) =

∫
Λ

(R−
q (χ : τ )A+

q−1(τ ) + T −
q (χ : τ )A−

q (τ )) dτ (3.9a)

and
A+

q (χ ) =
∫
Λ

(T +
q (χ : τ )A+

q−1(τ ) + R+
q (χ : τ )A−

q (τ )) dτ , (3.9b)

where R±
q (χ : τ ) and T ±

q (χ : τ ) are the so-called reflection and transmission kernels of slab
q. Semi-analytical expressions for these kernels were derived in [9]. They are obtained by
combining (3.7) with mappings between cylindrical wave fields and plane wave fields.

(iv) We approximate numerically the scattering relationships (3.9) by discretizing the
truncated integration contour Λ̃= Λ̃−

i ∪Λr ∪ Λ̃+
i , where Λ̃±

i = ±π/2 ∓ i(0, δ) for some
δ ≥ 0, sampling the amplitude and kernel functions at NΛ discrete χ and τ values, and
integrating this equation numerically (composite trapezoidal rule). We then obtain the
following matrix equations:

A−
q−1 = R−

q A+
q−1 + T−

q A−
q and A+

q = T+
q A+

q−1 + R+
q A−

q , (3.10)

where A±
q are column vectors containing the sampled values of A±

q (χ ) and R±
q and T±

q
are square matrices containing sampled values of the reflection and transmission kernels
and the quadrature weights.

(v) We solve the set of 2Ns matrix equations defined by (3.10) for the amplitude vectors A±
q ,

q = 1, . . . , Ns, using the iterative S-matrix method of Ko & Sambles [43]. This requires
initialization of the forcing amplitudes as

A+
0 (τ ) = Aam(τ ) e ikξ0 cos τ and A−

Ns
(τ ) = 0. (3.11)

(vi) The local scattered wave fields in each slab q are obtained after transforming the plane
wave forcing fields φ+

q−1 and φ−
q into cylindrical regular wave fields with amplitudes

contained in fq and successively applying (3.7) and (3.5).

Convergence of the numerical method described here depends on the truncation parameters
M and N in approximating cylindrical series expansions (3.1), and δ and NΛ in approximating the
plane wave expansions (3.8). For the computations carried out in this study, we set M = 0, N = 15,
δ = 1.2 and NΛ = O(100) (depending on the wave frequency), allowing us to compute scattered
wave coefficients with three-digit accuracy. The choice M = 0 simply means that we are ignoring
the evanescent vertical wave modes. A comprehensive convergence analysis is conducted in [9]
to justify these values.
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4. Floe break-up criterion

(a) Mohr–Coulomb stress
The thin elastic plate model of an ice floe considered here, with its underlying assumption of
plane stress, allows us to write the Cauchy stress and strain tensors at each point as

S(ri, θi, t) =
(
σr σrθ

σrθ σθ

)
and E(ri, θi, t) = D

2

(
εr εrθ

εrθ εθ

)
, (4.1)

respectively, for any floe i ∈ I. The tensorial components with subscript r and θ are the normal
stresses/strains in the radial and azimuthal direction, respectively, while the component with
subscript rθ denotes the shear stress/strain. We can express the components of the strain tensor
as [44]

εr = ∂2
ri

w(i), εθ = 1

r2
i

∂2
θi

w(i) + 1
ri
∂ri w

(i) and εrθ = 1
ri
∂2

rθi
w(i) − 1

r2
i

∂θi w
(i). (4.2)

Note that a typographical error in the expression of the shear strain given in [44] has been
corrected here. We have defined the vertical displacement w(i) ≡ w(i)(ri, θi, t) of floe i, which can
be related to the potential on the undersurface of the floe through the kinematic condition

w(i) = Re
(

1
α
∂zφ

(i)
int e− iωt

)
on z = −d for ri ≤ ai. (4.3)

At each point of this undersurface and at a given time t, we then compute the components of
the strain tensor from (4.2) after using (4.3) and (3.1c) to express the vertical displacement. Note
that asymptotic formulae must be used for εθ and εrθ in the limit ri → 0 [45].

The components of the stress tensor S are related to those of the strain tensor E through
Hooke’s law ⎛

⎜⎝ σr

σθ

σrθ

⎞
⎟⎠= ED

2(1 − ν2)

⎛
⎜⎝1 ν 0
ν 1 0
0 0 1 − ν

⎞
⎟⎠
⎛
⎜⎝ εr

εθ

εrθ

⎞
⎟⎠ . (4.4)

We can diagonalize the stress tensor as S = ṼDṼ
T

, where

Ṽ = [ṽ1, ṽ2] and D = diag{σ1, σ2}. (4.5)

The eigenvalues σ1 ≡ σ1(ri, θi, t) and σ2 ≡ σ2(ri, θi, t) of S are referred to as the principal stresses.
The corresponding normalized eigenvectors ṽ1(ri, θi, t) and ṽ2(ri, θi, t) are orthogonal and define
the so-called principal directions for which the shear stress vanishes in the polar coordinate
frame centred at (ri, θi). In the Cartesian frame with origin at the centre of floe i, the matrix of
eigenvectors becomes

V(ri, θi, t) =
(

cos θi − sin θi
sin θi cos θi

)
Ṽ(ri, θi, t). (4.6)

We now derive a criterion for the break-up of an ice floe which incorporates some distinctive
mechanical properties of sea ice. There exists a range of models for the mechanical failure of a
large variety of materials under different types of loads ([46], ch. 2). They take the form F(σ1, σ2) ≥
0, where F = 0 denotes a curve in the (σ1, σ2)-plane that corresponds to the onset of mechanical
failure, and is often referred to as the yield curve. Here, we associate the ‘yielding’ of an ice floe
with its fracture, which is reasonable for sea ice experiencing strain rates associated with wave
periods of 5–20 s where plastic yield is negligible [47].

To our knowledge, no study has attempted to determine an appropriate model of wave-
induced thin plate failure for sea ice, among the range of existing models in the literature
of fracture mechanics. For this reason, we choose the simplest model of mechanical failure,
applicable to both fracture and yield, and used for materials that exhibit significantly different
values of tensile and compression strengths, defined as the maximum tensile and compression
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strengthσt = 3 MPa. The principal directions ṽ1 and ṽ2 are also indicated. (b) Partition of the surface of floe i into two regions
Ω

(1)
i andΩ (2)

i , resulting from the MC failure criterion (4.10) being satisfied. (Online version in colour.)

stresses that sea ice can experience before fracturing, respectively. In the case of sea ice, the tensile
strength σt is typically an order of magnitude lower than the compression strength σc [48].

The failure model we use here is referred to as the Mohr–Coulomb (MC) criterion [46]. The
yield curve is defined by

F(σ1, σ2) ≡ σ (max)(σ1, σ2) − σMC = 0, (4.7)

where
σ (max)(σ1, σ2) = max{|σ1 − σ2| + K(σ1 + σ2), |σ1| + Kσ1, |σ2| + Kσ2}, (4.8)

with K = (σc − σt)/(σc + σt) and

σMC = 2σcσt

σc + σt
. (4.9)

We refer to σ (max)(ri, θi, t) ≡ σ (max)(σ1(ri, θi, t), σ2(ri, θi, t)) as the MC stress at the point (ri, θi) and
time t, and σMC as the MC critical stress. The yield curve F = 0 is depicted in figure 1a. Neglecting
the effect of fatigue, F is assumed to be stationary.

We now define the criterion for floe break-up as follows: a floe i ∈ I fractures into two smaller
floes if the condition

σ
(i)
br ≡ max

{
σ (max)(ri, θi, t), for (ri, θi, t) ∈ [0, ai) × [0, 2π ) ×

[
0,

2π
ω

)}
≥ σMC (4.10)

is satisfied. We refer to σ
(i)
br as the potential break-up stress of floe i. The break-up criterion

depends on the compressive and tensile strength of sea ice, which we estimate to be σc = 3 MPa
and σt = 0.5 MPa, respectively. These values were chosen from empirical formulae reported by
Timco & Weeks [48], assuming a brine volume fraction of approximately 0.04 and a strain rate of
2 × 10−5 s−1 consistent with a loading at a mid-range wave period of 10 s. These values are chosen
to be realistic for sea ice in the MIZ, as opposed to attempting to replicate a particular observed
field condition, which is likely to be associated with much variability for these parameters. The
sensitivity of the break-up simulations conducted here with respect to the sea ice mechanical
properties is not within the scope of the present work. It is noted that flexural strength of sea ice
may be a better approximation for σt than the tensile strength used here for flexurally induced
fracture. The value calculated from the empirical formula given in [48], however, is close to that
for the tensile strength, so the distinction is actually of no practical importance.
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Figure 2. Filled contour plots of the potential break-up stressσbr against wave period T and floe radius a, under unit amplitude
plane wave forcing and for a single floe of thickness (a) D= 1 m, (b) D= 2 m and (c) D= 4 m.

(b) Potential break-up stress in a single floe
We devise a sensitivity test to assess the potential for break-up of a single ice floe (i.e. Ns = 1 and
N(1) = 1) for a range of radii and wave periods. We prescribe a unidirectional plane wave with
unit amplitude travelling in the positive x direction, by setting Aam(τ ) = δ(τ ), where δ denotes the
Dirac delta. We fix the water depth to h = 200 m. We assume, without loss of generality, that the
floe has its centre coinciding with the origin (x, y) = (0, 0) of the horizontal Cartesian coordinate
system. We compute the potential break-up stress σbr for wave periods T = 5–20 s, floe radii a =
5–500 m and floe thicknesses D = 1, 2 and 4 m.

Filled contour plots of σbr against wave periods and floe radii are shown in figure 2a–c for
D = 1, 2 and 4 m, respectively. The six contours displayed in each plot correspond to values of the
potential break-up stress σbr = eσMC for e = 0.5, 1, 2, 3, 4 and 5, noting that σMC ≈ 0.86 MPa.

For all three thicknesses considered, we generally observe that the potential break-up stress
increases rapidly with the floe size before plateauing for floe radii greater than a certain value.
This behaviour is seen at all wave periods for D = 1 m and for periods greater than approximately
6 and 9 s for D = 2 and 4 m, respectively. For shorter waves, σbr oscillates with respect to a,
suggesting resonances periodically induce large stress values, as the floe size approximately
equals an integer multiple of the wavelength. We expect that similar oscillations would be
observed for D = 1 m at wave periods less than 5 s.

According to our break-up criterion (4.10), fracture occurs for e ≥ 1, corresponding to the
second contour in figure 2, i.e. the one separating the second and third darkest shades of blue.
For all wave periods, it is seen that break-up occurs for all floe radii larger than a critical radius
denoted by aMC and referred to as the MC radius. It is shown as a function of wave period
in figure 3 for the three ice thicknesses considered (dashed lines). We observe that it reaches a
minimum at T = 7 and 10 s for D = 2 and 4 m, respectively, while it seems to approach a minimum
near T = 5 s for D = 1 m. These correspond to resonant frequencies, when the floe diameter
approximately coincides with the open water wavelength and half the ice-covered wavelength.

In figure 3, we further indicate by solid lines the radius corresponding to the contour defined
by e = 0.5 in figure 2. We denote it by acrit and refer to it as the critical break-up radius. Although
break-up does not occur for these radii in the single floe scattering simulations conducted
here with a unit amplitude plane incident wave, numerical experiments showed that multiple
interacting floes may generate more energetic wave forcing with the ability to fracture smaller
floes as a result of constructive interference. In all subsequent simulations, we set acrit = acrit(T)
as the minimum floe radius below which break-up cannot occur, unless otherwise discussed.
This approximation allows us to perform multiple scattering simulations at a manageable
computational cost. It should be noted that our arbitrary choice of acrit is conservative in most
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cases in the sense that the probability that a floe with a< acrit will fracture is small compared with
the probability that a floe with a> acrit does not.

5. Break-up model
We now seek to model the break-up of an array of ice floes, with the goal of determining the
evolution of the FSD towards a steady state under repeated wave action and break-up events. To
do this, we propose a numerical procedure that simulates the repeated break-up of an ice cover
initially composed of Nf identical large floes with radius amax. To reduce the number of single
floe solutions that need to be computed, we consider a finite number Nr of floe radii a(1), . . . , a(Nr),
such that a(1) = 5 m and a(Nr) = amax. We create a row vector V(FSD)

0 of length Nr, such that the lth
entry contains the number of floes in the array with radius a(l), for l = 1, . . . , Nr. For the initial
configuration of floes, we then have

V(FSD)
0 = (0, . . . , 0, Nf). (5.1)

The algorithm used for our break-up simulations is outlined as follows.

(i) Compute the exterior and interior DTMs associated with each floe radius a(p), for p =
1, . . . , Nr, using the method discussed in §3a, and store them (the size of each DTM is
O(10)).

(ii) Compute the solution of the multiple scattering problem using the method presented in
§3b for the initial configuration of ice floes.

(iii) Compute the potential break-up stress σ (i)
br for each floe i ∈ I directly from the definition

given in (4.10). In addition, define the normal break-up direction v(i)
br as the vector normal

to the yield curve in the local Cartesian coordinate system of floe i, that is,

v(i)
br =

⎛
⎝cosβ(i)

br

sinβ(i)
br

⎞
⎠= V(r(br)

i , θ (br)
i , t(br)

i )
∇σF
|∇σF | , (5.2)

where t(br)
i and (r(br)

i , θ (br)
i ) are the time and polar coordinates of the point of floe i,

respectively, at which σ (i)
br is computed, and ∇σ = (∂σ1 , ∂σ2 )T.

(iv) For each floe i, test the break-up criterion (4.10). If the inequality is not satisfied, floe i does
not fracture and therefore remains in the array. If the inequality holds, however, remove
floe i with radius ai from the array and substitute it with two floes of radii a(1)

i < ai and
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a(2)
i < ai defined as follows: at the point (r(br)

i , θ (br)
i ), draw a straight line perpendicular

to the vector v(i)
br, partitioning the region Ωi into two regions Ω (1)

i and Ω (2)
i as shown in

figure 1b. We then define a(1)
i and a(2)

i as the radii of the discs with the area of regionsΩ (1)
i

and Ω (2)
i , respectively. Their expressions are

a(1)
i = ai

√
π − 2θ0 − sin 2θ0

2π
and a(2)

i = ai

√
π + 2θ0 + sin 2θ0

2π
, (5.3)

where

θ0 =
∣∣∣∣∣sin−1

(
r(br)

i
ai

cos(θ (br)
i − β

(i)
br )

)∣∣∣∣∣ . (5.4)

Note that if either a(1)
i or a(2)

i is not equal to one of the radii a(l), l = 1, . . . , Nr, we round it
to the nearest one.

(v) Update the FSD by defining the vector V(FSD)
1 containing the number of floes in the new

array, i.e. after break-up has occurred, with each radius a(l), l = 1, . . . , Nr.
(vi) Generate a random array of circular floes described by the FSD vector V(FSD)

1 . For this
purpose, we use the random array generator devised by Montiel et al. [9] (see appendix B
therein).

(vii) Repeat steps (ii)–(vi) Nbr − 1 times, where Nbr is the number of break-up events
considered for the simulation. At the end of each iteration s, we obtain an updated FSD
defined by the vector V(FSD)

s for s = 1, . . . , Nbr.

The break-up model described here should be seen as a new method to generate an FSD from
repeated wave-induced floe break-up events. No attempt was made to replicate the fracture
mechanism of ice floes in the MIZ with realistic shapes. From this perspective, the gross
approximation of generating two circular floes from the break-up of a circular floe is acceptable, as
we are only interested in the size of newly created floes as opposed to their shape. This approach is
analogous to that of [19], in which floe size in the MIZ was measured by calculating the diameter
of discs with the same area as that of the observed floes.

In step (v), we only include floes with radius a(l) ≥ acrit in V(FSD)
s to generate the updated

random array. Neglecting the influence of smaller floes on the break-up simulations improves the
efficiency of the scattering computation in step (ii), noting that these small floes are still counted
in the vector V(FSD)

s+1 .
It should be further noted that, although the break-up algorithm described here is intended to

preserve the ice concentration (defined as the fraction of ice-covered ocean surface), rounding the
radius of the two floes generated in step (iv) introduces a small change of concentration. However,
simulations (not shown here) have revealed that these changes average out over a large number
of break-up events, so the concentration actually remains quasi-constant.

6. Results

(a) Single floe
We first conduct numerical experiments with the goal of understanding the FSD generated from
the break-up of a single large ice floe under monochromatic and unidirectional wave forcing,
as considered in §4b. We set Nf = 1 with amax = 200 m. A sensitivity study (not shown here)
demonstrated that choosing amax = 500 m resulted in similar post-break-up FSDs, so the smaller
radius was chosen for computational efficiency. We set Nr = 74, 84 and 100 unique floe radii
between 5 m and amax for D = 1, 2 and 4 m, respectively, so that we have a 5 m resolution for a ≥ 50,
60 and 80 m, respectively, and a 1 m resolution for smaller radii. Sensitivity tests (not shown here)
indicated that the critical radius acrit, below which both scattering and break-up are consistently
negligible, needs to be lowered from the values discussed in §4b for the cases D = 4 m and T< 10 s,
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Figure 4. Evolution of the floe size PDFP (a) during the repeated break-up of a single floe with radius amax = 200 m. Results
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probably because of the strong effect of multiple scattering. We, therefore, chose acrit = 40, 40, 35,
30 and 30 m for T = 5, 6, 7, 8 and 9 s.

The floe break-up algorithm described in §5 is then used to simulate the evolution of the FSD
for Nbr = 50 break-up events, which we find is generally sufficient to reach a steady state. The ice
concentration is set to 50%, so that the random array of floes generated after each break-up event
is enclosed in a square region with side length

√
2πamax.

The outputs of the break-up algorithm are the vectors V(FSD)
s for s = 0, . . . , 50, describing the

FSD after s break-up events. These vectors can be interpreted as discrete functions of the floe
radius variable a taking Nr values. The floe size probability density function (PDF), denoted by
P(a), after s break-up events is defined as the linearly interpolated discrete function with values
given in V(FSD)

s divided by the area under its curve. The PDFs are further averaged over 10 random
realizations of the break-up simulation.

In figure 4, the floe size PDF is plotted after s = 5, 10, 20 and 50 break-up events for the wave
periods T = 6 s (blue lines), 10 s (red lines) and 14 s (green lines) and the three ice thicknesses
D = 1 m (figure 4a–d), 2 m (figure 4e–h) and 4 m (figure 4i–l). The first striking feature is that the
distributions obtained from the break-up simulations clearly cannot be identified as power-law
distributions, as the number of floes decreases to zero for smaller and smaller radii. Instead, the
distributions after 50 break-up events look either unimodal or multimodal, as the distributions
contain one or multiple maxima. Closely spaced successive maxima, such as those seen for T = 6 s
and D = 2 m around a = 20 m, are likely to be an artefact of the floe radius sampling chosen for
the simulations, so that they actually represent a single mode of the corresponding continuous
distribution. We regard these oscillations as background noise. Accounting for this, we propose
that all the PDFs are either unimodal or bimodal. Unimodality is observed for D = 1 m at all
wave periods and D = 2 m for T = 6 s, while bimodality seems to manifest itself in all other cases.
The second mode for D = 4 m at T = 6 and 10 s is located at a ≈ 55 m for both wave periods,
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although the magnitude of its peak is only slightly larger than the background noise, so caution
is recommended in interpreting them as modes. It should be further noted that the unimodal
distributions are all positively skewed, suggesting they may be the superposition of two closely
spaced unimodal distributions. The bimodality may be explained by the fact that each floe with
sufficient stress breaks into two floes only, so that the repeated break-up of the ice cover results in
two dominant floe sizes that correspond approximately to the break-up of the smallest floe that
can fracture for a given thickness and wave period. We do not attempt to analyse the bimodal
property of the PDFs further.

For each parameter configuration considered in figure 4, we also observe a convergence of the
PDFs with respect to the number of break-up events, as all distributions obtained for 20 events
are almost identical to those obtained after 50 events, indicating that the break-up has ceased and
a steady state has been reached after 20 events. The convergence seems to occur faster for longer
waves and thicker floes, which is a consequence of fewer floe break-ups occurring for increasing
values of these parameters.

To understand better the convergence of the FSDs, figure 5 shows the evolution of the mean
and standard deviation (s.d.) of the PDFs, and the number of floes per square kilometre through
the 50 break-up events, for each wave period and thickness considered in figure 4. In the first
few break-up events (i.e. up to s ≈ 5), we observe that the statistics of the distribution change
exponentially fast, corresponding to the regime in which all the floes in the array fracture, so
that the number of floes doubles after each event. Interestingly, the mean floe size decreases
independently of the wave period and floe thickness in this regime, while the standard deviation
consistently remains higher at T = 6 s than at the other periods for the three floe thicknesses
considered, suggesting that shorter waves generate a broader FSD under intense wave-induced
break-up as the ice cover fractures very quickly.

For s> 5, the statistics of the FSD quickly reach a steady-state regime. The transition between
the exponential break-up and steady-state regimes is very sharp for T = 14 s, i.e. within five more
break-up events, while it is longer for shorter waves, e.g. at T = 6 s for which it can take more
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than 10–15 additional events. In particular, for a thickness D = 4 m, a small number of floes are still
breaking at the end of the simulation, i.e. s = 50. Two processes are hypothesized to be responsible
for the extended transition regime, namely (i) multiple wave scattering within the array of floes,
which is expected to be strong for these parameters and to cause constructive interference that
favours floe break-up, and (ii) mixing of the floes as a result of the randomization of the array of
floes after each break-up event. (See step (vi) of the break-up algorithm described in §5.) Although
this latter effect is an artefact of our break-up model which may amplify break-up, as large floes
will ultimately end up in front of the array and then fracture, its influence on the final steady-state
statistics of the FSD appears to be small for the single floe break-up simulations conducted in this
section.

The dependence of the steady-state statistics (i.e. after s = 50 break-up events) on the wave
period and floe thickness is shown in figure 6. Mean and standard deviation are larger for
increasing floe thicknesses, which is a result of thicker floes breaking less, as indicated in figure 6c,
generating an FSD composed of a smaller number of larger floes. The larger standard deviation is
explained by the stronger bimodality observed in the PDFs of the distribution for thicker floes, as
can be seen in figure 4, because a larger separation of the two peaks results in a wider distribution.

For D = 1 and 2 m, the mean and standard deviation smoothly vary with wave period with a
general increasing trend for longer waves. This can also be explained by the fact that floe break-
up diminishes for longer waves, which tends to enhance the formation of bimodal distributions.
Note the minimum reached by the standard deviation at T = 13 s for D = 2 m. Inspection of the
PDF obtained for this parameter configuration (not displayed here) shows that the bimodal shape
of the distribution is not apparent, in contrast with T = 12 and 14 s for which it clearly exists. We
could not further explain this feature.

For D = 4 m, the mean floe size reaches a minimum at T = 7 s. It should be noted that this is
smaller than T ≈ 9 s for which the minimum of the critical radius acrit(T) discussed in figure 3
occurs for this thickness. This is likely to be a consequence of multiple wave scattering enhancing
the stress field in the floes within the array at smaller wave periods, and break-up ensuing due
to constructive interference. This further explains the need to take values of acrit for the break-up
simulations smaller than those computed in §4b, as discussed at the beginning of this section.

(b) Array of floes
We now investigate how wave scattering by an array of floes influences the break-up process and
associated evolution of its FSD. We consider the following initial configurations: (i) Ns = 10 slabs
containing three floes each (i.e. Nf = 30) with thickness D = 1 m and (ii) Ns = 20 slabs containing
five floes each (i.e. Nf = 100) with thicknesses D = 2 and 4 m. Subsequently, we refer to a slab of
floes as a row. We chose a smaller array for D = 1 m due to numerical constraints (thinner ice floes
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break up more, resulting in an increased computational cost required to solve the corresponding
wave interaction problem with many floes). All the floes have initial radius amax = 200 m and the
ice concentration is 50%, so that arrays in configurations (i) and (ii) have approximate horizontal
extents of 1.5 × 5 km and 2.5 × 10 km, respectively. The unique floe radii and critical radii acrit
for each thickness are the same as those chosen for the single floe break-up simulations in §6a.
We perform the array break-up simulations for Nbr = 50 break-up events. As a result of the
significantly higher computational cost associated with the array break-up simulations compared
with the single floe break-up simulations, no ensemble averaging was performed here, so all
the results in this subsection are obtained from a single random realization for each wave
period and floe thickness. Additional random realizations performed on a few selected cases
showed remarkable consistency of the resulting FSD, suggesting very little variability exists in
the stochastic process described here.

The mean, standard deviation and number of floes per square kilometre obtained after 50
break-up events for each wave period and floe thickness considered are plotted in figure 7,
where they are compared with the steady-state statistics of the corresponding single floe break-up
simulations. For D = 1 m, the steady-state statistics obtained by breaking up the 10 × 3 array are
very similar to those obtained from the break-up of a single floe, over the range of wave periods. It
should be noted that the mean is consistently slightly smaller, while the number of floes is slightly
larger, suggesting more break-up takes place for the array simulations, probably as a result of
enhanced floe break-up due to constructive interference caused by multiple scattering. A similar
observation can be made for D = 2 m thick ice in the range of wave periods T ≥ 7 s. For shorter
waves, there is a clear deviation from the single floe break-up statistics, as the mean and standard
deviation increase and the number of floes decreases as T decreases, which is the opposite trend
to what happens for single floe break-up. This indicates that scattering is sufficiently dominant
in this regime to prevent some floes from fracturing. The large increase in the standard deviation
further suggests that the FSD spreads over a larger range of floe radii. Results obtained for D = 4 m
reinforce our explanations of the role of multiple scattering in break-up through the large array,
with the observations of two regimes, i.e. T< 10 s (short waves) and T ≥ 10 s (long waves). In the
short-wave regime, scattering generates sufficient wave energy attenuation to prevent floe break-
up at some level of penetration in the ice-covered domain. In the long-wave regime, scattering
enhances floe break-up due to constructive interference of the wave fields radiated by the freely
floating individual ice floes.

We seek more insight about the FSD obtained from the break-up of large arrays by plotting the
PDFs of the distributions after 50 break-up events in figure 8. We can identify the two regimes
discussed previously, i.e. enhanced break-up and reduced break-up, as a result of multiple wave
scattering by a large array of floes. Based on our observations from figure 7, we associate enhanced
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break-up with the PDFs depicted in figure 7a,b,c,e,f ,i, corresponding to cases for which scattering
is not significant (i.e. long waves and/or thin ice). The PDFs show the presence of a larger number
of small floes compared with the single floe break-up simulations, while the presence of larger
floes decreases. Although this can be viewed as a shift of the PDF towards lower floe radii, the
shape of the distribution also changes, particularly for thicknesses D = 2 and 4 m. In these cases,
the bimodality observed in the distributions obtained from the break-up of a single floe is not a
persistent feature of the PDFs associated with the break-up of an array, as the second mode (i.e.
the mode corresponding to larger floes) is damped or removed. For D = 1 m, the PDFs are similar
to those of the single floe break-up, being only slightly shifted towards smaller floe sizes.

The second regime, characterized by reduced break-up in the array, corresponds to the PDFs
shown in figure 7d,g, h. The large spread of these distributions discussed above is clearly observed,
with an increased presence of smaller floes (compared with the single floe break-up), as is the case
in the long-wave/thin ice regime, as well as larger floes. Important wave scattering occurring in
the front slabs of the array prevents wave energy from causing break-up deeper in the array. In
the extreme case D = 4 m and T = 6 s depicted in figure 7g, we can see the presence of floes with
radius a = 200 m, which is the initial radius of all floes. Wave energy attenuation due to scattering
is sufficiently strong in this case that some floes located deep enough in the array do not break.

To understand the role of scattering in the break-up of the array further, we focus our
analysis on the four cases—(D, T) = (2 m, 6 s), (2 m, 14 s), (4 m, 6 s) and (4 m, 14 s)—depicted in
figure 8d,f,g,i, respectively. Figure 9 shows the evolution of the mean, standard deviation and
number of floes per square kilometre of the FSD in rows 1, 5, 10, 15 and 20 through the 50 break-
up events. For the two long-wave cases (i.e. T = 14 s) discussed here, we observe that the FSDs
in all the rows converge to their steady state relatively uniformly. Interestingly, enhanced break-
up compared with single floe break-up can be seen in all the rows. The level of break-up differs
slightly between the rows, however. Inspection of the row dependence of the FSD steady-state
statistics (not shown here) reveals an oscillatory behaviour with no clear trend in the case D = 2 m,
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but with a clear peak in floe number around the 15th row, and a small upward trend in floe
number for D = 4 m, suggesting that break-up increases with the level of penetration in the array.
The reader is reminded that the results presented in this section are based on a single random
realization of the break-up simulations, so that an ensemble average may be necessary to resolve
the small trends associated with the effect of penetration in the array on floe break-up.

For the two short-wave cases (T = 6 s) considered in figure 8, we clearly observe the effect of
scattering and associated wave energy attenuation in preventing floe break-up at some distance
in the array. For D = 2 m (figure 9a–c), the FSD in the first row converges quickly to a steady
state, while that in row 5 also converges but at a slower rate as the steady state seems to be
approximately reached towards the end of the simulation and with a significantly smaller number
of floes than in row 1. This suggests that wave attenuation has an effect in reducing break-up in
the first few rows. The evolution of the FSD deeper into the array is different, as we observe
break-up taking place during the first four events but then suddenly stopping. Break-up then
resumes in rows 10 and 15 after eight and 26 events, respectively, while it does not in row 20.
It is hypothesized that large floes in these rows initially fracture, as they do not require much
energy to reach the critical break-up stress, as suggested in figure 2. After a few break-up events,
the floes become too small to break under a wave field strongly attenuated by the front rows. As
break-up in these front rows continues, however, wave attenuation due to scattering by smaller
and smaller floes also decreases, so that more wave energy propagates further into the array
with the result that floes are gradually broken up deeper and deeper in the ice field. In other
words, we have shown in our model that wave-induced break-up has the capacity to reduce the
structural integrity of the MIZ, enabling waves to travel further and cause break-up there, further
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weakening the ice cover. This positive feedback process is often used as a motivational concept for
observational studies on wave–sea ice interactions. Note that a steady state is not reached after 50
break-up events in this simulation, so it is possible that break-up starts to resume in row 20 after
the rows in front have experienced sufficient break-up.

In the case D = 4 m (figure 9g–i), break-up in rows 1 and 5 behaves similarly to that for D = 2 m,
but rows 10 onwards do not experience break-up during the 50 events simulated here. Because
thicker ice tends to increase the degree of wave attenuation, this is a plausible outcome of the
simulation. Inspection of the evolution of the FSD in rows 6, 7, 8 and 9 (not shown here) indicates
that break-up is ongoing after 50 events, so that rows 10 onwards may gradually start breaking
after a larger number of break-up events.

(c) Wave spectrum
We now consider the break-up of the arrays used in the previous section under a unidirectional
wave spectrum, in part acknowledging that the FSD observed in ice-covered oceans is the result
of break-up by a sea state composed of a range of frequency and directional components. We
do not seek to reproduce the break-up response to an observed random sea state in the present
model, but instead we conduct a controlled numerical experiment to assess qualitatively how
the FSD induced by an ad hoc wave spectrum differs from that obtained under monochromatic
wave forcing. For this purpose, we sample wave components from a two-parameter Bretschneider
spectrum defined by the spectral density function

S(T) = 5
32π

TpH2
s

(
T
Tp

)5
e−(5/4)(T/Tp)4

, (6.1)

where Tp is the peak wave period and Hs is the significant wave height [49]. Sampling the period
spectrum at integer wave periods between 5 and 15 s, the amplitude of the ambient field at each
centre period of 1 s bandwidth is given by

Aam(τ ) =
√

2S(T)δ(τ ). (6.2)

At this resolution, the incident wave amplitude is close to 1 m for each sampled period, being
slightly larger around the peak period and slightly smaller away from it, and hence we expect
break-up to occur for all periods, which is our intent in using this ad hoc model. Choosing a finer
resolution would reduce the amplitude of each component and may not cause sufficient break-up
to analyse the FSD and compare it with that obtained under monochromatic forcing.

For our break-up simulations, we select one wave period T ∈ [5, 15] randomly at each event
and compute the break-up induced by a unidirectional plane wave of period T with amplitude
given by (6.2). An ensemble of 10 random realizations of the break-up simulation is computed for
each ice thickness. Although this approach is potentially different from break-up by a wave field
composed of multiple frequencies, it is conjectured that the randomization of both wave period
and array in conjunction with ensemble averaging provides a legitimate approximation. We set
the parameters of the spectrum to Tp = 10 s and Hs = 2 m, which corresponds to a typical swell
observed in the Southern Ocean [5].

Figure 10 shows the evolution of the mean, standard deviation and number of floes per square
kilometre of the FSD for different rows of the array and for the entire array (figure 10a–c,e–g,i–k).
We observe a clear convergence trend towards a steady state for all rows of the array and for
each thickness. The front rows consistently converge faster than the back ones and to a lower
mean and a higher number of floes, so that the degree of break-up decreases with the level of
penetration in the array. Interestingly, the evolution of the mean and number of floes of the FSD
for the entire array almost coincides with those associated with the middle row of the array. This
suggests a simple linear dependence of the FSD statistics with respect to the row number, which
will be demonstrated later. The standard deviation of the FSD for the entire array is consistently
at least as large as that of the last row, which in turn is the largest of all the rows. This reflects the
larger spread of floe sizes on a large scale (entire array) compared with the local scale (each row).
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We further display the PDF of the FSD for all cases discussed above in figure 10d,h,l. Observe
first that the distributions look nearly normal. This is probably the result of effectively averaging
over the wave periods. The bimodality seen in previous distributions does not completely
disappear, however, as a shoulder-type feature can be seen on the right of the peak (i.e. for large
radii), particularly for D = 1 and 2 m. This suggests the existence of a second mode for large radii
but with a small peak.

The row dependence of the mean, standard deviation and number of floes after 50 break-up
events is analysed further in figure 11. As indicated above, we observe a linear increase in the
mean of the FSD and a linear decrease in the number of floes with respect to row number. This
allows us to estimate the rate of change of mean floe size with respect to penetration in the array,
which is important for large-scale modelling studies of the MIZ. Fitting a straight line through
the curves generated and extracting the slope, we find that the mean floe radius increases at a
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rate of 0.27, 0.39 and 1.5 m per kilometre of penetration for D = 1, 2 and 4 m, respectively. This
notwithstanding, it is unclear how the limited size of the array affects these estimates.

7. Conclusion
A new model of ice floe break-up under ocean wave forcing in the MIZ has been developed. It
combines the time-harmonic multiple scattering theory for a finite array of floating elastic discs
proposed by [9] with a parametrization of flexural failure causing an ice floe to fracture into
two floes, provided that the stress field satisfies a particular break-up criterion, the so-called MC
criterion. We derived a quantity, referred to as the MC stress, that uniquely defines the level of
stress at each point of the surface of an ice floe, allowing us to test simply if break-up is expected
to take place at any point. A numerical experiment was then conducted to analyse the MC stress
experienced by a single ice floe under a unit amplitude unidirectional wave forcing and determine
the regime in which we expect floe break-up. It was found that

(i) a minimum floe diameter exists for each thickness below which break-up cannot occur,
and

(ii) this critical diameter depends on the wave period in a way that it reaches a minimum at
a resonant wave period, for which the floe diameter is approximately equal to the open
water wavelength and half the ice-covered wavelength.

A closed-loop feedback algorithm has been proposed to model the evolution of the FSD in the
MIZ under a sustained wave event. Each loop consists of (i) computing the MC stress in all the
floes, (ii) breaking up each floe satisfying the MC criterion, and (iii) generating a new array of
floes from the updated FSD, which is then used as the geometry of the wave interaction problem
in the next loop. We conducted a number of numerical experiments to determine the evolution
of the FSD towards a steady state through 50 break-up events (i.e. loops), for different wave and
ice configurations. We simulated the break-up of (i) a single large floe for a monochromatic unit-
amplitude plane wave forcing, (ii) an array of large floes for the same monochromatic forcing,
and (iii) an array of large floes for a Bretschneider spectrum forcing. Key findings are summarized
below.

(i) Break-up of a single large floe causes the emergence of a bimodal FSD for most wave and
ice parameters considered. Larger values of wave period and ice thickness correspond
to FSDs with larger floe sizes and more separated peaks of the associated bimodal
distribution. The convergence of the FSD towards its steady state under repeated break-
up events is very quick for long waves and slower for short waves. Increasing values
of ice thickness also tends to decrease the rate of convergence of the FSD, suggesting
that multiple wave scattering within the array of broken floes enhances break-up and
therefore influences the steady-state FSD.

(ii) Break-up of an array of large floes under monochromatic forcing provides additional
insight into the effect of multiple scattering on the FSD. First, the bimodality of the FSD
observed for the single floe break-up simulations is either damped or removed, as the
population of large floes associated with the second mode is consistently redistributed
to smaller floes. Second, results of our simulations indicate that two scattering regimes
exist, i.e. long waves/thin ice and short waves/thick ice. In the former regime, wave-
induced ice break-up is enhanced compared with the single floe break-up, which is likely
to be a consequence of constructive interference of wave fields radiated by the individual
floes. In the second regime, multiple scattering causes sufficient wave energy attenuation
through the array to prevent some ice floes from fracturing, resulting in broader FSDs
compared with those obtained from the repeated break-up of a single floe.

(iii) Investigation of the evolution of the FSD at different levels of penetration in the array
indicates that enhanced floe break-up in the long-wave regime occurs throughout the
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array with a small upward trend with distance from the ice edge. In the short-wave
regime, we observe the positive feedback between wave-induced ice break-up and ice-
induced wave attenuation. Break-up originally only takes place in the front rows as waves
are attenuated by scattering deeper in the array. After sufficient break-up, waves are less
attenuated, carry energy at a higher level of penetration and cause break-up there. The
overall effect is the observation of a break-up front marching forward in the MIZ as the
structural integrity of the ice cover reduces under wave-induced break-up.

(iv) Break-up of an array under a Bretschneider spectrum forcing generates near-normal FSDs
for all ice thicknesses, which is likely to be a consequence of averaging with respect to
the wave period. As opposed to the simulations with monochromatic forcing, break-
up decreases with the level of penetration in the array, such that the mean floe size
increases linearly with distance from the ice edge. The rate of floe size increase is larger
for thicker ice.

An important outcome of our investigation is that no power-law FSD was generated from the
simulations. Our model consistently predicts that the number of floes decreases to zero for smaller
floe sizes in an MIZ with uniform ice thickness. This results from the fact that small floes are less
prone to elastic deformations than large floes, i.e. they behave similarly to a rigid body. Analysis
of the data generated in §4b shows that the wave energy required to cause break-up in small
floes increases exponentially fast as floe size decreases below a critical size, so that flexural failure
by ocean waves is unlikely to be responsible for the observed increasing number of small floes
in the MIZ [19], acknowledging that small floes with size O(1 m) cannot be resolved accurately
by current observation techniques, so that it is unclear whether the power law extends to very
small scales. In any case, our analysis suggests that wave-induced floe break-up alone does not
create or preserve the observed power-law FSD or the apparent increase in small floe numbers,
but may partially contribute to it. Other processes acting on longer time and/or length scales (e.g.
thermodynamics, internal stress or collisions) must be considered to explain this feature of the
FSD. Although recent modelling work has shown the emergence of a power-law FSD [27,28,50], it
is still unclear how much each process contributes to the observed result. It should also be noted
that we attempted to fit a power-law curve in the large floe regime of the FSDs obtained from
our simulations, i.e. for radii larger than the peak radius, but the limited extent of this regime (i.e.
spanning less than one order of magnitude in floe radius) did not allow us to obtain statistically
significant results.

Although our findings provide much theoretical understanding of the wave-induced ice
break-up process in the MIZ, the underlying model was constructed based on a number of
simplifying assumptions, which may influence certain results. Specifically, the FSD resulting from
the break-up of a more heterogeneous ice cover, i.e. governed by a floe shape and ice thickness
distribution and possibly different ice types, under a realistic multidirectional random sea state,
may spread the FSD over a wider range of floe sizes to the point where a power law could be
fitted to a portion of the curve. In addition, the validity of our break-up model, which involves
breaking a circular floe into two circular floes and time-harmonic wave forcing, is unclear and
requires further investigation. It would be difficult to relax these assumptions in the context
of the three-dimensional wave-scattering model considered here. We may envisage a simpler
two-dimensional model, however, in which the one-dimensional ice cover is initialized as a semi-
infinite beam and forced by a transient incident wave generated from a frequency spectrum. More
theoretical investigation into this physical process is needed to be able to provide large-scale
ice–ocean wave forecasting models with a quantitative parametrization of the two-way coupling
between ocean waves and sea ice. Monitoring the evolution of the FSD in an area of ice-covered
ocean during a wave break-up event either in the field or in a controlled laboratory setting, with
the ability to resolve small floes accurately, would be needed to provide a clearer picture of the
complicated processes investigated here.
Data accessibility. The Matlab codes and data files created for the numerical investigation reported here can be
accessed through http://www.maths.otago.ac.nz/files/icebreakup/Data_breakup.zip.
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