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The Miles' theory of wave amplification by wind is extended to the case of finite depth. A depth-dependent
wave growth rate is derived from the dispersion relation of the wind/water interface. For different values of
the dimensionless water depth parameter δ = gh/U1

2, with h the depth, g the gravity and U1 a characteristic
wind speed, a family of wave growth curves is plotted as a function the dimensionless parameter θfd ¼ c

U1
,

with c the wave phase velocity. The model provides a fair agreement with the data and empirical relation-
ships obtained from the Lake George experiment, as well as with the data from the Australian Shallow
Water Experiment. Two major results are obtained: (i) for small θfd the wave growth rates are comparable
to those of deep water and (ii) for large θfd a finite-depth limited growth is reached, with wave growth
rates going to zero.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Field experiments on growth of surface wind-waves

Experimental studies on the growth rate of surface wind-waves
under fetch or wave age limited conditions in deep or finite water
depth is a classical matter of investigation in fluid dynamics.

For finite depth wave growth the pioneer experiments and numeri-
cal studies were conducted by Thijsse (1949), Bretschneider (1958) and
Ijima and Tang (2011) and particularly the experiments in Lake George,
Australia, described by Young andVerhagen (1996a). They provided one
of the first systematic attempts to understand the physics of wind-wave
generation in finite depth water.

The results of the field experiments in fetch limited growth have
been presented in references Young and Verhagen (1996a, 1996b) and
Young and Babanin (2006a). These papers gave a very complete descrip-
tion of the basin geometry and bathymetry, experimental design, used
instrumentation, as well as the adopted scaling parameters. The mea-
surements have confirmed the water depth dependence of the asymp-
totic limits to wave growth.

In Young (1997) (see Young (1999), too) derived was an empirical
relation in terms of appropriate dimensionless parameters, which
able to reproduce the experimental data of Young and Verhagen
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Kharif),
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(1996a). In particular the empirical relationship between the varia-
tion of fractional energy and the inverse wage age, found by
Donelan et al. (1992) for deep water, was extended to the finite
depth domain. Experimental results together with plots of the empir-
ical laws have shown that, contrary to the deep water case, the wave
age at which the growth rate becomes zero is wind-dependent and
depth-dependent. So, the case of a fully-developed sea is warped from
the deep water case, as it was established by Pierson and Moskowitz
(1964). As a result, a growth law against the inverse wave age exists
for each value of a parameter, which involves the dependence on wind
intensity and water depth.

The evolution of the growth rates is such that at small wave ages
growth rates are comparable to the deep water limit and at large wave
ages the growth rate is lower in shallow water than in deep water.
Beyond a critical wave age, the growth rate vanishes.

1.2. Theoretical studies

From a theoretical point of view pioneering surface wind-wave
growth theories have been developed since Jeffreys (1924, 1925),
Phillips (1957) and Miles (1957) until more recent works of Janssen
(1991) and Belcher and Hunt (1993). Later on, numerical approaches
were used. For a review one can refer to the book of Janssen (2004).

Nonetheless, most of these theories are limited to the deep water
domain, thus restrictive with regard to wind generated near-shore
ocean waves or shallow lake waves. Nowadays we do not have any
consistent theoretical framework to forecast growth of wind-waves
in finite water depth. Therefore a theoretical extension of wave growth
to finite depth is lacking in the field.
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The aim of this work is to derive a surfacewind-wave growth theory
in finite depth based on the Euler equations. The purpose is twofold:
(i) to provide mathematical laws able to qualitatively reproduce some
features of the field experiments on growth rate evolution of finite
depth wind-waves, and (ii) to supply a theoretical basis allowing to it
go beyond empirical laws.

To carry out this task, we propose to extend the well knownMiles'
theory to the case of finite depth. The paper is organized as follows.

In Section 2 we briefly introduce the classical Miles' theory. In
sub-section 3.1 the linear problem in water is displayed. Then, in
sub-section 3.2 air andwater dynamics are coupled. The linear problem
is solved at the interface and the linear dispersion relation of wave
amplification infinite depth is derived. In Section 4we introduce dimen-
sionless variables and scalings, to obtain an adequate growth rate and in
sub-section 1 we derive the β-Miles parameter in finite depth. The the-
oretical linear dynamic is discussed in sub-section 4.2. In sub-section 5.1
the theoretical laws are compared with the Young–Verhagen data and
plot of empirical relationships from the Lake George experiment and
Donelan's data from the AUSWEX program with a special emphasis on
their qualitative agreement. In sub-section 5.2 discussed is thewave dis-
sipation due to white-capping. Finally section 6 draws the conclusions.
Besides, in Appendix A we give some details about the numerical work
underneath.

2. Miles' theory of wind-wave growth in deep water:
a brief summary

From a mathematical point of view, the classical Miles' theory in
deep water is based on the dispersion relation of the air–sea interface
and the related Rayleigh equation (Conte and Miles, 1959; Drazin and
Reid, 1982; Rayleigh, 1880). Miles' physical mechanism of wave gen-
eration by wind assumes that ocean surface waves are generated by a
resonance phenomenon between the wave-induced pressure gradient
in the inviscid shear airflow and the surface waves. It occurs at the crit-
ical height, ormatched height, where the air flowvelocity is equal to the
phase speed of the surface wave. The usual model is two-dimensional,
water is assumed deep, viscosity in air and water is disregarded and
the equations of motion are linearized. The equations are linearized
around a prescribed mean wind velocity and air flow turbulence is only
used to set up the meanwind profile. The subsequent Rayleigh equation,
depending on the wind profile, is then solved by a combination of
analytical and numerical methods.

Despite these simplifications, this theory provides an approximate
model sufficiently useful to investigate some of the physics of thewater
wave growth problem. Thismodel allows, at least linearly, an analytical
approach of the phenomenon. Its prediction of exponential growth of
wave amplitude (or energy) is well confirmed by field and laboratory
experiments (the wind-to-waves energy transfer rates predictions are
smaller than the observations, although their order of magnitude is the
same). Even though the Miles' theory is very well-argued from the
mathematical point of view and under the assumptions used, it has
been largely improved, lately.

For a detailed review on wind-induced wave growth as well as
improvements of the linear Miles' theory and further progress in the
quasi linear theory see Miles (1997) and Janssen (2004).

3. The interface problem

This section is devoted to the study of the stability of an air–water
interface. Let the fluid particles be located relatively to a fixed rectan-
gular Cartesian frame with origin O and axes (x, y, z), where Oz is the
upward vertical direction. We assume translational symmetry along y
and we will only consider a sheet of fluid parallel to the xz plane. The
plane z = 0 characterizes the interface at rest. The perturbed air–
water interface will be described by z = η(x, t). The air occupies the
η(x, t) b z b + ∞ region, and the water lies between the bottom
located at z = −h and the interface z = η(x, t). We suppose the
water as well as the air to be inviscid and incompressible. The
unperturbed air flow is a prescribed mean shear flow, only depending
on the vertical coordinate z. We assume the dynamics to be linear,
and disregard the air flow turbulence, building a quasi-laminar theory.

3.1. The water domain

In the water domain we consider the Euler equations for finite
depth. The horizontal and vertical velocities of the fluid are u(x, z, t),
and w(x, z, t), respectively. The continuity equation and linearized
equations of motion in water read as (Lighthill, 1978)

ux þwz ¼ 0; ρwut ¼ −Px; ρwwt ¼ −Pz−gρw; ð1Þ

where P(x, z, t) is the pressure, g the gravitational acceleration, ρw the
water density and subscripts in u, w and P denote partial derivatives.
The boundary conditions at z = −h and at z = η(x, t) are

w −hð Þ ¼ 0; ηt ¼ w 0ð Þ; ð2Þ

P x;η; tð Þ ¼ Pa x;η; tð Þ; ð3Þ

where Pa is the air pressure evaluated at z = η. Thus Eq. (3) is the con-
tinuity of the pressure across the air/water interface. As this is a vital
assumption for the growth mechanism, we express the pressure in a
more manageable reduced form defined by

P x; z; tð Þ ¼ P x; z; tð Þ þ ρwgz−P0; ð4Þ

where P0 is the atmospheric pressure. In terms of Eq. (4), Eqs. (1)–(3)
read

ux þwz ¼ 0; ρwut ¼ −Px; ρwwt ¼ −Pz; ð5Þ

w −hð Þ ¼ 0; ηt ¼ w 0ð Þ; ð6Þ

P x; η; tð Þ ¼ Pa x; η; tð Þ þ ρwgη−P0: ð7Þ

The linear system Eqs. (5)–(7) can be solved by assuming normal
mode solutions of the form

P ¼ P zð Þ exp iθð Þ; u ¼ U zð Þ exp iθð Þ;
w ¼ W zð Þ exp iθð Þ; η ¼ η0 exp iθð Þ; ð8Þ

with θ = k(x − ct) where k is the wavenumber, c the phase speed
and η0 a constant. Using Eqs. (5)–(8) we obtain

w x; z; tð Þ ¼ ikc sinhk zþ hð Þ
sinhkh

η0 exp iθð Þ; ð9Þ

u x; z; tð Þ ¼ kc coshk zþ hð Þ
sinhkh

η0 exp iθð Þ; ð10Þ

P x; z; tð Þ ¼ kρwc
2 coshk zþ hð Þ
sinhkh

η0 exp iθð Þ: ð11Þ

The phase speed c is unknown in Eqs. (9)–(11). To determine cwe
have to consider the boundary conditions (7), not yet used, and Eq.
(6) which yields

ρwη0 exp iθð Þ c2k cothkh−g
n o

þ P0 ¼ Pa x; η; tð Þ: ð12Þ

In the single-domain problem Pa(x, η, t) = P0 and Eq. (12) gives
the usual expression for c,

c2 ¼ c20 ¼ g
k
tanh khð Þ: ð13Þ
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Note that it is not the case in the problem under consideration. In
the present paper the determination of c needs the use of the air pres-
sure evaluated at z = η.

3.2. The air domain

Let us consider the linearized governing equation of a steady air
flow, with a prescribed mean horizontal velocity U(z) depending on
the vertical coordinate z. We are going to study perturbations to the
mean flow U(z): ua(x, z, t), wa(x, z, t) and Pa(x, z, t) where subscript
a stands for air. So with Pa(x, z, t) = Pa(x, z, t) + ρagz − P0, ρa, the
air density, and U′ = dU(z)/dz we have the following equations

ua;x þwa;z ¼ 0; ð14Þ

ρa ua;t þ U zð Þua;x þ U′ zð Þwa

h i
¼ −Pa;x; ð15Þ

ρa wa;t þ U zð Þwa;x

h i
¼ −Pa;z: ð16Þ

To these equations we must add the appropriate boundary condi-
tions. The first one is the kinematic boundary condition for air, evalu-
ated at the aerodynamic sea surface roughness z0, located just above
the interface. Through this paper, z0 will be assumed constant, inde-
pendent from the sea state. This is a widely used approximation, first
proposed by Charnock (1955). For the datasets used later on, the wind
speed ranges are such that the roughness may be seen as a constant
(Fairall et al., 1996). The kinematic boundary condition reads

ηt þ U z0ð Þηx ¼ wa z0ð Þ: ð17Þ

We choose U(z) to be the logarithmic wind profile

U zð Þ ¼ U1 ln z=z0ð Þ; U1 ¼ u�
κ
; κ≈0:41; ð18Þ

where u* is the friction velocity and κ the Von Kármán constant. This
is commonly used to describe the vertical distribution of the horizontal
meanwind speedwithin the lowest portion of the air-side of themarine
boundary layer (Garratt et al., 1996). It can also be justifiedwith scaling
arguments and solution matching between the near-surface air layer
and the geostrophic air layer (see Tennekes (1972)). So, Eq. (17) can
be reduced to

ηt ¼ wa z0ð Þ: ð19Þ

Next we assume Pa ¼ Pa zð Þ exp iθð Þ; ua ¼ Ua zð Þ exp iθð Þ; wa ¼
Wa zð Þ exp iθð Þ, and we add the following boundary conditions on
Wa and Pa,

lim
z→þ∞

W ′a þ kWað Þ ¼ 0 ð20Þ

lim
z→z0

Wa ¼ W0; ð21Þ

lim
z→þ∞

Pa ¼ 0; ð22Þ

that is, the disturbance plus its derivative vanish at infinity, and the
vertical component of the wind speed is enforced by the wave move-
ment at the sea surface. Then, using Eqs. (14)–(16) and (22) we obtain

wa x; z; tð Þ ¼ Wa exp iθð Þ; ð23Þ

ua x; z; tð Þ ¼ i
k
Wa;z exp iθð Þ; ð24Þ

Pa x; z; tð Þ ¼ ikρa exp iθð Þ∫∞
z
U z′ð Þ−c½ �Wa z′ð Þdz′: ð25Þ
Removing the pressure from the Euler equations, we obtain the
well-known Rayleigh equation (Rayleigh, 1880), ∀z \ z0 b z b + ∞

U−cð Þ W″
a−k2Wa

� �
−U″Wa ¼ 0; ð26Þ

which is singular at the critical, or matched height zc ¼ z0e
cκ=u� >

z0 > 0, where U(zc) = c. We recall that this model disregards any kind
of turbulence, and so that the critical height is set above any turbulent
eddies or other non-linear phenomena. In Eqs. (23)–(26) neither Wa zð Þ
nor c are known. In order to find c, we have to calculate Pa(x, η, t). We
obtain

Pa x; η; tð Þ ¼ P0−ρagη
þ ikρa exp iθð Þ∫∞

z0
U zð Þ−c½ �Wa zð Þdz; ð27Þ

where the lower integration bound is taken at the constant roughness
height z0 instead of z = η since we are studying the linear problem.
Finally, using Eq. (19) to eliminate the term ikρa exp(iθ) and substitut-
ing Pa given by Eq. (27) into Eq. (12) gives

g 1−sð Þ þ c
sk2

W0
I1−c2

sk2

W0
I2 þ k coth khð Þ

( )
¼ 0; ð28Þ

where s = ρa/ρw and the integrals I1 and I2 are defined as follows

I1 ¼ ∫∞
z0
UWadz; I2 ¼ ∫∞

z0
Wadz: ð29Þ

Eq. (28) is the dispersion relation of the problem. When h → ∞we
find the expression derived by Beji and Nadaoka (2004) (see equation
(3.7)). The parameter s being small (ρa/ρw ∼ 10−3) Eq. (28) may be
approximated as

c ¼ c0 þ sc1 þ O s2
� �

: ð30Þ

The explicit form of c1 is calculated in the next section. At order
zero in s, we can find Wa zð Þ by using c0 instead of c and solving Eq.
(26). The method is shortly described in Appendix A.

4. The wave growth rate γ

The function Wa zð Þ is complex and consequently c, too. Its imagi-
nary part gives the growth rate of η(x, t) defined by

γ ¼ kI cð Þ ð31Þ

where I cð Þ is the imaginary part of c. The theoretical and numerical
results concerning the growth rate γ are studied and computed with
two dimensionless parameters δ (see Young and Verhagen 1996a,b)
and θdw defined by

δ ¼ gh
U2

1

; θdw ¼ 1
U1

ffiffiffi
g
k

r
: ð32Þ

The dimensionless parameter δ, for constant U1, measures the in-
fluence of the depth on the rate of growth of η(x, t). The parameter
θdw can be seen as a theoretical analogous of the deep water wave age.
It measures the relative value of the deep water phase velocity to the
characteristic wind velocity U1. Now a theoretical analogous of the finite
depth wave age θfd can be introduced as

θfd ¼ 1
U1

ffiffiffi
g
k

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh khð Þ

q
¼ θdwT

1=2
; ð33Þ
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where

T ¼ tanh
δ
θ2dw

 !
: ð34Þ

The form (33) is a depth weighted parameter such that for a finite
and constant θdw we have θfd ∼ θdw if δ → ∞ and θfd∼δ1=2 ¼

ffiffiffiffiffiffi
gh

p
=U1 if

δ → 0. To derive the growth rate, we introduce the following dimen-
sionless variables and scalings (hatsmeaning dimensionless quantities)

U ¼ U1Û ; Wa ¼ W0Wˆ a; z ¼ ẑ
k
;

c ¼ U1ĉ; t ¼ U1

g
t̂ :

ð35Þ

Using Eqs. (32) and (35) in Eq. (28) and retaining only the terms
of order O(s) we obtain ĉ,

ĉ ¼ ĉ δ; θdwð Þ ¼ θdwT
1=2− s

2
θdwT

1=2 þ s
2

TÎ1−θdwT
3=2 Î2

n o
; ð36Þ

and with eγt ¼ ekI cð Þt ¼ eI ĉð Þt̂
=θ2dw, we derive the dimensionless growth

rate γ̂ ¼ U1
g γ,

γ̂ ¼ s
2

TI I1ð Þ
θ2dw

− T3=2I I2ð Þ
θdw

( )
: ð37Þ

Hence, we can compute γ̂ for given values of δ and θdw. The δ
parameter does not appear explicitly allowing us to indeed compute
γ̂ for an infinite depth. For δ → ∞, we have

γ̂ ¼ s
2

I I1ð Þ
θ2dw

−I I2ð Þ
θdw

( )
: ð38Þ

This is exactly the expression found by Beji and Nadaoka (2004)
for deep water.

4.1. The β-Miles parameter

Instead of dimensionless growth rate γ̂ , Miles introduced β as a
non-dimensional parameterization of the imaginary part, I cð Þ, of
the phase velocity depending on the air–water densities ratio s and
friction velocity u* (U1 = u*/κ)

I cð Þ ¼ c0
s
2
β

U1

c0

� �2
; ð39Þ

with c0 the wave phase velocity. Using Eq. (31) we have

c0
s
2
β

U1

c0

� �2
¼ γ

k
¼ gγ̂

kU1
; ð40Þ

then, dividing by U1 we get the following dimensionless relation

θ2dwγ̂ ¼ s
2
β

1
θfd

ð41Þ

that gives the transformation rule between the Miles' parameter β
and dimensionless growth rate γ̂

β ¼ 2γ̂
s

θ3dwT
1=2

: ð42Þ

This is a straightforward definition of Miles' β in finite depth.
4.2. The γ̂ and β curves

In contrast to the usual analysis of wind-wave growth, our results
concern the dimensionless growth rate γ̂ instead of the β-Miles param-
eter. The existence of a finite depth h transforms the unique curve of
wave growth rate in deep water into a family of curves, a curve corre-
sponding to a fixed value of δ = gh/U1

2. In Fig. 1 is shown a family of
six values of γ̂ as a function of θfd, for fixed values of the parameter δ.
The curve corresponding to δ → ∞ is plotted as well.

• Fig. 1 shows that at small θfd the growth rates γ̂ become equal for all
the values of δ, the limit corresponds to the deep water case. Note
that small finite values of θfd defines young surface waves. This
stage represents the initial growth of the wave field of a calm
lake, for instance.

• When time increases, the surface waves reach moderate values of
θfd that correspond to mild or moderate wave ages. As θfd increases,
finite-depth effects start to occur. The growth rate becomes lower
than in deep water. For a given value of θfd, the dimensionless
growth rate γ̂ increases as δ increases.

• Old waves are found for large values of θfd and correspond to small
γ̂ values.

As γ̂ goes to zero, each δ-curve approaches a (idealized) theoretical
θfd-limited growth. At this stage the wave reaches a final state of linear
progressive wave with no growth. In others words waves with ages
older than a critical wave age (corresponding to γ̂→0) are no more
amplified.

The β parameter evolution as a function of θfd is shown in Fig. 2,
displaying the correct deep water trend, and the new finite depth
limits. The effect of depth is critical. β shows little variation for small
values of θfd, as usual, but it goes dramatically to zero when θfd is in-
creased. From a physical point of view Fig. 1 (or Fig. 2) is a snapshot of
the theoretical dynamical development of a wave which is growing
both in amplitude and wave age.

5. Theoretical laws and qualitative comparisons with
field experiments

This section is aimed at showing that our analytical and numerical
results are able to qualitatively reproduce some experimental results.
It is important to have in mind two facts: firstly, we are studying
linear growth of a normal Fourier mode and not the growth of a
wave train as the infinite superposition of wave Fourier modes, and
secondly, the only physical active process we have considered is the
atmospheric input.

5.1. Theoretical equivalents of experimental parameters

Results infield or laboratory experiments are commonly given using
the parameter Cp, the observed phase speed at the peak frequency ωp.
Consequently, qualitative comparison with field observations can only
be done using the phase velocity c or frequency ω of one mode instead
of Cp or ωp.

First of all we are going to show that the theoretical curves for γ̂
are, mutatis mutandi, in good qualitative agreement with the empirical
curves of the dimensionless fractional wave energy increase per radian
Γ̂ as a function of the inversewave ageU10/Cp, given in Young (1997). In
this paper, experimental field data for Γ̂ in the finite depth Lake George
are adequately represented by the empirical relationship (Eq. (6) in
reference above)

Γ̂ ¼ Cg

ωp

1
E
∂E
∂x ¼ A

U10

Cp
−0;83

 !
tanh0;45 U10

Cp
−1;25

δ0;45Y

 !
; ð43Þ



Fig. 1. Evolution of the growth rate in semi-logarithmic scale. Every curve but the rightmost one corresponds to finite depth. From left to right, they match δ = 1,4,9,25,49,81. We
can observe that for each depth, there is a θfd-limited wave growth. The deep water limit, also computed, is corresponds to small θfd and matches Miles' results.
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with A constant, δY = gh/U10
2 the non-dimensional water depth, U10

the wind velocity at 10 m, and Cg and Cp the group and phase speeds
of the components at the spectral peak frequency ωp.

To make a qualitative comparison between Γ̂ curves as functions
of the inverse wave-age U10/Cp and theoretical γ̂ curves as functions
of 1/θfd we need to write the empirical Γ̂ in terms of theoretical quan-
tities. Hence, the following changes are necessary:

measured Cg ;Cp;ωp→ theoretical cg ; c;ω; ð44Þ

U10C
1=2
10

κ
¼ u�=κ ¼ U1; ð45Þ

with C10 the 10 m drag coefficient (Wu, 1982). Thus, noting that the
energy growth rate is two times the amplitude growth rate, that is

Γ ¼ 2γ;
Fig. 2. Evolution of Miles' coefficient β for several values of the depth. Each curve is plotted w
value of δ correspond to deep water.
and using 2cg = c(1 + 2kh/sinh(2kh)), Eqs. (44), (45),(33) and (35),
we obtain

Γ̂ ¼ θdw
T1=2 γ̂ 1þ 2δ

θ2dw sinh 2δ
θ2dw

� �
24 35: ð46Þ

This expression gives the theoretical equivalent of the empirical Γ̂
as a function of θdw, δ and γ̂ . The values of γ̂ as a function of 1/θfd for
fixed values of δ are numerically computed from Eqs. (33), (34) and
(37). Steps (44) and (45) transform δY and Cp/U10 into δ and θfd
according to

δY ¼ δ
C10

κ2 ; ð47Þ
ith the same Charnock constant αc ≈ 0.018. The finite-depth effect is critical, and high

,DanaInfo=ac.els-cdn.com+image of Fig.�2


Fig. 3. Growth rate Γ̂ as a function of inverse wave age 1/θfd for several values of the
parameter δ. White squares correspond to Lake George experiment data, black squares
correspond to the empirical relationship (Eq. (6)) found by Young (1997). Present
results correspond to symbols +, × and *. (a): the dataset covers a range of wind
speed corresponding to δY = 0.1 − 0.2, or, using Eq. (47) δ = 13.17 − 26.35, and an
average value b δ > = (13.17 + 26.35)/2 is used. (b): same as (a) with δY = 0.2 − 0.3.
(c): same as (a) with δY = 0.3 − 0.4. (d): same as (a) with δY = 0.4 − 0.5.
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Cp

U10
¼ θfd

C2
10

κ
: ð48Þ

In Young (1997) the curves of Γ̂Y versus U10/Cp have been
presented for the δY-ranges, δY ∈ [0.1 − 0.2],[0.2 − 0.3],[0.3 − 0.4],
[0.4 − 0.5], rather than for a single value of δY. The intervals were
determined from the variations inU10, the depth h being nearly constant,
close to 2 m. Consequently we substitute the δY-ranges with δ-ranges
using Eq. (47) and we compute the mean value b δ >. For example
in Fig. 3(a), δY ∈ [0,1 − 0,2] is transformed into δ = [13,17 − 26,35]
with b δ > = 19,76. Fig. 3(a), (b), (c) and (d) shows a fair agreement
between the model and the experimental data and plots of empirical
laws for Lake George. The agreement improves as 1

θfd
increases.

In Fig. 4 plotted, against δ, are the critical values of the parameter
θfdc for which the growth rate γ goes to zero. They obey the relation

θcfd ¼ δ0:5: ð49Þ

The above relation, found numerically, is coherent with the param-
eter formulation Eq. (33). It is indeed a limiting value for θfd uniquely
determined by thewater depth. Young (1997) found empirically a rela-
tionship (Eq. (6)) showing the existence of a limit to growth when the
inverse wave age satisfies the following expression

Cp

U10
¼ 0:8

gh
U2

10

 !0:45

: ð50Þ

This relationship corresponds to growth rate Γ̂ going to zero. Using
a C10 drag coefficient parameterization such as (Wu, 1982)

C10 ¼ 0:065U10 þ 0:8ð Þ10−3
; ð51Þ

and taking an average U10 = 7m/s in Young (1997), one finds the U1

to U10 relationship

U10≈28;3u�≈11;6U1; ð52Þ

So, this depth limited state reads

Cp

U1
¼ 1;01δ0;45: ð53Þ

A result in excellent agreement with the theoretical value Eq. (49).
With θfdc we can calculate the corresponding critical wave length λc.
Substituting Eq. (49) into Eq. (33) we obtain

δ
θ2dw

¼ tanh
δ

θ2dw

 !
: ð54Þ

Eq. (54) means that the wave is meeting a shallow water zone.
In such a limit, the range of δ/θdw2 is: 0bδ=θ2dwb

π
4
(Fenton (1979),

Francius and Kharif (2006)). As a result we get λc = 8 h. For values
of λ such that λ > λc the phase velocity is in the long wave limit
i.e., c ¼

ffiffiffiffiffiffi
gh

p
. Consequently, if λ > λc the wave feels the bottom, the

amplitude does not grow anymore, the wind-wave resonance mecha-
nism ceases, and the wave reaches its utmost state as a progressive
plane wave.

Finally in Fig. 4 are also plotted data of Donelan et al. (2006), from
the Australian ShallowWater Experiment. A fit is also plotted to show
the trend. The raw data consists in the water depth h in meters, the
friction velocity u*, the wind velocity U10 and the ratio U10/Cp where
cp is the measured phase velocity. For example, u* = 0.44 m s−1 and
h = 0.32 m give δ = 2.7 and θfd = 1.55, which satisfy Eq. (49) with
small error. All the points (δ,θfd) are close to the theoretical limit.

,DanaInfo=ac.els-cdn.com+image of Fig.�3


Fig. 4. Parameter curves corresponding to zero growth rate. The theoretical limit is
given by Eq. (49). The AUSWEX data are experimental results from Donelan et al.
(2006) (the sea state is fairly close to the finite depth full development).
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5.2. The wave dissipation influence

This section aims at answering the question: why do the Γ̂ curves
seem to be consistent with the empirical fits of Young (1997), even
though bottom friction dissipation (Sbf) and white-cap dissipation
(Sds) are disregarded?

It is currently admitted that the bottom friction Sbf plays a relatively
minor role in depth limited growth studies, even though being an
important dissipative factor for swell propagating in shallow water
(see Young and Babanin, 2006b for more information). Consequently,
we do not consider bottom friction in the following analysis. The
white-capping dissipation is an important dissipative mechanism since
in finite depth conditions, wind waves show significant wave breaking
events. Hence, dissipation due to wave breaking Sds is considered to
be the dominant dissipative term in finite depth, compared to the deep
water case (Young and Babanin, 2006b; Young and Verhagen, 1996a).
Now, what can we observe in plots 3(a), 3(b), 3(c) and 3(d)?

• For a constant δ, let us consider δ
θ2dw

¼ kh→0. This implies that
1
θfd

→ 1ffiffiffi
δ

p , where the wave has reached the point of full development

in finite depth. Near this point, we see in Fig. 3(a), (b), (c) and (d)
that the b δ >-curves Γ̂ are above the experimental curves Γ̂Y due to
Young (in black squares). This is in line with Fig. 7.1.c in Young
(1999), where we see that white-capping dissipation term reaches
a maximum damping intensity for kh small, for any peak frequency
fp. Hence, our model overestimates the growth rate value near this
point.

• If we consider now, for δ constant, δ
θ2dw

¼ kh→∞, the waves are in deep

water and θfd ∼ θdw → 0. In this case, the curves are merged: Γ̂e Γ̂Y .
This agrees with Fig. 7.1.c in Young (1999), where Sds reaches a
minimum for deep water at the peak frequency.

• For intermediate regimes, the experimental and theoretical curves
are of similar shapes, but Γ̂−Γ̂Y ¼ �> 0. The gap size is inversely pro-
portional to the b δ > value. It can be seen in our plots, as in Fig. 3(a)
the gap size is much greater than in and panel (d), where the mean
value b δ > is higher.

From this, we can conclude that disregarding white-capping dissi-
pation in our model led us to an overestimation of the growth rate, in
fair agreement with Young (1999). This approach, although qualita-
tive, gives encouraging results: our model appears to be compatible
with existing theories of white-cap damping.

6. Conclusion

In this paper our aim is exclusively focused on the derivation of
a Miles' theory for waves propagating on finite depth h. There are
many other parameters that influence the growth of wind-waves in
finite depth. For example, wind speed and wind direction variations
with time, geometry and bathymetry of the lake, surface drift in-
duced by the air flow, boundary layer turbulence, nonlinear waves
interactions, and so on. Taken these into account, all these phenom-
ena represent a work that cannot be handled analytically, even
numerically.

Although our study is highly idealized, we believe that it may pro-
vide a valuable insight about the effect of depth on the mechanism of
water wave amplification by wind and be useful in theoretical fore-
cast of wind-wave growth rates in finite depth.
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Appendix A. Rayleigh equation

We recall the Rayleigh equation

U−cð Þ W″
a−k2Wa

� �
−U″Wa ¼ 0 ∀z 5 z0 b zbþ ∞ ðA:1Þ

which is singular in zc > z0 > 0, where U(zc) = c. This equation
underlies one of the most essential mechanism of flow stability.
This equation is singular only at zeroth order in s, where c = c0 + sc1,
which is real. The value of c1, hopefully complex, is then found with
the dispersion relation (28). Nevertheless, this is computational, and
does not change the fact that we search a complex c eigenvalue in
Eq. (A.1). We have to prescribe a flow U(z) allowing instability, or
more precisely, not forbidding it. Rayleigh's inflection point theorem,
and subsequent Fjortoft theorem states that U(z) is bound to have one
inflection point to, at least, not forbid instability (Fjortoft, 1950). Usually,
for this theorem, the domain ofWa is [0, + ∞], and the boundary condi-
tions are the vanishing at each bound. But our lower bound is z0, which
is nonzero, and we have a forcing of Wa in z0. Taking this into account,
we derive the following constraint

I cð Þ∫þ∞
z0

U″

jU−cj2 jWaj2dz ¼ −I lim
z→z0

W�
aW ′

a

� �
: ðA:2Þ

where we see that if z0 → 0 and Wa vanishes smoothly at the bound-
aries, considering that U″(z) is monotonous, indeed the r.h.s vanishes
and I cð Þ must be zero. Here, it can be nonzero. So, the condition found
allows an exponential growth of the free surface η(x,t), like amechanical
oscillating system forced into one of its normal modes (Conte andMiles,
1959). We use now a semi-numerical recipe to solve Eq. (A.1) for Wa

following the method introduced by Beji and Nadaoka.We first develop
Eq. (A.1) in the zc-neighborhood, assuming

U zð Þ≈U′ zcð Þ z−zcð Þ þ c; U″ zð Þ≈U″ zcð Þ;

k
U′ zcð Þ
U″ zcð Þ

 !2

→0:
ðA:3Þ

These are fairly true in the logarithmic wind profile case. After some
algebra, these assumptions transform Eq. (A.1) in a Bessel equation of
order one, whose solutions are known to be a linear combination of
the two first-order Bessel functions. So, with the weighted-centered,
dimensionless variable zp ¼ −U″ zcð Þ z−zcð Þ

U′ zcð Þ ¼ z
zc
−1 we find

Wa zp
� �

¼ ffiffiffiffiffi
zp

p
C1J1 2

ffiffiffiffiffi
zp

p� �
þ C2Y1 2

ffiffiffiffiffi
zp

p� �� �
ðA:4Þ
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where C1 and C2 are complex constants. Here, the function Wa is
zp-dependent. The numerical solution that we seek can be written as

Wa ¼ C1W1 þ C2W2; ðA:5Þ

where W1 and W2 are unknown and independent. W1 (resp. W2) is
found by integrating (A.1) with J1 (resp. Y1) for initial function value
and slope value at zc. The first step is to avoid the numerical singularity.
We achieve this task by introducing a small parameter ε. We choose the
two initial points to be zc

± = (1 ± ε)zc, and evaluate the Bessel func-
tions in these points. As we notice, the function zp

1/2Y1(2zp1/2) becomes
complex, with a negative imaginary part, when z b zc. Its derivative
becomes complex, with a positive imaginary part.

We have to take the complex-conjugates of the initial value and
initial slope value of these functions to get a positive growth rate1

(Drazin and Reid, 1982). Therefore, after integration, we get W1 and
W2. But this does not take into account integration constants. These
are set using the boundary conditions of surface forcing and vanishing
at infinity. So, using Eq. (A.5) into Eqs. (20) and (21), we obtain a sim-
ple algebraic system which allows us to determine C1 and C2. The
“infinite” value, for computation, is the one from which the constants
are stable enough. The relative error on the constants is proportional
to the error on the growth rate. Here, a relative error of 10−5 is taken.
As a result, we obtain Wa zð Þ, and we can evaluate the integrals in
Eq. (37) for any values of the parameters. The results are shown in Fig. 1.
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