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1. Introduction 

The power spectral density of ocean elevation, as measured by conventional radar altimeters (PLRM), 

is known to exhibit a “bump” near 0.1 cpkm, strongly departing from the oceanic spectral slope 

observed a lower wavenumber.  Wave groups are suspected to contribute to this bump, essentially 

through modulation of the local surface height variance (or SWH). This hypothesis is supported by the 

fact that even baseline simulations of altimetric measurement, performed with homogeneous 

gaussian sea surfaces, exhibit similar spectral shape in the vicinity of the bump cutoff. In such 

simulations, only the variations of the waves envelope (responsible for wave groups) is intended to 

cover this frequency domain.       

 

 

Figure  1 Average power spectral densities of the surface height typically observed in various altimetry modes 

 

 



 

Figure  2 : view of the main ingredients of the considered model 

The effect considered hereafter is illustrated in Figure  1. The “local” SWH is modulated along the x 

axis. We suppose that the measured altimetric profile can be described as a weighted average of the 

profiles that would be obtained in narrow bands orthogonal to x, in which SWH can be considered 

constant. The steepness of the profiles varies along x following SWH variations, while the average 

epoch at mid-height decreases as x2, due to wave-front curvature. The SWH at the center and at the 

edges of the footprint dominate respectively the lower and upper sides of the profile slope. It can thus 

be expected that a harmonic variation of the SWH result in an asymmetric ascending front, possibly 

affecting the epoch. Furthermore, the maximum asymmetry should be obtained when the wavelength 

of the SWH modulation is comparable to the horizontal length encompassed by the ascending front, 

thus: 

λ𝑆𝑊𝐻 ∼ √2𝑍𝑠𝑎𝑡𝑆𝑊𝐻 

(0) 

Where λ𝑆𝑊𝐻 is the wavelength of the SWH modulation and 𝑍𝑠𝑎𝑡 the satellite altitude. For  𝑍𝑠𝑎𝑡 =

800 𝑘𝑚, and 𝑆𝑊𝐻 = 1 − 4 𝑚, this very crude estimate gives a “resonant” frequency in the range 

0.2 − 0.4 𝑐𝑝𝑘𝑚, which is not incompatible with the location of the spectral bump. This is a first clue in 

favor to the considered hypothesis, provided SWH modulations do exist in this wavenumber interval. 

As we shall see, wave groups provide such modulation, up to even higher wavenumbers.  

In the following, a simple semi-analytic model is derived in an attempt to get a more quantitative view 

of the shape and magnitude of the expected spectral bump. It is then compared to spectra obtained 

through numerical simulation.   

We propose hereafter a simple model, designed as the “minimum model” necessary to implement the 

view drawn in Figure  2. The proposed approach consists in establishing Modulation Transfer Functions 

relating the variance of the SWH to the resulting variance of estimated SSH and SWH. The variations 

of SWH are then related to the surface envelope, whose bidirectional spectrum is estimated 

numerically for a gaussian swell spectrum. The products of this spectrum with the MTFs are integrated 

in azimuth, leading to the desired spectra, which are compared to those obtained from simulated 

altimetric data. Finally, the semi-analytic model is used to perform regressions over a large number of 

swell parameters, providing simple expressions for the magnitude and cutoff frequencies of the 

spectra of estimated SWH and SSH.     

2. Derivation of the modulation transfer functions 

The full altimetric profile is considered as the result of integrating the gaussian surface elevation 

distribution successively over the 𝑦 and 𝑥 directions: 
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It can be viewed as an average of local profiles 𝐴𝑃(𝑧, 𝑥) distributed along 𝑥, with 
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There is no analytic expression for this integral, but it is interesting to observe that it can be written: 
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The final altimetric profile the reads: 
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From those expressions, the function 𝐴𝑃0(𝜁) can be tabulated, and the shape of the altimetric profile  

𝐴𝑃(𝑧) can be computed, given 𝜎𝑧(𝑥). To numerically estimate the MTF, a harmonic variation is 

considered: 

𝜎𝑧(𝑥) = 𝜎𝑧̅̅̅ + ∆𝜎𝑧 cos(𝑘𝜎𝑧𝑥 + 𝜑𝜎𝑧)       

(8) 

The epoch 𝑧0 is simply defined as the middle point of the ascending front: 

𝐴𝑃(𝑧0̂) =
1

2
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(9) 

 

For each sampled wavenumber 𝑘𝜎𝑧, 𝑧0̂ is estimated for 𝜑𝜎𝑧 is sampled in [0,2𝜋], providing 

𝑧0̂ (𝑘𝜎𝑧 , 𝜑𝜎𝑧). The amplitude MTF is then computed as 
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The MTF then reads: 
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In case of a strictly linear response, the MTF should depend neither on 𝜎𝑧̅̅̅ nor on ∆𝜎𝑧. The second 

harmonic which can be estimated as 
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would also vanish.  

The following plot shows the function 𝐴𝑃0(𝜁) defined through equation (6).  



 

Figure  3 : tabulated function 𝐴𝑃0(𝜁) 

The following plot shows an altimetric profile computed according eq. (7) for an unperturbed SWH ( 

∆𝜎𝑧 = 0) (in black), and corresponding profiles for  
∆𝜎𝑧

𝜎𝑧̅̅ ̅
= 0.2, with 𝜑𝜎𝑧 = 0 and 𝜑𝜎𝑧 = 𝜋 (in red 

and blue). Correspondingly, the midpoint altitude is shifted around 0, with an amplitude of 

𝛿𝑧0.  

 

 

Figure  4 : altimetric profiles AP(z) for unperturbed SWH (black line) and modulated SWH with phase 𝜋 (in blue) and zero (in 
red). 



On Figure  5 is plotted the displacement of the midpoint  ∆𝑧0(𝑘𝜎𝑧 , 𝜑𝜎𝑧)/∆𝜎𝑧 as a function of the 

modulation wavenumber 𝑘𝜎𝑧/𝑘0 and phase 𝜑𝜎𝑧. The amplitude is found to exhibit a maximum 

at a wavenumber close to  

𝑘0 ≡ (
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From which we can define  

𝐾 ≡ 𝑘/𝑘0 = 𝑘 
2
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Figure  5 displacement of the midpoint  ∆𝑧0(𝑘𝜎𝑧 , 𝜑𝜎𝑧)/∆𝜎𝑧 as a function of the modulation wavenumber 𝑘𝜎𝑧/𝑘0 and phase 

𝜑𝜎𝑧  

The observed maximum is in qualitative accordance with the initially anticipated wavelength (eq. (0)). 

Local maxima are observed at 2𝑘0, 3𝑘0… The response in phase at 𝑘0 is fairly linear (thus 

harmonic), while it becomes highly nonlinear at higher frequencies. 

The amplitudes 𝐴𝑧0̂
 (𝜎𝑧̅̅̅, ∆𝜎𝑧 , 𝑘𝜎𝑧)  and 𝐴𝑧0̂

′ (𝜎𝑧̅̅̅, ∆𝜎𝑧 , 𝑘𝜎𝑧) obtained by Fourier-analyzing this 

function (eq. 10-12), with 𝜎𝑧̅̅̅ = 0.25 𝑚 and  ∆𝜎𝑧 = 0.01𝜎𝑧̅̅̅,  are plotted on Figure  6. The 

nonlinearity of the response, roughly given by |𝐴2/𝐴1|, becomes significant beyond the peak.  



 

Figure  6 : amplitudes 𝐴𝑧0̂
 (𝜎𝑧̅̅̅, ∆𝜎𝑧, 𝑘𝜎𝑧)  and 𝐴𝑧0̂

′ (𝜎𝑧̅̅̅, ∆𝜎𝑧, 𝑘𝜎𝑧), computed for ∆𝜎𝑧/𝜎𝑧̅̅̅ = 0.01 

 

Figure  7 : amplitudes 𝐴𝑧0̂
 (𝜎𝑧̅̅̅, ∆𝜎𝑧, 𝑘𝜎𝑧)  and 𝐴𝑧0̂

′ (𝜎𝑧̅̅̅, ∆𝜎𝑧, 𝑘𝜎𝑧), computed for 
∆𝜎𝑧

𝜎𝑧̅̅ ̅
= 0.01, 0.1 and 0.5 

 

    

Figure  7 presents the same data, plotted for three values of the modulation relative amplitude 

∆𝜎𝑧/𝜎𝑧̅̅̅ = 0.01, 0.1, 0.5, showing that a reasonably linear behaviour may be assumed from 

low frequencies to the main peak in the vicinity of 𝑘0. From now on, we will adopt the linear 

response approximation and consider the MTF as defined by eq. (11), and plotted on Figure  8. 

In this frame, the bidimensional spectra of the epoch 𝑆𝑧0̂(𝒌𝜎𝑧) and the waves enveloppe 𝑆𝜎𝑧(𝒌𝜎𝑧) 

relate through:  



𝑆𝑧0̂(𝒌𝜎𝑧) = 𝑆𝜎𝑧 (𝒌𝜎𝑧)𝑀𝑇𝐹𝑧0̂(𝐾𝜎𝑧) = 𝑆𝜎𝑧 (𝒌𝜎𝑧)𝑀𝑇𝐹𝑧0̂(‖𝒌𝜎𝑧‖/𝑘0) 

(15) 

 

 

Figure  8 𝑀𝑇𝐹𝑧0̂ (𝐾) and low frequency approximation   

 

As long as we refer to wave vectors, the power transfer function from 𝜎𝑧 to 𝑧0 doesn’t depend on the 

azimuth direction of the modulation (no selectivity in azimuth). However, when accounting for the 

satellite motion, modulation wavenumber 𝑘𝜎𝑧  is converted into time frequency, which can be in turn 

interpreted as an apparent wavenumber  𝑘′𝜎𝑧 : 

𝑘′𝜎𝑧 ≡ 𝑘𝜎𝑧𝑐𝑜𝑠(Φ𝜎𝑧)=
𝐾𝜎𝑧
𝑥𝑚𝑎𝑥

𝑐𝑜𝑠(Φ𝜎𝑧) 

(27) 

Where Φ𝜎𝑧 is the azimuth angle of the harmonic modulation of 𝜎𝑧 with respect to the satellite velocity 

vector.  The power density at (𝑘𝜎𝑧 , Φ𝜎𝑧) will thus contribute to the measured power density at 𝑘′𝜎𝑧 =

𝑘𝜎𝑧𝑐𝑜𝑠(Φ𝜎𝑧) . The 1D PSD in 𝑘′𝜎𝑧 results from an integration over the azimuth of the 2D PSD in 𝒌𝜎𝑧 : 

𝑆𝑧0̂(𝑘′𝜎𝑧)𝑑𝑘′𝜎𝑧 = ∫ 𝑆𝑧0̂(𝒌𝜎𝑧)𝑘𝜎𝑧𝑑𝑘𝜎𝑧𝑑Φ𝜎𝑧
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(28) 

Given the relation between 𝑘′𝜎𝑧  and 𝑘𝜎𝑧: 
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(29) 

Or, introducing 𝑆𝜎𝑧(𝒌𝜎𝑧), 
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(30) 

 

This expression allows estimating numerically the epoch spectrum from the MTF, if we have a 

knowledge of the bidimensional envelope spectrum.  

Figure  9 provides a visual interpretation of eq. (30). It shows the circularly-symmetric 𝑀𝑇𝐹𝑧0̂  in the 

bidimensional (𝑘𝑥, 𝑘𝑦) space. From eq. (30), 𝑆𝑧0̂(𝑘′𝜎𝑧)  is obtained by integrating the product 

𝑆𝜎𝑧𝑀𝑇𝐹𝑧0̂  along 𝑘𝑦 (red curves). Considering 𝑆𝜎𝑧 as constant for simplicity, the integral is 

performed on slices of 𝑀𝑇𝐹𝑧0̂, the shape of the integrand can be assimilated to that of the 

MTF slice. This explains the low-frequency plateau, the weak maximum and the subsequent 

fall-off.  

 

Figure  9 : circularly-symmetric 𝑀𝑇𝐹𝑧0̂ in the bidimensional (𝑘𝑥 , 𝑘𝑦) space 

Before going into numerical study, it is instructive to illustrate the overall behaviour of 𝑆𝑧0(𝑘′𝜎𝑧) by 

considering a very crude approximation to he FTM, illustrated on Figure  8: 

𝑀𝑇𝐹𝑧0̂(𝐾) ∼ 𝑎𝐾
4 for  𝐾 < 1  

(31) 

We consider a constant envelope spectrum over the wavenumber domain in which the FTM is non-

zero: 

𝑆𝜎𝑧(𝑘𝜎𝑧 , Φ𝜎𝑧) ≡ 𝑆𝜎𝑧 

(32) 

 

Eq. (30) thus becomes: 

𝑆𝑧0̂(𝑘′𝜎𝑧) = 2𝑎𝑆𝜎𝑧
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𝑐𝑜𝑠−6Φ𝜎𝑧 can be integrated analytically, leading to: 

𝑆𝑧0̂(𝑘
′
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(34) 

With 𝐾 ≡ 𝑘′𝜎𝑧/𝑘0 

The function setting the spectral dependance in 𝐾 is plotted on Figure  10, showing how integrating 

over the azimuth shifts and smears the MTF peak. The main point is that this spectral shape is 

essentially a plateau from low frequencies to   0.82𝑘0, varying only from 1 to 1.78 on this frequency 

range.  

 

 

Figure  10: shape of the K dependency in eq. (34)  

 

The zero-frequency limit, which also gives the overall level of the spectrum, simply reads: 

𝑆𝑧0̂(𝑘
′
𝜎𝑧 → 0) =

𝜋
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Comparison with numerical integration with the exact MTF suggests 𝑎 = 2/3 : 
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So that a better approximate tot the PSD at low frequency is: 

𝑆𝑧0̂(𝑘
′
𝜎𝑧) ≈

2𝜋
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(36) 

Figure  11 show how it compares with the numerical integration of eq. (30), when taking 𝑆𝜎𝑧 = 1, for 

𝜎𝑧̅̅̅ = 0.25 𝑚 and 2.5 𝑚 . The zero-frequency asymptote closely follows eq. (36), while the peak at ∼

0.8 𝑘0  is even smaller, at about 1.4 times the zero-frequency limit. This spectral shape describes a 

plateau much more than a bump. 

 

Figure  11: shape of 𝑆𝑧0̂(𝑘
′
𝜎𝑧) in case of unit modulating spectrum 𝑆𝜎𝑧 = 1 for two values of the surface elevation std and 

corresponding approximation from eq. (34) 

 

All this development may be repeated for the estimated height standard deviation 𝜎�̂�, the 

corresponding MTF being defined through:  

𝐴𝜎�̂�
 (𝜎𝑧̅̅̅, ∆𝜎𝑧 , 𝑘𝜎𝑧) =

1
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𝑀𝑇𝐹𝜎�̂�(𝜎𝑧̅̅̅, ∆𝜎𝑧 , 𝑘𝜎𝑧) =
1

2
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(37) 

To numerically compute 𝑀𝑇𝐹𝜎�̂� , we estimate the fluctuations of 𝜎�̂� from the gradient of the 

altimetric profile at its midpoint:  



𝜎�̂� ≡ 𝜎𝑧̅̅̅
〈𝜕𝑧𝐴𝑃〉

𝜕𝑧𝐴𝑃
|
𝑧0̂

 

(38) 

Where 𝜕𝑧𝐴𝑃 is the profile gradient and 〈𝜕𝑧𝐴𝑃〉 its average over 𝜑𝜎𝑧. 

The numerically estimated amplitudes 𝐴𝜎�̂�
  and 𝐴𝜎�̂�

′   are plotted on Figure  12. As expected,  𝐴𝜎�̂�
  

is close to unity as long as the frequency is much smaller than 𝑘0. It then exhibits only a very 

weak bump before a steep fall around  𝑘0, followed by damped oscillations.   

 

 

Figure  12: amplitude MTF 𝑀𝑇𝐹𝜎�̂�(𝐾)  for the measured surface elevation std 𝜎�̂�  

As previously, the along-track 𝜎�̂� spectrum 𝑆𝜎�̂�(𝑘′𝜎𝑧) is obtain by integrating on the modulation 

azimuth:  

𝑆𝜎�̂�(𝑘′𝜎𝑧) = 𝑘′𝜎𝑧∫
1

𝑐𝑜𝑠2Φ𝜎𝑧
𝑆𝜎𝑧 (

𝑘′𝜎𝑧
𝑐𝑜𝑠Φ𝜎𝑧

, Φ𝜎𝑧)𝑀𝑇𝐹𝜎�̂� (
𝑘′𝜎𝑧

𝑘0𝑐𝑜𝑠Φ𝜎𝑧
)𝑑Φ𝜎𝑧

𝜋
2

−
𝜋
2

 

(39) 

 



 

Figure  13 : circularly-symmetric 𝑀𝑇𝐹𝜎�̂� in the bidimensional (𝑘𝑥 , 𝑘𝑦) space 

Under the following approximation: 

𝑀𝑇𝐹𝜎�̂�(𝐾) ≡ 1 , 𝐾 < 1 

𝑀𝑇𝐹𝜎�̂�(𝐾) ≡ 0 , 𝐾 ≥ 1 

(40) 

 

Eq. (39) gives: 

 

𝑆𝜎�̂�(𝑘
′
𝜎𝑧) ≈ 2𝑆𝜎𝑧𝑘0√1− 𝐾

2 

=
𝜋𝑆𝜎𝑧

√𝜎𝑧̅̅̅𝑍𝑠𝑎𝑡  
 √1 − 𝐾2 

(41) 

As previously, a better simplified expression is obtained through numerical integration: 

𝑆𝜎�̂�(𝑘
′
𝜎𝑧) ≈

4𝜋

7

𝑆𝜎𝑧

√𝜎𝑧̅̅̅𝑍𝑠𝑎𝑡  
 √1 − 𝐾2 

(42) 

 

Even in this simplified form, 𝑆𝜎�̂�(𝑘
′
𝜎𝑧) presents no bump, contrary to 𝑆𝑧0̂(𝑘

′
𝜎𝑧) (eq. (36)). Moreover, 

at low frequency: 

𝑆𝜎�̂�
𝑆𝑧0̂

(𝑘′𝜎𝑧 → 0) ≈
30

7
 



On Figure  14 are plotted 𝑆𝜎�̂�(𝑘
′
𝜎𝑧) and 𝑆𝑧0̂(𝑘

′
𝜎𝑧) with corresponding approximations (from eq. (36) 

and (41)), for 𝑆𝜎𝑧 = 1, 𝜎𝑧̅̅̅ = 1.25𝑚, 𝑍𝑠𝑎𝑡 = 800 𝑘𝑚.  

 

Figure  14: shape of 𝑆𝜎�̂�(𝑘
′
𝜎𝑧) and 𝑆𝑧0̂(𝑘

′
𝜎𝑧) and in case of unit modulating spectrum 𝑆𝜎𝑧 = 1 and corresponding 

approximation from eq. (42) 

 

3. SWH-SSH cross spectrum and coherence 

In the previous, considered variations of estimated SHH entirely result from SWH variations. In real 

data, however, this effect superimposes over other variations patterns, which are not - or not directly 

- related to SWH. The cross spectrum of estimated SWH and SSH could thus help identifying the part 

of SSH fluctuations that may be related to SWH ones, in order to validate the present work, and to 

reduce the contribution of SWH in SSH spectra.     

The cross spectrum 𝑆𝑧0̂𝜎�̂�(𝑘
′
𝜎𝑧) may be derived from re-writing eq. (29) in terms of complex 

amplitudes: 

𝐴𝑧0̂(𝑘′𝜎𝑧) = √𝑘′𝜎𝑧∫
1

𝑐𝑜𝑠Φ𝜎𝑧
𝑆𝜎𝑧
1/2
(Φ𝜎𝑧)𝒩(Φ𝜎𝑧)𝐴𝑧0̂

 
(Φ𝜎𝑧)𝑑Φ𝜎𝑧

𝜋
2

−
𝜋
2

 

(43) 

Where the dependencies in 𝑘′𝜎𝑧 have been dropped in the integrand for simplicity. 𝒩(Φ𝜎𝑧) is a 

circularly-symmetric complex normal distribution. As the corresponding expression can also be written 

for 𝐴𝜎�̂�(𝑘′𝜎𝑧), the cross-spectrum reads: 

𝑆𝑧0̂𝜎�̂�(𝑘
′
𝜎𝑧) =

1

2
〈𝐴𝑧0̂(𝑘′𝜎𝑧) 𝐴𝜎�̂�

∗ (𝑘′𝜎𝑧)〉 



=
1

2
〈𝑘′𝜎𝑧∬

1

𝑐𝑜𝑠Φ𝑧0̂cosΦ𝜎�̂�
𝒩(Φ𝑧0̂)𝒩

∗(Φ𝜎�̂�)𝑆𝜎𝑧

1
2 (Φ𝑧0̂)𝑆𝜎𝑧

1
2 (Φ𝜎�̂�)𝐴𝑧0̂

 
(Φ𝑧0̂)𝐴𝜎�̂�

 
(Φ𝜎�̂�)𝑑Φ𝑧0̂𝑑Φ𝜎𝑧〉 

=
1

2
𝑘′𝜎𝑧∬

1

𝑐𝑜𝑠Φ𝑧0̂cosΦ𝜎�̂�
〈𝒩(Φ𝑧0̂)𝒩

∗(Φ𝜎�̂�)〉𝑆𝜎𝑧

1
2 (Φ𝑧0̂)𝑆𝜎𝑧

1
2 (Φ𝜎�̂�)𝐴𝑧0̂

 
(Φ𝑧0̂)𝐴𝜎�̂�

 
(Φ𝜎�̂�)𝑑Φ𝑧0̂𝑑Φ𝜎𝑧 

Assuming that 〈𝒩(Φ𝑧0̂)𝒩(Φ𝜎�̂�)〉 = 𝛿Φ𝑧0̂
,Φ𝜎�̂�

, the cross-spectrum finally writes, consistently with the 

self-spectra: 

𝑆𝑧0̂𝜎�̂�(𝑘
′
𝜎𝑧) =

1

2
𝑘′𝜎𝑧∫

1

𝑐𝑜𝑠2Φ𝜎𝑧
𝑆𝜎𝑧 (

𝑘′𝜎𝑧
𝑐𝑜𝑠Φ𝜎𝑧

, Φ𝜎𝑧)𝐴𝑧0̂
 𝐴𝜎�̂�

 
(

𝑘′𝜎𝑧
𝑘0𝑐𝑜𝑠Φ𝜎𝑧

)𝑑Φ𝜎𝑧

𝜋
2

−
𝜋
2

 

(44) 

Following approximations given by eq. (31) and (40),    

1

2
𝐴𝑧0̂
 𝐴𝜎�̂�

 ∼ √𝑎𝐾
2,     𝐾 < 1 

(45) 

Which leads to 

   

𝑆𝑧0̂𝜎�̂�(𝑘
′
𝜎𝑧) = 2𝑎

1/2𝑆𝜎𝑧
𝑘′𝜎𝑧

3

𝑘0
2 ∫ 𝑐𝑜𝑠−4Φ𝜎𝑧𝑑Φ𝜎𝑧

𝑎𝑐𝑜𝑠(
𝑘′𝜎𝑧
𝑘0

)

0

 

And 

𝑆𝑧0̂𝜎�̂�(𝑘
′
𝜎𝑧) =

2

3
𝑎
1
2𝑆𝜎𝑧𝑘0(2𝐾

2 + 1)√1 − 𝐾2 

(46) 

 

Even more interesting than the cross-spectrum is the magnitude-squared coherence (called simply 

“coherence” hereafter):  

𝐶𝑧0̂𝜎�̂�(𝑘
′
𝜎𝑧) ≡

|𝑆𝑧0̂𝜎�̂�(𝑘
′
𝜎𝑧)|

2

𝑆𝑧0̂𝑆𝜎�̂�
 

 

𝐶𝑧0̂𝜎�̂�(𝑘
′
𝜎𝑧) =

(∫ 𝑆𝜎𝑧𝑐𝑜𝑠
−2Φ𝜎𝑧𝐴𝑧0̂

 𝐴𝜎�̂�
 𝑑Φ𝜎𝑧

𝜋
2

−
𝜋
2

)

2

(∫ 𝑆𝜎𝑧𝑐𝑜𝑠
−2Φ𝜎𝑧𝐴𝑧0̂

2 𝑑Φ𝜎𝑧

𝜋
2

−
𝜋
2

)(∫ 𝑆𝜎𝑧𝑐𝑜𝑠
−2Φ𝜎𝑧𝐴𝜎�̂�

2 𝑑Φ𝜎𝑧

𝜋
2

−
𝜋
2

)

 

(47) 

This latter expression (in which dependencies in in 𝑘′𝜎𝑧  and Φ𝜎𝑧 are omitted) accounts for the fact 

that, in the present case,  𝐴𝑧0̂
 

 and 𝐴𝜎�̂�
 

 are real-valued. It shows that, were 𝐴𝑧0̂
 /𝐴𝜎�̂�

  independent of 

the frequency, then coherence would equal unity. But, as we previously saw, 𝐴𝑧0̂
  and 𝐴𝜎�̂�

  have 



different frequency behaviors, hence 𝐶𝑧0̂𝜎�̂�(𝑘
′
𝜎𝑧) < 1, even with no external contributions (other 

sources of fluctuations or noise). 

Using the previously derived approximations (eq. (34), (41) and (46)), the behaviour of 𝐶𝑧0̂𝜎�̂�(𝑘
′
𝜎𝑧) 

for 𝑘′𝜎𝑧 < 𝑘0 qualitatively follows that of: 

𝐶𝑧0̂𝜎�̂� (𝐾 =
𝑘′𝜎𝑧
𝑘0

) ∼
15

9

(2𝐾2 + 1)2

3 + 4𝐾2 + 8𝐾4
 

(48) 

According this simple expression, the coherence reaches a maximum at 𝐶𝑧0̂𝜎�̂�(𝐾′ = 1) = 1. This 

results from the approximation we made that if 𝐾′ > 1,  𝐴𝑧0̂
 = 0 and  𝐴𝜎�̂�

 = 0. It follows that if 

𝐾′ = 1, 𝐴𝑧0̂
 (𝐾′/𝑐𝑜𝑠Φ𝜎𝑧) =  δΦ𝜎𝑧𝐴𝑧0̂

 (K′ = 1). Integrals in (47) then reduce to sampling at 𝐾′ = 1, 

leading to 𝐶𝑧0̂𝜎�̂�(𝐾′ = 1) = 1 . At low frequency, 𝐶𝑧0̂𝜎�̂�(𝐾
′ = 0) =

5

9
= 0.56 . The figure bellow 

Shows the approximation given by eq. (48) and the coherence curves obtained by numerical 

computation of eq. (47) (“full MTF”) and from simulated altimetric data (for sea state 1, see 

hereafter).   

 

Figure  15 

Similar shapes are obtained, even if the maxima exact location and magnitude vary.  

Figure  16 shows both MTFs to help understand the overall spectral shape of the coherence, which is 

tightly related to the correlation between the MTF cuts along 𝑘𝑦 via the integral 

(∫ 𝑆𝜎𝑧𝑐𝑜𝑠
−2Φ𝜎𝑧𝐴𝑧0̂

 𝐴𝜎�̂�
 𝑑Φ𝜎𝑧

𝜋

2

−
𝜋

2

)
2

. In the vicinity of the bump (𝐾𝑥 ≳ 1), both MTFs slices present a 

main lobe centered on 𝑘𝑦 = 0, hence a significant correlation. At lower frequencies,  𝑀𝑇𝐹𝜎�̂� has the 

shape of a top-hat centered at 𝑘𝑦 = 0 while 𝑀𝑇𝐹𝑧0̂  exhibit two symmetric peaks. They are thus very 

different, leading to lower correlation.   



 

Figure  16 : comparing the MTFs in the bidirectional space helps understanding the overall shape of the coherence spectrum. 

 

 

4. Wave groups and the envelope spectrum 

Up to now, we have been concentrating on the power transfer function between possible SWH 

modulation and subsequent modulation of the measured epoch and SWH. The origin of the 

modulation, and thus the value of 𝑆𝜎𝑧, has been left apart.  

Wave groups are a good candidate, for they are widespread and cover a wide spatial frequency range, 

from 𝑘𝜎𝑧 = 0 to  ∼ 𝐹𝑊𝐻𝑀𝑘𝑤 , where 𝐹𝑊𝐻𝑀𝑘𝑤is a measurement of the width of the swell spectrum. 

In most conditions,  𝐹𝑊𝐻𝑀𝑘𝑤  should be larger the frequency cut in the power transfer function 

studied previously, so that the bump fall would be essentially given by  𝐾𝑚/𝑥𝑚𝑎𝑥, which is only 

moderately sensitive to the SWH. Furthermore, the “wave group spectrum” is fairly isotropic in 

azimuth, whatever the dominant direction of the swell. The shape of the bump can thus be expected 

to be essentially insensitive to the swell direction. For those reasons, wave groups could explain why 

the spectral bump is so widely present in altimetric data.  

The bidirectional spectrum of the standard deviation 𝑆𝜎𝑧(𝒌𝝈𝒛) is considered as proportionnal to he 

surface envelope spectrum, wihch has been estimated numerically, from realisations oft he surface.  

The elevation std spectrum 𝑆𝜎𝑧(𝒌𝝈𝒛) is estimated numerically, for a given sea state defined through: 

• A gaussian swell spectrum with given 𝜎𝑘𝑥  and 𝜎𝑘𝑦 standard deviations and a significant wave 

hight 𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙 

• A wind-sea Elfouhaily spectrum with given 𝑈10 

From the resulting elevation spectrum, a number of realizations of the surface are generated (through 

inverse 2D Fourier transform) and their envelopes are derived. The bidirectional envelope spectrum is 

then estimated (through 2D Fourier transform and averaging over the realizations). The size and 

resolution of the computed surfaces are chosen to make the low-frequency asymptote accessible.  

   



 

Figure  17: typical cut in the surface elevation map, with upper and lower envelopes.  

The envelope 𝐸𝑛𝑣(𝑥, 𝑦) is computed as half the difference between the upper and lower envelopes, 

as plotted on Figure  17. It is assumed that the envelope is proportional to some “local“ surface height 

standard deviation 𝜎𝑧(𝑥, 𝑦) defined as: 

𝜎𝑧(𝑥, 𝑦) ≡ 𝐸𝑛𝑣(𝑥, 𝑦) 
𝜎𝑧

〈𝐸𝑛𝑣(𝑥, 𝑦)〉
 

(49) 

For the investigated gaussian spectra, 
𝜎𝑧

〈𝐸𝑛𝑣(𝑥,𝑦)〉
≃ 0.4 .    

For the following experiment, two sea states are considered, with the following swell parameters: 

Sea state S1: 𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙 = 2.5 𝑚,  𝜎𝑘𝑥 = 𝜎𝑘𝑦 = 0.006 𝑚
−1 

Sea state S2: 𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙 = 5 𝑚,  𝜎𝑘𝑥 = 𝜎𝑘𝑦 = 0.003 𝑚
−1 

In both cases, the swell central wavelength is 200 m, and 𝑈10 = 7 𝑚/𝑠. 

On Figure  18 are plotted the corresponding azimuth-averaged bidirectional spectra 𝑆𝜎𝑧(𝒌𝝈𝒛). 

 



 

Figure  18 : circularly averaged surface height std bidirectionnal spectrum 𝑆𝜎𝑧(𝒌𝝈𝒛) for two sea states S1 (in blue) and S2 (in 

red).  

The bump around 8 cpkm appears to be related to the wind sea, whose shorter waves are not correctly 

sampled in this spectrum estimate. To check and more precisely catch this behaviour, the spectrum is 

estimated at higher resolution, as plotted on Figure  19. While the spectrum for the wind sea alone (in 

dashed blue) has a gaussian-like shape, a marked bump is confirmed for the swell+wind sea state, even 

if it remains more than 4 orders of magnitude lower than the zero-frequency level. Due to this very 

low level and its frequency position far beyond the FTM cutoff, this wind-sea peak need not be 

accounted for.     

 

Figure  19 : 𝑆𝜎𝑧(𝒌𝝈𝒛) estimated for with various resolutions and sea states (see text) 

The numerically obtained bidirectionnal spectra   𝑆𝜎𝑧(𝒌𝝈𝒛) are used to estimate 𝑆𝑧0̂(𝑘′𝜎𝑧) and 

𝑆𝜎�̂�(𝑘
′
𝜎𝑧) through numerical integration of eq. (30) and eq. (39) for sea states S1 and S2.  



The resulting spectra, based on the previously presented model, are plotted on Figure  20. Also plotted 

are corresponding spectra obtained through numerical simulation of the Sentinel 3 SRAL altimeter, 

with the same sea states S1 and S2.  

The SRAL simulator essentially reproduces the altimetric measurement process : a gaussian facetted 

sea surface following the prescribed sea state is generated in the instrument footprint (at 2.5 m 

resolution). For each emitted pulse, the backscattered wave contribution is computed at the facet 

level, then integrated in resolution cells, providing the simulated altimetric waveforms. The epoch and 

SWH are estimated from waveforms generated along 100 km tracks. Corresponding spectra are then 

estimated by averaging 100 periodograms computed from 100 tracks. 

As this simulator was developed to provide realistic synthetic IQ signals, the speckle noise is inherently 

present as the result of adding numerous complex contributors. However, for the purpose of the 

present study, it is preferable to get rid of the speckle noise, which can be done simply by summing 

the average power backscattered from the facets rather than the complex amplitudes. In this way, not 

only the altimetric profiles, the estimated epoch and SWH and the resulting periodograms are free 

from speckle noise and its effects, but pulse-averaging is not required anymore, making the simulations 

much faster. However, power spectral density estimator remains inherently noisy, hence the average 

over 100 tracks. 

As illustrated by Figure  20, the spectra obtained from the simulator and subsequent processing 

(retracking, PSD estimate) are in good agreement with those computed according the model 

developed above, at least from low frequencies to the cutoff. In particular, the level of the low-

frequency plateau, the cutoff frequency and the shape of the spectrum around the cutoff are precisely 

caught.      

The agreement is quantitatively not so good beyond the cutoff, especially concerning the epoch 

spectrum. But the expected secondary peaks due to the oscillations of the MTF are actually present in 

the simulated data.  The observed discrepancy could originate from stronger non-linearity at high 

frequencies (as suggested by the higher contribution from the second harmonic), from the fitting 

process used for the retracking (which differs from the simple epoch and SWH estimators considered 

in the model), from the 𝜎0 dependency to viewing angles (considered in the simulator, not in the 

model), from the antenna pattern (in the simulator, not in the model)… Nevertheless, the very simple 

model developed here seems to correctly predict de level and shape of the spectrum over the 

frequency range accessible to the observations in conventional altimetry.  

         



 

Figure  20 : 𝑆𝑧0̂ (left) and 𝑆𝜎�̂�  (right) obtained from synthetic signals from SRAL simulations (dashed lines) and from the 

present model (solid line) for sea states S1 (blue) and S2 (red)  

This is illustrated by Figure  21, where the estimate of 𝑆𝑧0̂(𝑘′𝜎𝑧) obtained from realistic synthetic IQ 

signals, including speckle noise, is plotted together with the speckle-free version and the model. The 

speckle noise is reduced through averaging over bursts of 64 pulses. In such conditions, the secondary 

peaks are not accessible.       

 

Figure  21 :  𝑆𝑧0̂ (left) in S2 sea state from synthetic signals from SRAL simulations (solid lines) et from the present model 

(black dashed line). Simulations performed with (in red) and without (in blue) speckle noise.   

Although it is based on a very simplified description of the altimetric measurement, the model 

developed above proves to correctly reproduce the main characteristics of the spectra of the 

estimated surface elevation and SWH obtained with a realistic simulator. In particular, it provides a 

correct estimate of the level of the low-frequency plateau (denoted 𝑆𝑧0̂
0   and 𝑆𝜎�̂�

0    in the following), and 

of the corresponding -3 dB cutoff frequency  𝑘𝑧0̂
−3𝑑𝐵 and 𝑘𝜎�̂�

−3𝑑𝐵.  

 



5. Regressions on the low-frequency level and frequency cutoff  

Such parameters are also of interest for interpretating real altimetric spectra, especially if they can be 

related to the sea state. For this purpose, the model is executed for a large number (~6000) of random 

configurations from which simple empirical laws are then derived. For each configuration, the 

randomly generated parameters are:  

• swell spectrum parameters: 𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙, mean wave number 𝑘𝑠𝑤𝑒𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅  and direction 𝜑𝑠𝑤𝑒𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅ , 

gaussian spectrum std in wavenumber 𝜎𝑘𝑥 and azimuth 𝜎𝑘𝜑 = 𝜎𝑘𝑦  𝑘𝑠𝑤𝑒𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅  ⁄ , 

• wind sea: 𝑈10, 

• Satellite altitude 𝑍𝑠𝑎𝑡. 

The corresponding envelope spectrum 𝑆𝜎𝑧(𝒌𝝈𝒛) is numerically computed according to the previously 

described procedure. 𝑆𝑧0̂(𝑘′𝜎𝑧)  and 𝑆𝜎�̂�(𝑘′𝜎𝑧) are then computed (eq. (30) and (39)), from which  𝑆𝑧0̂
0  ,  

𝑆𝜎�̂�
0  ,  𝑘𝑧0̂

−3𝑑𝐵 and 𝑘𝜎�̂�
−3𝑑𝐵 are finally estimated.  

The swell envelope spectrum 𝑆𝜎𝑧(𝒌𝝈𝒛), and therefore 𝑆𝑧0̂
0  and  𝑆𝜎�̂�

0  , can be expected to be 

approximately proportional to  

𝛽 ≡
𝜎𝑧
2

𝜎𝑘𝑥𝜎𝑘𝑦
=
𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙

2

16 𝜎𝑘𝑥𝜎𝑘𝑦
 (𝑚4) 

(50) 

𝑆𝑧0̂
0  and  𝑆𝜎�̂�

0   may also depend on the ration of the spectral width of the swell spectrum (∼ √𝜎𝑘𝑥𝜎𝑘𝑦) 

to that of the 𝑀𝑇𝐹, which is roughly given by 𝑘0 ≡ (
2

𝜋
√𝜎�̅�𝑍𝑠𝑎𝑡)

−1

, hence: 

𝜂 ≡
√𝜎𝑘𝑥𝜎𝑘𝑦
𝑘0

=
2

𝜋√
𝜎𝑘𝑥𝜎𝑘𝑦𝜎𝑧̅̅̅𝑍𝑠𝑎𝑡 =

1

𝜋√
𝜎𝑘𝑥𝜎𝑘𝑦𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙𝑍𝑠𝑎𝑡 

(51) 

𝑆𝑧0̂
0

𝛽
 and  

𝑆𝜎�̂�
0

𝛽
 are plotted on Figure  22 : (left) as functions of 𝜂 (𝑆𝑧0̂

0  and 𝑆𝜎�̂�
0   in 

𝑚2

𝑚−1 , 𝛽 in 
𝑚2

𝑚−2 ). No 

dominating trend appears, but the values are more scattered towards lower 𝜂 (corresponding to cases 

where the shape of the envelope spectrum come into play).  

Also plotted on Figure  22 : (right) are the cutoff frequencies ratioed to 𝑘0, 
𝑘𝑧0̂
−3𝑑𝐵

𝑘0
 and 

𝑘𝜎�̂�
−3𝑑𝐵

𝑘0
, as functions 

of 𝜂. They show no significant trend when 𝜂 ≳ 1, where the MTF cutoff dominates. For 𝜂 ≲ 1, they 

are determined by the combination of the envelope spectrum and the MTF, and are thus scattered, 

with a decreasing trend.  



 

Figure  22 : low-frequency PSD (left) and frequency cutoff (right) as a function of parameter 𝜂, for 6000 sets of parameters 
(see text)   

 

To derive the simplest empirical expressions for those parameters, we only consider the 𝜂 > 1 domain 

(gathering 90% of the simulated cases), in which we have the following statistics: 

〈𝑆𝑧0̂
0 𝛽−1〉 = 1.67 10−5  𝑚−1 

𝑠𝑡𝑑(𝑆𝑧0̂
0 𝛽−1) = 0.70 10−5 𝑚−1 

〈
𝑘𝑧0̂
−3𝑑𝐵

𝑘0
〉 = 1.23 

𝑠𝑡𝑑 (
𝑘𝑧0̂
−3𝑑𝐵

𝑘0
) = 0.06 

 

 

〈𝑆𝜎�̂�
0 𝛽−1〉 = 7.59 10−5  𝑚−1 

𝑠𝑡𝑑(𝑆𝜎�̂�
0 𝛽−1) = 3.05 10−5 𝑚−1 

〈
𝑘𝜎�̂�
−3𝑑𝐵

𝑘0
〉 = 0.84 

𝑠𝑡𝑑 (
𝑘𝜎�̂�
−3𝑑𝐵

𝑘0
) = 0.06 

 

(52) 

From those statistics, simple expressions can be written: 



𝑆𝑧0̂
0  ≈  (1.7 ± 0.7)10−5𝑚−1   

𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙
2

16 𝜎𝑘𝑥𝜎𝑘𝑦
               (𝑚3) 

 

𝑘𝑧0̂
−3𝑑𝐵 ≈ (1.23 ± 0.06)

𝜋

2√𝜎𝑧̅̅̅𝑍𝑠𝑎𝑡
                       (𝑚−1) 

 

 

𝑆𝜎�̂�
0 ≈ (7.6 ± 3.0)10−5𝑚−1  

𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙
2

16 𝜎𝑘𝑥𝜎𝑘𝑦
                (𝑚3) 

𝑘𝜎�̂�
−3𝑑𝐵 ≈ (0.84 ± 0.06)

𝜋

2√𝜎𝑧̅̅̅𝑍𝑠𝑎𝑡
                      (𝑚−1) 

(53) 

The same relations are given bellow in more usual units according to 𝑆(𝑚2𝑐𝑝𝑘𝑚−1) =
2𝜋

1000
𝑆 (

𝑚2

𝑟𝑎𝑑
. 𝑚−1) 

𝑆𝑧0̂
0  ≈  (6.7 ± 3)10−9  

𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙
2

𝜎𝑘𝑥𝜎𝑘𝑦
 (𝑚2𝑐𝑝𝑘𝑚−1) 

𝑘𝑧0̂
−3𝑑𝐵 ≈

(615 ± 30)

√𝑆𝑊𝐻 𝑍𝑠𝑎𝑡
                       (𝑐𝑝𝑘𝑚) 

𝑆𝜎�̂�
0 ≈ (3.0 ± 1.2)10−8  

𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙
2

𝜎𝑘𝑥𝜎𝑘𝑦
 (𝑚2𝑐𝑝𝑘𝑚−1)                (𝑚2𝑐𝑝𝑘𝑚−1) 

𝑘𝜎�̂�
−3𝑑𝐵 ≈

(420 ± 30)

√𝑆𝑊𝐻 𝑍𝑠𝑎𝑡
                      (𝑐𝑝𝑘𝑚) 

 

Those simple fitting functions could be used to check wether the expected contribution of wave groups 

may, totally or partially explain observed spectral bumps.  

Taking the median of 𝑆𝑧0̂
0  over the 6000 situations generated randomly (with no other physical meaning 

than plausible upper and lower values for each parameter) gives:  

𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝑧0̂
0 ) =  (6.7 ± 3)10−9 𝑀𝑒𝑑𝑖𝑎𝑛 (

𝑆𝑊𝐻𝑠𝑤𝑒𝑙𝑙
2

𝜎𝑘𝑥𝜎𝑘𝑦
) = (6.7 ± 3)10−9  × 1.6 106

≃ (1 ± 0.5)10−2 𝑚2𝑐𝑝𝑘𝑚−1 

Incidentally, this value coincides with the level of the plateau observed in LRM mode (Figure  1).  The 

corresponding median cutoff frequency, 𝑀𝑒𝑑𝑖𝑎𝑛(𝑘𝜎�̂�
−3𝑑𝐵) ≃ 0.24 𝑐𝑝𝑘𝑚, is also compatible with the 

frequency of the “bump” in Figure  1 Average power spectral densities of the surface height typically 



observed in various altimetry modes, given that the -3dB level is not accessible because of the 

speckle noise.   

Contrary to the spectra, whose magnitude is very sensitive to the swell parameters, the coherence is 

expected to remain essentially constant, except in case of small values of 𝜂. Coherence spectra 

obtained from ~1000 random parameters (including varying satellite altitude) are plotted on Figure  

23, showing a variability of  ±0.1 at most. In simulated and, mostly, real data, other sources of 𝑧0̂ and 

𝜎�̂� fluctuations are expected to reduce the measured coherence. The magnitude of the coherence 

presented bellow should thus be considered as a maximum, reached in the absence of noise and other 

fluctuation mechanisms.   

 

Figure  23 : coherence obtained through the model (eq. 47) for a wide range of sea state parameters and satellite altitude (see 
hereafter)  

 

6. Comparison with Sentinel 6 data 

As previously stressed, the general shape and magnitude of the spectral bumps seen in the data from 

various LRM altimeters are compatible with the model developed here. This is also the case for Sentinel 

6 data (see Figure  24), with a bump maximum located at slightly lower wavenumber than in the case 

of Sentinel 3 (Figure  1), corresponding to the square-root of the ration of their altitudes (eq. (13)), 

√800/1300 = 0.78 . 

  

 

 



 

Figure  24 : S6 SSH spectrum from https://www.mdpi.com/2072-4292/15/1/12 

Although those spectra are compatible with a significant contribution of SWH variations, especially 

(but not necessarily only) from wave groups, this can hardly be demonstrated from those data alone. 

Other mechanisms could contribute to- or even dominate SSH variations and they would also fulfill the 

frequency cutoff related to the instrument footprint.  Unfortunately, analyzing quantitatively the 

bump magnitude requires a knowledge of the swell spectrum (SWH and spread in wavenumber and 

azimuth, at least).  

SWIM data, offering both altimetric and wave spectra estimated parameters, would offer a nice 

opportunity to test the model and to derive the relative magnitude of wave groups contribution.  

Before going into this demanding work, S6 LRM data can be very simply used to perform a first testing 

based on the shape of SSH and SWH spectra and their coherence. 

As previously underlined, coherence spectrum provides a robust and straightforward way for checking 

that a relation between SWH and SSH variations does exist, especially in the vicinity of the spectral 

bump.  

Figure  25 shows SWH and SHH spectra (top) and coherence (bottom), obtained from S6 data 

(continuous lines), analytical model (dashed lines) and synthetic data (stars). While the sea state is not 

known (except estimated SWH, which is not enough to constrain the models), the spectra have be 

scaled to make the magnitude of the modelled SWH bump coincide with that of the observed one. 

The numerical simulation nicely reproduces the shape of the SWH spectrum in the bump region, 

including a “secondary bump” related to an oscillation of the FTM. The SSH spectrum is not so correctly 

simulated, the plateau level being underestimated by a factor ~2. Again, S6 data exhibit secondary 

bumps, as qualitatively expected from the MTF shape.  

The coherence spectrum exhibits a maximum coinciding with that seen in simulated data (≃

0.55 @ 𝐾 ≃ 0.5). It decreases faster than the simulated curve towards low frequencies, probably due 



to fluctuations of SSH not (or less) correlated to SWH. Towards higher frequencies, the observed 

coherence remains significant, perhaps through correlated noise in retrieved SSH and SWH.     

       

 

Figure  25 : SSH and SWH spectral shapes from S6 data, simulated data and semi-analytical model (top). Corresponding 
coherence spectra (bottom).  

The observed magnitude of the coherence in the bump confirms that the process modelled in this work 

(SSH fluctuations induced by SWH variations)  significantly contributes to the bump, even if it does not 

exclude other sources of fluctuations. Another question is the part of SWH fluctuations due to the 

envelope spectrum, as SWH variations from other origin could also contribute. Because the envelope 

spectrum is wide and fairly isotropic, it tends to completely “fill” the bidimensional MTF in most swell 

cases, giving rise to spectral bump and coherence very constant in shape. SWH variations resulting 

from other processes (current, bathymetry…) would probably be more directional and narrow-banded, 

which should lead to significant variations in the bump and coherence shape (the cutoff frequency 

being reached only for along-track variations). the variability of the bump and coherence shape could 

be studied in order to discriminate between wave groups and other sources of SWH variations.         

 

 


