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Over-reflection of horizontally propagating gravity waves

by a vertical shear layer
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(Received 9 May 1977; final manuscript received 3 August 1978)

The problem of horizontally propagating gravity waves impinging on a vertical shear layer which forms the
boundary between uniform currents is isomorphic to an acoustic problem solved by Miles and by Ribner.
The consequences of over-reflection for a spatially growing instability are pointed out. The long wave
reflection problem is solved for free surface and internal waves on a thin layer in an otherwise deep fluid.
Over-reflection is found possible for Froude numbers in excess of two; infinite over-reflection will occur

for certain angles of impingement.

I. INTRODUCTION

Landau’! considered the stability of a supersonic dis-
crete shear layer between two uniform parallel flows
and found that it was stable to small disturbances for
Mach numbers in excess of 2%%, based on the velocity
difference. He alsc mentioned that experiments showed
jets of such Mach numbers to be unstable. The problem
of stability of a laterally limited flow, such as a jet, and
the relationship between spatial and temporal growth of
disturbances in such flows may in part be explained by
considering the process of over-refiection of distur-
bances. Miles? and Ribner® considered the reflection
and transmission of sound waves by a discrete compress~
ible shear layer., The equations that apply are analogous
to the equations that describe the propagation of long
gravity waves on a shallow layer; surface waves in shal-
low water and internal gravity waves on a thin layer
overlaying a deep fluid. The results of Miles and of
Ribner can be directly applied to the corresponding grav-
ity wave problem.

Recent work by Acheson* and Lindzen® demonstrates
the importance of over-reflection in geophysical flows.
It is therefore of interest to consider the problem of
over-reflection of horizontally propagating gravity waves
by a vertical shear layer, and interpret the consequences
as they apply to spatial development of disturbances.

The following analysis contributes nothing new mathe-
matically, but may help to demonstrate the consequences
of over-reflection.

H. LONG WAVES ON SHALLOW LAYER

Consider long waves compared with layer depth and
propagating horizontally. Let the mean layer depth be
H; the layer is bounded either above or below by a rigid
surface and on the other horizontal boundary by a very
deep fluid layer of different, p. The propagation speed
of small amplitude waves in a fluid at rest is then given
by C3=gH=g'H(p’ ~p)/p. The density difference be-
tween the two layers is (p’ —p). Now consider the mean
flow consisting of two uniform flows of velocity U, and
U,, respectively, with a shear layer at y =0 separating
the two flows. g is the acceleration of gravity,

Consider waves coming in from y = —« impinging on
the shear layer. With a suitable choice of coordinate

system, the problem is reduced to a steady state prob-
lem. The small perturbation equations (see Ref. 6, p.
387) are then:

Uy + g'h, =0, (1)
Uve +g'h, =0, (2)
Ul + Hlug, + 0, = 0, (3}

where / is the disturbance in layer depth, « and v are
horizontal velocity components, U=, or U, for y neg-
ative and positive, respectively.

Consider solutions of the form
(e, 0, 1)Y= (7, &, 1) flx £ Bv), 4)

where 7, 7, fz, and B are constants, and f is an arbitrary
function. Substituting, one finds

fi=-g'h/U, (5)
== BATI;T/U, (6)
B'=1-F'=1-U¥("H), (7)

where F is the Froude number.

(1. IMPINGING, REFLECTED, AND TRANSMITTED
WAVES

Take the impinging, reflected, and transmitted waves
to be, respectively:

I{x,v)=Af(x - Byy), (8)
I(x,v) = Rf(x + By), (9)
Iy(x, v) = TF(x — Byy). (10)

The subscripts 1 and 2 refer to the two sides of the
shear layer, as before, while the subscripts 3 and /
refer to the reflected and transmitted waves, respec-
tively. To satisfy the radiation condition, namely,

that the reflected and transmitted waves carry energy
away from the shear layer, the sign for B will be defined
the same as the sign of U. (This simple rule was intro-
duced by Ribner.)’ The waves fronts are shown in Fig.
1.

IV. CONDITIONS AT INTERFACE

Let the equation for the lateral deflection of the inter-
face be v= 7(x). The linearized boundary conditions at
y=0 are then that 7 remain continuous across the inter-
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FIG. 1. Shear layer, impinging, 1, reflected, R, and trans-
mitted, T, waves.

face and that the interface slope match the streamline

slope, which requires
n,U=wv(x, 0). (11)

Applying the last equation on both sides of the interface
gives

1-R=ZT,
where

Z = B,UY/(B,U3). (12)
Continuity of /1 across the interface requires

1+R=T. (13)
Solving for R and T gives

R=(1-2)/(1+2), (14)

T=2/(1+2Z). (15)

The angle between the interface and the impinging wave
is

ai_—_sin-l(l/Fl). (16)
A can be expressed in terms of angles as
z =sin2a/sin2a,, (17)

Note that 7 will be infinite if (1 + Z) equals zero. This
corresponds to a negative U, and a corresponding neg-
ative value of B,, according to the convention adopted.
When T is infinite, R will also be infinite, which states
that for a finite amplitude of the impinging wave, the
response will be infinite. For this case, considering
Eqgs. (13) and (14) as equations for R and T in terms of
the unit amplitude of the impinging wave, the case of in-
finite values for R and T corresponds to the vanishing of
the principal determinant of the two equations. This is
also the condition for the existence of finite R and T for
zero impinging wave amplitude, the condition for a non-
trivial solution to the homogeneous probilem for zero
amplitude impinging wave. ' The condition Z+1=0 is
thus the condition for neutral stability of disturbances.
Singular over-reflection corresponds to neutral stability.
Ribner? has calculated the values of the reflection coef-
ficient R as a function of the Froude number difference
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F=F, -F, and the angle of incidence as defined in Eq.
(16).

The result is shown in Fig. 2, reproduced from Rib-
ner with his permission and relabeled to fit the present
variables. Note that for F>2 over-reflection occurs for
all angles of inpingement that render the flows in oppo-
site directions when the impinging wave is steady in the
coordinate system used. For 2<F <23/ singular over -
reflection occurs for one angle of impingement for each
value of F, while for F>23 ’2, three impingement angles
give over-reflection for each F.

V. REYNOLDS STRESSES

One way to explain why there are no unstable distur-
bances above a certain critical Froude number is to
argue that for disturbances involving waves of finite
amplitude, there will be energy and momentum radiated
away from the shear layer by the disturbances, so that
even a nongrowing disturbance is capable of transporting
momentum away from the shear layer. The mean flow
will therefore be modified when there are neutrally
stable disturbances present. The energy arguments
used at times to produce stability criteria therefore do
not necessarily work when radiative disturbances are
involved.

From Eqgs. (5), and (6), and (7) one finds

uv=g' i U (18)

for the Reynolds stresses. Integrating this over x gives
the total momentum transport. The direction of momen-
tum transport will be found to be outward, which seems
to reduce the mean velocity difference across the shear
layer, for both the reflected and transmitted waves.
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FIG. 2. Reflection coefficient R as function of impingement
angle and Froude number difference, from Ribner.
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FIG. 3. Ilustrating spatially growing disturbances in jet.
Origin of disturbance (1), point of first impingement on oppo-
site side (2), impingement of reflected wave (3), where a cen-
tered disturbance generated by nonlinear effects occurring at
shear layer may originate and propagate upstream outside the
jet to hit (1) and start the process over again.

The presence of a second shear layer or a rigid surface
that reflects waves within a finite distance of the shear
layer, so as to produce a series of amplified reflections
and transmissions, with the disturbances growing with
distance along the flow direction. This was pointed out
by Mollo-Christensen’ for the acoustic case.

VI. EFFECT OF SOLID BOUNDARY NEAR SHEAR
LAYER

Consider a flow that is confined between parallel solid
boundaries for negative values of x, and where the bound -
aries are missing for positive x, so that a free jet is
formed between a region of fluid at rest and the half-jet
present between the shear layer and the remaining solid
boundary. The disturbances we considered before will,
in the coordinate system fixed with respect to the be-
ginning of the free shear layer, generally be unsteady.
The flow is shown in Fig. 3. Consider a transient dis-
turbance originating at the free shear layer at x=0. A
wave will propagate away from the disturbance as a
spreading circular wave front being swept downstream
with the mean flow. The wave will propagate away from
the disturbance as a spreading circular wave front being
swept downstream with the mean flow. The wave will
be reflected by the other layer and later impinge upon
the shear layer. If the Froude number of the flow ex-
ceeds two, over -reflection will occur over a range of
angles of impingement, and singular over-reflection
will occur at either one or three angles, depending upon
whether the Froude number exceeds 2°/ or not.

The reflected wave will be reflected back toward the
solid boundary from which the wave will again be re-
flected to impinge upon the shear layer to be over-re-
flected again and so on. The production of singular
over-reflection obtained using linear theory will imme-
diately make the wave amplitude too large to be treated
by linear theory, but we may conclude that there may
be a nearly stepwise spatial growth of disturbances with
downstream distance, the length between steps being
given, to first order, by the distance between successive
reflections.

The next question is to ask where the initial distur-
bance may come from? Powell® considered the role of
amplification of waves by shear layers when looking for
the mechanism of sound production of supersonic jets.
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Although he did not specifically discuss over-reflection,
he argued that finite amplitude waves may be reflected
with amplification when they impinge on a shear layer.
He then argued that the disturbance generated by im-
pingement will possibly also contain a centered wave,
propagating upstream outside the jet. When this wave
reaches the beginning of the shear layer, another dis-
turbance is started propagating inside the jet, toimpinge,
be reflected again, and produce another centered wave
that produces a disturbance at the beginning of the shear
layer, etc. Powell estimated the frequency of the wave
produced by what could now be called resonant over-re-
flection by calculating travel time per period. For the
present example one finds that the period of oscillation
AT for a jet of width », will be

AT =b(F+1)/(g'H)' ", (19)
One may, from this, conclude that although a flow when
analyzed as extending infinitely far in the positive and
negative streamwise direction may prove neutrally
stable, the introduction of a change in lateral boundary
condition can cause spatial instability. This instability
will not be revealed by analysis which considers the
temporal development of disturbances of real, constant
wavenumber disturbances, since they cannot describe
the development of disturbances whose amplitude
varies with the streamwise coordinate x.

These arguments may apply to geophysical flows along
changing topography, where one may have free shear
layers form as a stratified current reaches the end of a
stretch of coast and continues away from the coast.
Similar situations may also occur in the atmosphere,
in the wake of an island, for example.

VIl. CONCLUSIONS

The preceding generalization of the analysis of Lan-
dau, Miles, and Ribner may be useful as a demonstra-
tion of amplified reflection for the simplest kind of
gravity waves, both of a free surface of shallow water
and as internal waves on a shallow interface in deep
water. The role of waves in momentum transport needs
to be emphasized for geophysical flows, in particular.

A disturbance that radiates to infinity, but is capable of
maintaining constant amplitude along a shear layer, will
tend to be called neutrally stable, but, such a distur-
bance will still be capable of exchanging momentum be-
tween the flow and its surroundings. Thus, disturbances
that under some customary usage are called neutrally
stable and are therefore disregarded, may be very im-
portant in modifying a flow. On the other hand, if grow-
ing disturbances that also radiate energy and momentum
can be present, they will, of course, tend to dominate
the exchange processes. Yet another important role of
waves that are reflected with amplification is the possi-
ble occurrence of spatially growing disturbances, even
if a parallel flow analysis only yields neutrally stable
(and radiative) solutions. This shows the need for care-
ful interpretation of parallel flow stability analysis
where the solutions are radiative.

The present case of nondispersive waves was chosen
because of its simplicity, since the boundary conditions
at the discrete shear layer can be satisfied without
having to add other types of solutions, as had fo be done
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in most cases, such as for surface waves in deep water,
internal-inertial waves in a rotating and continuously
stratified flow, and other flows that are complicated by
the presence of external fields and other kinds of body
forces.
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