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The oceanic general circulation is forced at large scales and is unstable to mesoscale
eddies. Large-scale currents and eddy flows are approximately in geostrophic balance.
Geostrophic dynamics is characterized by an inverse energy cascade except for
dissipation near the boundaries. In this paper, we confront the dilemma of how the
general circulation may achieve dynamical equilibrium in the presence of continuous
large-scale forcing and the absence of boundary dissipation. We do this with a forced
horizontal flow with spatially uniform rotation, vertical stratification and vertical shear
in a horizontally periodic domain, i.e. a version of Eady’s flow carried to turbulent
equilibrium. A direct route to interior dissipation is presented that is essentially
non-geostrophic in its dynamics, with significant submesoscale frontogenesis, frontal
instability and breakdown, and forward kinetic energy cascade to dissipation. To
support this conclusion, a series of simulations is made with both quasigeostrophic and
Boussinesq models. The quasigeostrophic model is shown as increasingly inefficient in
achieving equilibration through viscous dissipation at increasingly higher numerical
resolution (hence Reynolds number), whereas the non-geostrophic Boussinesq model
equilibrates with only weak dependence on resolution and Rossby number.
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1. Introduction
The general circulations of the atmosphere and ocean are forced at large scales,

and to achieve equilibrium they must viscously dissipate much of their kinetic energy
at small scales. The prevailing dynamical paradigm for large and mesoscale flows
includes diagnostic force-balance constraints, i.e. hydrostatic and either geostrophic
or some form of gradient-wind balances (McWilliams 2003). A related paradigm
is the inverse energy cascade of geostrophic turbulence (Charney 1971). Together
these imply a potential dilemma for energy equilibration (Muller, McWilliams &
Molemaker 2005): if the directly forced large-scale flow loses its energy by instability
to balanced mesoscale eddies, then how is the eddy energy viscously dissipated if it
is transferred only towards larger scales? Part of the dissipation can occur in the top
or bottom turbulent boundary layers, but unless energy flux from the interior to the
boundary is efficient enough, this route may not suffice. In this paper, we examine the
possibility of a direct route to dissipation in the interior by a forward energy cascade
involving a spontaneous violation of the diagnostic force-balance constraints.

† Email address for correspondence: nmolem@atmos.ucla.edu
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We pose the highly idealized problem of an equilibrium Eady flow with a restoring
forcing towards a uniformly stratified, uniform vertical shear flow in a uniformly
rotating environment. This is the baroclinic flow configuration with perhaps the
highest degree of spatial and temporal symmetry while still manifesting a two-way
eddy–mean flow interaction (i.e. with partially free evolution of the mean shear flow
and stratification). This ‘large-scale’ flow has linear baroclinic instability modes, both
force-balanced (Eady 1949) and anticyclonic–ageostrophic (Stone 1966; Molemaker,
McWilliams & Yavneh 2005). The boundary conditions are horizontal periodicity and
solid vertical boundaries with no stress or buoyancy flux (i.e. with no representation
of turbulent boundary layers). Fluctuations amplify through these instabilities and
equilibrate only by either viscous dissipation or an artificial fluctuation damping at the
domain scale. The fluid dynamical model is the incompressible Boussinesq equations
(BOUS).

This posing is designed to provoke a crisis in the sense that the fluctuation energy
will continue to grow as the Reynolds number Re and domain size increase unless
a forward energy cascade arises to provide an efficient ‘interior’ route to dissipation.
The problem is solved in a parameter space with both Re and the Rossby number Ro
as control parameters. To provide a comparison of dynamical standard, we also solve
the equivalent problem with the force-balanced quasigeostrophic equations (QG),
which is the asymptotic model as Ro → 0 (Pedlosky 1987) where no forward cascade
is expected as Re → ∞.

This problem has a different focus compared with recent studies of randomly forced,
strongly stratified turbulence by, among others, Lindborg (2005) and Waite & Bartello
(2006). In those problems, with weak rotation (large Ro), there is a vigorous forward
energy cascade. When Ro is decreased from large values, a certain degree of inverse
energy cascade begins at an O(1) threshold value. Our approach is very different and
focuses on the strength of the forward cascade for small Ro. In other words, instead
of focusing on the emergence of an inverse energy cascade as Ro is reduced, we study
the emergence of a forward energy cascade when the Ro value characterizing the
mean flow and its primary geostrophic instability has a small, finite value. The latter
is the more geophysically relevant problem for the general circulation.

Section 2 explains the model formulation and solution methods. Section 3 presents
solutions for the unforced spin-down of an Eady flow, and § 4 presents equilibrium
solutions. Section 5 analyses departures from diagnostic force balances and their
relation to forward energy cascade and fine-scale instability of density fronts.
Conclusions are in § 6.

2. Formulation and methods
We pose the problem as the nonlinear evolution of fluctuations around a mean

horizontal current V (z)ŷ in geostrophic, hydrostatic balance for a rotating, stably
stratified fluid with Coriolis frequency f (y) > 0 and Brunt–Vaisalla or buoyancy
frequency N(z) > 0. To focus on the primary issue, we assume here that f , N and dzV

are spatially uniform, even though their variations are important for realistic, large-
scale currents. Similarly, we ignore horizontal variations in V , which implies a linear
horizontal variation of the hydrostatic, geostrophic buoyancy field B(x). Boundary
layers are avoided by assuming horizontal periodicity with zero horizontal average
for the fluctuation fields and solid vertical boundaries without any momentum or
heat flux. The configuration of horizontal fluctuation periodicity in the presence of a
linear mean B(x) requires a closure principle, which we choose as locally conservative
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eddy–mean energy exchange. (This configuration is an ansatz for the central region
of a broad baroclinic jet whose horizontal scale is much wider than the dominant
fluctuation scale, e.g. the baroclinic deformation radius, Lr .) A price we pay for the
simplicity of this degree of spatial homogeneity is that the mean flow and stratification
must be artificially maintained in the face of their modification by eddy fluxes.

Since our focus is on possible departures from balanced flows, we will use BOUS for
the fundamental fluid dynamics of an incompressible fluid. The problem considered
is therefore a non-geostrophic, non-hydrostatic, non-conservative generalization of
the linear-stability analysis in Eady (1949). Since an important goal is to assess
the degree and importance of the loss of diagnostic force balance with respect to
both the geostrophic and hydrostatic approximations, this investigation continues
the instability analysis by Stone (1966, 1970) and Molemaker et al. (2005) into the
turbulent equilibrium regime.

We derive non-dimensional equations using the following scales for the mean
state and fluctuation quantities: horizontal domain width L, vertical domain height
H , horizontal velocity V0, time L/V0, Coriolis frequency f , dynamic pressure
and buoyancy ρof V0L and f V0L/H , hydrostatic pressure and buoyancy of the
mean vertical stratification N2H 2 and N2H , vertical velocity f V 2

0 /N2H and
energy density V 2

0 . As a result several non-dimensional parameters appear: Rossby
number Ro =V0/f L; Froude number Fr = V0/NH ; aspect ratio λ= H/L; and
ε = f LV0/N

2H 2 = Fr2/Ro. This non-dimensionalization follows McWilliams (1985),
and it is designed to expose the generally weak deviations of the flow from balance
when these four parameters are not large.

The non-dimensional profiles for the mean meridional velocity and buoyancy field
are

V (z) = S(t)

(
z − 1

2

)
,

B(x, z) = ε−1B(z, t) + S(t)

(
x − 1

2

)
.

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

The domain is [0, 1] in each coordinate. Note that S is the mean vertical shear, and
B = εB is the mean stratification, where the overbar denotes a horizontal average.
The associated mean zonal and vertical velocities are zero. This mean flow satisfies
hydrostatic, geostrophic balance, ∂zV = ∂xB , with as yet undetermined shear amplitude
S(t) and mean stratification profile B(z, t). The associated mean zonal and vertical
velocities are zero. The values S = ∂zB = 1 are Eady’s flow. In conservative dynamics,
the potential vorticity is a Lagrangian invariant. Its spatial structure is relevant
to possible flow instabilities. For BOUS (§ 2.1), the Ertel potential vorticity (non-
dimensionalized by f N2) for the mean state is

Qm = ∂zB − Ro ε S2 � ∂zB. (2.2)

The inequality indicates that Qm has an anticyclonic constant value for Eady’s flow.

2.1. Boussinesq model

The governing non-dimensional equations in BOUS apply to the horizontally averaged
stratification and fluctuations about the geostrophic, hydrostatic shear flow ∝ S in
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(2.1):

Ro
(
∂tu + [uuu · ∇u]� + V ∂yu

)
− v + ∂xp =

Ro

Re
∇2u − Ro Ru,

Ro
(
∂tv + [uuu · ∇v]� + V ∂yv + ε w∂zV

)
+ u + ∂yp =

Ro

Re
∇2v − Ro Rv,

F r2λ2
(
∂tw + [uuu · ∇w]� + V ∂yw

)
+ ∂zp = b +

εRoλ2

Re
∇2w − Fr2λ2Rw,

∂xu + ∂yv + ε∂zw = 0,

∂tb + uuu · ∇b + V ∂yb + uS + α

[
b − (z − 0.5)

ε

]
=

Pr

Re
∇2b − Rb,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

together with the boundary conditions of w =0 at z = 0, 1 and horizontal periodicity
for all fields. Note that u, v and w are cross-stream, downstream and vertical
fluctuation velocity components with zero horizontal average, and uuu= (u, v, εw). p is
pressure.

Note that b = B/ε + b′

is the periodic part of the buoyancy field with b′ as the fluctuation field with zero
horizontal average. Thus, b includes the periodic mean stratification but not the
non-periodic mean horizontal trend, S (x − 0.5), in (2.1); the latter is determined
separately from (2.13) below. The symbol [ · ]� denotes removal of the horizontal
average momentum advection, which here is the divergence of the vertical Reynolds
stress, ε∂zuuuw. The definitions of Reynolds and Prandtl numbers are

Re =
ν

V0L
and Pr =

ν

κ
,

and we choose Pr = 1 for all cases. Explicit diffusion (hence dissipation) is
incorporated into the model by means of the Laplacian operator ∇2. In addition to
this, the upwind-weighted discretization of the advection operator provides additional
numerical dissipation (§ 2.3). The stratification is restored towards the uniform
stratification in Eady’s flow with a non-dimensional rate α. There are additional
large-scale fluctuation damping terms R described in § 4. The mean stratification
balance can be extracted from (2.3) by horizontally averaging:

∂tB = −ε2∂zwb′ +
Pr

Re
∂zzB − α(B − z + 0.5), (2.4)

with b′ determined by the residual balance after subtracting (2.4) from (2.3). In a
baroclinically unstable Eady flow with wb′ > 0, the mean stratification will tend to
increase (a.k.a. eddy restratification). The role of α > 0 is to balance this tendency
and achieve an equilibrium stratification close to the Eady one even when Re is very
large.

To accompany the fluctuation evolution (2.3), we require an equation for the mean
shear S(t). Since (2.1) is not strictly consistent with either horizontal periodicity nor
an infinite horizontal extent, a closure hypothesis is needed, and we choose one
comprised of a domain-averaged energy balance in the fluctuation–mean interactions
and forcing terms that act to restore the evolving flow towards Eady’s flow.

The kinetic energy density for the mean flow is Ekm = (1/2)V 2, and its volume
integral for V (z) in (2.1) is

Ekm ≡ 〈Ekm〉 =
S2

24
, (2.5)
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where the angle brackets denote a vertical integral (also equal to a vertical average
in a domain of unit height). The fluctuation equations (2.3) have an integral kinetic
energy conservation law for

Ekf =
1

2

(
u2 + v2 + ε2λ2w2

)
, (2.6)

for example

dEkf

dt
=

ε

Ro
〈wb′〉 − ε 〈vw〉 S − Dkf , (2.7)

with Ekf = 〈Ekf 〉 and a dissipation rate Dkf that is the sum of numerical dissipation
(§ 2.3) and explicit dissipation from the diffusion and damping forces.

Lorenz (1955) demonstrated that the energy exchange between a zonal mean flow
S and its fluctuations is most cogently described in terms of conservation of kinetic
Ek plus available potential Ea energies (rather than total potential energy, which in
our problem is a function only of B, not the mean flow S). Accordingly, we adopt an
energy closure principle to determine the evolution of S(t); i.e.

d(Ekm + Ekf + Ea)

dt
= NCT, (2.8)

where NCT generically denotes the non-conservative diffusive, damping and restoring-
forcing terms. The term Ea is formally defined as the difference in the potential energy
Ep of a given three-dimensional buoyancy field and the reference (lowest) potential
energy Epref

that could be reached by an adiabatic rearrangement of parcels into a

horizontally uniform field with non-negative vertical buoyancy gradient:

Ea = Ep − Epref
. (2.9)

In BOUS, no explicit expression for Ea is known because the rearranged reference
profile cannot be specified a priori; nevertheless, following Winters et al. (1995), we
introduce an operational procedure for determining Ea and its derivatives from the
buoyancy field (Molemaker & McWilliams 2010). Furthermore, we can decompose
Ea into mean and fluctuation contributions by

Ea = Eam + Eaf , (2.10)

where Eam is evaluated using only the mean buoyancy field (B, S) and Eaf is evaluated
by residual. Since Ea is a functional of S and b, we evaluate its time derivative by

dEa

dt
=

δEa

δS
· dS

dt
+

δEa

δb
· ∂b

∂t
. (2.11)

The δ symbol denotes a functional derivative. The dots are vector products with
the functional argument (note that S is zero dimensional and b(x, y, z) is three-
dimensional). Thus, the vector products in (2.11) are equivalent to volume integrals in
the unit cube. In practice the functional derivatives are calculated by finite differences
(as in the rest of the numerical model; § 2.3); e.g.

δEa

δS
=

Ea[S + 0.5µ, b] − Ea[S − 0.5µ, b]

µ
, (2.12)

with µ a small number but large enough to avoid floating-point precision errors.
We now apply the energy closure principle (2.8) with an additional assumption

about the role of the NCT , viz. its effects are partitioned into a restoring forcing of
the mean shear flow (with the same rate α as in (2.4)) and its effects that follow from
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the derivation of an energy balance relation for the periodic-component equations
(2.3), which are thus assigned to the energy balance of this component. Thus, the
principle yields an energy balance equation for S(t) that is forced by the restoring term
and by the conservative–dynamical exchanges with the periodic flow components so
that the mean–eddy conversion terms that appear in the periodic-component energy-
balance equations are subtracted from the S energy balance equation; i.e.

d(Ekm + Eam)

dt
= − d(Ekf + Eaf )

dt

with respect to these conversion terms. In equilibrium (§ 4), the conversion terms act
as sinks of mean-flow energy. By combining (2.3), (2.5), (2.7), (2.8) and (2.11), we
obtain(

S

12
+

δEa

δS

) (
dS

dt
− α(1 − S)

)
=

ε

Ro
〈wb′〉 − ε〈vw〉S − δEa

δb
· (uuu · ∇b + V ∂yb + Su).

(2.13)

The set (2.3) and (2.13) provides a well-posed system for the evolution of the mean
state and fluctuations. In § 2.2, we show that this system is asymptotically consistent
with the more familiar QG model where Ea and its derivatives are analytically
specifiable (Molemaker & McWilliams 2010). In (2.13), the conversion of energy from
mean to fluctuations is balanced by a reduction of S. Because of the dissipative
terms in the fluctuation equations, this system will eventually spin down to rest in the
absence of restoring forcing (§ 3), and it will achieve equilibrium with a finite S value
when α is non-zero.

The fluctuation Ertel potential vorticity is Qf =Q − Q. In the absence of forcing
and dissipative effects, Q is conserved following the flow. Since the initial and mean
states have no interior horizontal Q gradients, the fluctuations do not inherit any Q

variations through the instability generation process. However, the model equations
do not exactly conserve Q in their discrete form, and viscous and diffusive effects
can generate Q fluctuations in the flow, mainly on small scales. (Indeed, it is hard to
imagine any turbulent flow with Boussinesq dynamics that would retain an exactly
uniform Q field.) Because of the tendency of Q to homogenize on horizontal or
isopycnal surfaces by eddy mixing (Rhines & Young 1982), we expect its interior
horizontal gradients to remain small and find that this is generally so. In particular,
we do not see any correspondence in our solutions between the structure of Q on
large and intermediate scales and the outbreak of instabilities on finer scales; in
this sense, we believe that our problem posing provides a valid representation of
Boussinesq turbulence in an Eady-like flow. Because we do allow an evolution of
the mean stratification profile B(z) through eddy restratification flux in (2.4), there is
similarly an evolution in Q(z); however, we do not believe that this feature makes a
fundamental difference in the BOUS turbulent equilibrium dynamics.

2.2. Quasigeostrophic model

Starting with (2.3), take the curl of the horizontal momentum equations, use the
hydrostatic approximation, add the vertical derivative of the buoyancy equation,
discard all terms that are asymptotically small in Ro, Fr and ε, and neglect vertical
diffusion. The result is the non-dimensional, QG potential vorticity equation for the
fluctuations, including horizontal diffusion:

[∂t + V ∂y]q + Jh(Ψ, q) =
1

Re
∇2

hq − Rq, q = ∇2
hΨ +

ε

Ro
∂zzΨ. (2.14)
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Here, q is the QG potential vorticity, and Ψ is the geostrophic streamfunction with
u = −∂yΨ, v = ∂xΨ . (With this QG definition of potential vorticity, the mean Eady
flow (2.1) has zero q; cf. Qm in (2.2).) The subscript h denotes a horizontal Laplacian
operator. The vertical velocity is w = −[∂t + V ∂y]∂zΨ + Jh(Ψ, ∂zΨ ), and the buoyancy
is b = ∂zΨ . Boundary conditions at z = 0, 1 are

[∂tz + V ∂zy]Ψ + Jh(Ψ, ∂zΨ ) − S∂yΨ =
1

Re
∇2

h∂zΨ − Rb. (2.15)

Because of the linear homogeneous operator form of the potential vorticity equation
in (2.14) (with Rq ∝ q), q will remain zero at all times if it is initially zero. This
is the class of solutions we focus on. For QG solutions with q = 0 in the interior,
the dynamics is that of two coupled surface quasigeostrophic models (SQG), each
one representing the buoyancy advection–diffusion dynamics at one of the vertical
boundaries (Held et al. 1995). Baroclinic instability is permitted through the coupling
of vertical edge waves (Eady 1949). For horizontal scales small compared to Lr (the
first-baroclinic deformation radius), the coupling is weak, and the dynamics reduce to
uncoupled SQG models associated with each of the boundaries. Thus, the structure
of the turbulent flow at submesoscales is consistent with that of Held et al. (1995).

In QG, the stratification remains fixed at its Eady value of B = 1, and its eddy-
induced evolution rate is O(ε2). An energy equation for the fluctuations is obtained by
multiplying (2.14) by − Ψ and integrating over the domain. After using the boundary
conditions and making several integrations by parts, we obtain the following:

dEqf

dt
= − ε

Ro
S 〈∂yΨ ∂zΨ 〉 − 1

Re

[
(∇2

hΨ )2 +
ε

Ro
(∂z∇hΨ )2

]
,

Eqf =
1

2
〈(∂xΨ )2〉 + (∂yΨ )2 +

ε

Ro
(∂zΨ )2.

⎫⎪⎪⎬
⎪⎪⎭ (2.16)

The first term in Eqf is the QG approximation to Ekf , and the second term is the
contribution of the buoyancy fluctuations to Ea . The corresponding expression for
the mean QG energy is

Eqm =
S2

24

(
1 +

ε

Ro

)
, (2.17)

again a sum of Ekm and the mean-flow contribution to Eam. (This expression is
consistent with (2.16) for a mean streamfunction Ψm = S(z − (1/2)) (x − (1/2)).) With
a closure principle of conservation of Eqf + Eqm with respect to fluctuation–mean
conversion terms, and a restoring force towards Eady’s flow, the QG equation for S(t)
is

S

12

(
1 +

ε

Ro

) (
dS

dt
− α(1 − S)

)
=

ε

Ro
S 〈∂yΨ ∂zΨ 〉. (2.18)

The use of available potential energy in the closure equation for S assures that
QG formulation (2.18) is the limiting form of BOUS (2.13) as Ro → 0 (and ε/Ro

remains O(1)). (This follows from δEa/δS = (ε/Ro)(S/12) and δEa/δb = εb/Ro by
(2.16) and (2.17). The second right-hand-side term in (2.13), work by vertical
Reynolds stress, is O(ε) and disappears. The third right-hand-side term becomes
in this limit −(ε/Ro)

∫ ∫ ∫
b(uuu · ∇b) = −(ε/Ro)〈wb′〉, the conversion of potential into

kinetic energy, which cancels the first right-hand-side term. The fourth right-hand-side
term (ε/Ro)

∫ ∫ ∫
V b∂yb has zero integral due to the horizontally periodic boundary

conditions. The final term of (2.13) becomes − (ε/Ro)S
∫ ∫ ∫

b′u, which is the same
as the lone conversion term in (2.18).)
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Apart from its asymptotic dynamical approximations, this posing for the QG model
has two structural differences compared to BOUS. One is that the mean stratification
does not evolve away from the Eady state, B = 1, although the mean shear amplitude
S(t) does change. The other is that the interior q remains exactly zero, corresponding
to a spatially uniform Q equal to 1 − Ro2S(t) in (2.2) (rather than the limited Q

variations that do arise in BOUS; end of § 2.1). While one could reduce at least the
first difference by adopting the time-averaged B(z) from BOUS in the QG model, it
would make less simply formulated QG comparison standard, and, more importantly,
we do not believe this change would materially affect the character of the BOUS-QG
comparisons in § 3–4.

2.3. Computational methods

The code for BOUS uses finite-difference discretization. It has previously been used
to compute laboratory scale flows (Molemaker, McWilliams & Yavneh 2000) and
atmospheric and ocean flows at scales of tens of kilometres (Molemaker & Vilá-
Guerau de Arellano 1998; Molemaker & Dijkstra 2000). Most of the spatial operators
are centred schemes with second-order accuracy. It uses a QUIICK algorithm for
advection of velocities and scalars (Leonard 1979). The QUICK scheme approximates
fluxes across cell boundaries with third-order accuracy and introduces a small amount
of numerical dissipation that has a truncation error functionally equivalent to a
biharmonic operator; hence it is more scale selective than the Laplacian diffusion
(Shchepetkin & McWilliams 1998). A three-dimensional multigrid Poisson solver
allows it to run efficiently on large grids. A third-order Adams–Bashforth scheme
is used to advance the variables in time. The model has no normal flow at z = 0
and 1 and periodic boundary conditions in the horizontal directions. In (2.9), the
evaluation of the reference potential energy Epref

, the lowest potential energy that

can be reached through adiabatic rearrangement, is done with an efficient heap sort
(Press et al. 1986) of the discretized buoyancy field following the procedure of Winters
et al. (1995) (also see Molemaker & McWilliams 2010).

The QG code is designed as a companion to the BOUS code. It advances (2.14) in
the interior and (2.15) for ∂Ψ/∂z at the top and bottom boundaries. Like its BOUS, it
employs central differences for the Laplacian operator and a multigrid Poisson solver
for Ψ on the three-dimensional grid, a QUICK algorithm for the advective terms and
an Adams–Bashforth scheme for time stepping.

In both codes the total diffusive effects are a combination of the explicit diffusion
operators in (2.3) and (2.14) and the implicit non-conservative effect of the QUICK
algorithm that leads to a dissipation that is somewhat more scale selective than the
Laplacian diffusion operator. To diagnose the contribution from the latter, we can
compare the QUICK advection term with a centred, second-order scheme that is non-
dissipative. Spectral energy balances (§ 4.3) are used to verify the correctness of these
estimates. The total discrete dissipation (numerical plus explicit) Dkf is diagnosed
using a discrete equation for kinetic energy, analogous to (2.7). For instance, the
domain-integrated dissipative effect of advection can be computed by

Dadv =

∫ ∫ ∫
uuu · (uuu · ∇uuu) dx dy dz. (2.19)

For a non-dissipative advection scheme, Dadv will be identically zero. Using an upwind-
weighted advection scheme, Dadv > 0. By comparing Dadv with Dvisc = Re−1 uuu · ∇2uuu, we
can assess the relative importance of each for the total dissipation. For all results, the
explicit viscosity is chosen such that numerical and explicit dissipation are roughly
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comparable. This estimation is used to compute an approximate effective Reynolds
number for the flows computed. The viscosity νeff used to compute the approximate
Reeff = V0L/νeff is determined diagnostically as the ratio of the total dissipation and
the horizontal shear variance (also see § 4.3). The total amount of dissipation is kept
to a minimum since we want to study the capacity of the solutions to reach the
smallest dissipative scales. The explicit diffusion coefficient is reduced with increasing
resolution to allow increasing Re values while still maintaining smoothness on the
grid scale, and this reduction occurs automatically with QUICK. The highest three-
dimensional resolution used is a 512 × 512 × 128 grid, corresponding to an estimated
Reynolds number of Reeff =6600.

2.4. Parameter regime

On the basis of the Eady mean state and the domain dimensions, we choose the
parameter values for a standard case as Ro = 0.05, Fr = 0.5 and λ=0.1. The associated
non-dimensional, first-baroclinic deformation radius is Lr = 0.1. Since baroclinic
instability has a horizontal length scale close to Lr , it is perhaps more
meaningful to interpret this choice in terms of an instability-scale Rossby number,
Ror = V0/f Lr =Ro(L/Lr ) = 0.5. We might further rescale Ro and Fr by a factor
of S(t) < 1 to reflect the actual mean flow strength that emerges in our solutions,
although this would make only a modest fractional reduction. Thus, Ror = Fr , which
is consistent with the conventional quasigeostrophic regime (often expressed as unit
Burger number); however, the value of 0.5 is not asymptotically small, so we can
expect important differences between the BOUS and QG solutions, which is a primary
goal of the paper. Non-asymptotic values are typical of the core of the Gulf Stream
and Jet Stream, although their shear and stratification profiles are not the same as
in the Eady state. The value of λ is small but not as small as typical of the general
circulations. In § 4, we investigate the effect of varying Ro and Fr , holding their ratio
fixed. In QG, the solution does not depend explicitly on the Ro and Fr values but
only on their squared ratio ε/Ro, and the QG solution is independent of the value of
λ. Since our scientific focus is on the connection between the larger mesoscales where
the primary Eady-flow instability occurs and the smaller submesoscales in equilibrium,
the computational requirements are substantial, and we are practically constrained
in our parameter choices away from asymptotically small values of Ro, Fr and λ.
Relevant values of Rossby and Froude numbers for the fluctuations are discussed in
§ 4.2. Finally, because of the isotropic non-dimensional Laplacian diffusion operator
in (2.3), the ratio of dimensional vertical and vertical diffusvities is equal to λ2. The
numerical values are expressed in terms of the effective Reynolds number Reeff (§ 2.3)
and are reported in § 3–4 in conjunction with specific grid configurations.

3. Spin-down
To illustrate the behaviour of our formulation for the mean-state evolution, we

examine a set of spin-down experiments with no restoring forcing and initially small
fluctuations. Companion solutions are computed using BOUS and QG.

During the initial phase of the evolution, the mean state is baroclinically unstable
and loses energy to the fluctuations primarily at horizontal wavenumber k =2 (i.e.
a radian length scale of L = 1/4π = 0.08). Because of the small wavenumber of
the unstable perturbation, the solution is initially only weakly dissipative, and the
sum of mean and fluctuation energy is conserved through (2.8) with (2.13) and (2.18)
(figure 1). After a period of transition during which dissipative terms attain significant
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Figure 2. Vertical vorticity ζ z(x, y) at t = 9 and z = 0.5 in spin-down (Reeff = 2200):
(a) BOUS (Ror = 0.5), where the fluctuations have evolved to a set of co-rotating cyclonic
eddies; (b) QG, where the fluctuations have evolved to a dipole vortex structure.

amplitudes, the mean state is depleted (S → 0), and the fluctuations continue to evolve
without further energy input.

After the fluctuations reach large amplitude and self-advection matters, there
is a period of intense frontogenesis in both BOUS and QG. Frontogenesis by a
deformation field acting to sharpen the buoyancy gradients leads to a restratifying
secondary circulation around the front that converts potential to kinetic energy
(Hoskins & Bretherton 1972). This process is reflected in energization of small-scale
flow components and increased dissipation rate. At the same time an inverse cascade
of fluctuation energy occurs and leads to the formation of domain-filling vortices. A
quasi-steady end state for the freely decaying fluctuations is dominated by the large-
scale vortices that have little further energy cascade and weak dissipation. Snapshots
of vorticity at z = 0.5 are in figure 2 for times corresponding to these end states.
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Figure 3. Energy balance for the fluctuations in spin-down (Reeff = 2200): (a) BOUS
(Ror = 0.5); (b) QG. Blue is the total rate of change of the fluctuations, red is the energy
conversion from mean to fluctuations, and black is the dissipation of fluctuation energy.

The occurrence and disappearance of small scales, evidenced by a period of enhanced
dissipation, is the result of a complicated process of frontogenesis, frontal instability,
inverse and forward energy cascades, and selective dissipation of small scales (further
discussed in §§ 4 and 5). The outcome of these processes is clearly seen in the difference
in energy between the initial and end states (figure 1).

Figure 3 shows the energy transfer from the mean flow to fluctuations and
dissipation during spin-down with an energy budget for the fluctuations. The rate of
change of fluctuation energy indicates initial growth of the fluctuations when the mean
state is unstable and baroclinic instability sets in. This is also evident from the energy
transfer from mean to fluctuations that indicates a continuing energy source for the
fluctuations up to the point where the mean state is almost fully depleted. Initially, the
rate of change of fluctuation energy and energy transfer is nearly indistinguishable
because of a very weak dissipation rate for total energy. The dissipation rate starts
out very small when the fluctuation is dominated by the k = 2 baroclinic instability;
it is large during the period of forward energy cascade through frontogenesis and
small-scale instability, and it is weak again during the final stage where the flow is
dominated by very large scales.

This paper focuses on the dynamical differences between QG (balanced) and BOUS
solutions, and the implications for the efficiency of energy dissipation by fluctuation
currents. The net energy loss in spin-down as a function of Reeff is shown in figure 4.
As discussed in § 2.1, the effective Reeff for the solutions is a function of resolution;
it is diagnosed a posteriori through an analysis of the combined dissipative effect of
the numerical QUICK advection scheme and the explicit Laplacian diffusion. It is
clear that for increasing Re, the energy dissipation for BOUS approaches a finite
asymptotic value. The behaviour is markedly different in QG where the net energy
loss becomes systematically smaller as Reeff increases. This indicates that even though
QG dynamics is capable of a certain amount of forward energy cascade for any finite
Reeff value, this route to dissipation has only a limited duration and efficiency when
the dissipative scales are moved to higher wavenumbers with increasing Reeff . This is
very different for BOUS dynamics, where the forward energy cascade remains efficient
enough to reach the dissipative scales even when diffusion moves to smaller scales.
This result provides support for the idea that balanced dynamics is limited in its
capacity to efficiently dissipate its energy and the idea that unbalanced dynamics is
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Figure 4. Total energy loss during spin-down for different values of Reeff : BOUS
(Ror = 0.5, black) and QG (blue).

essential for this route to dissipation to be viable at large Reeff . The energy cascades
for BOUS and QG are further studied in § 4.3.

4. Equilibrium
To go beyond the energy loss during a spin-down experiment, we now study

equilibrated flows in which a sustained energy dissipation balances the energy input.
For a given rate of restoring forcing, the solutions are allowed to evolve to a
statistically stationary state with an energy input and dissipation balance on average.
The mean state is being restored to the Eady flow with a non-zero value for α (§ 2).
The value of α is chosen to approximately equal the growth rate of the most unstable
baroclinic-instability mode for the initial mean state.

Furthermore, since the equilibration dynamics are characterized by a vigorous
inverse cascade of fluctuation energy towards the largest scales, we are forced to
include a damping term that removes energy at the smallest wavenumber at a rate of
αk . This is accomplished with the R operators in (2.3) and (2.15), where the horizontal
Fourier transform of, for example Ru is equal to − αkû(kx, ky) when kh =

√
(k2

x+k2
y) < 2.

Note that û is the complex Fourier amplitudes of u. This additional damping is
introduced to avoid solutions that are dominated by the largest available scales
(smallest wavenumbers) because of the ever-present inverse energy cascade in both
BOUS and QG. However, the damping coefficient is chosen to be small enough to
prevent this form of dissipation from being the primary one. With these considerations,
the value is chosen to be αk = 0.2, leading to an almost equal partition between Ekf

dissipation at high and low wavenumbers for the high-Re BOUS solutions. Because
we find that QG has a more efficient inverse energy cascade than BOUS, we choose
the larger αk = 0.6 to have the QG equilibrium fluctuation energy generation rate
equal to BOUS for high-Re values (figure 6). However, independent of the choices for
αk , our primary result is robustly true: with high-Re values, the small-scale dissipation
efficiency in QG is much less than that in BOUS (figure 11). Finally, because the
fluctuation dynamics are characterized by restratification (w′b′ > 0 and increased ∂zB,
especially near the boundaries), the Rb operator contains point-wise restoring to the
Eady profile, α(b − z/ε), that acts on both B in (2.4) and b′, to prevent this term from
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Figure 5. Time series of total kinetic plus available potential energy (black) and its mean (red)
and fluctuation (blue) components for Reeff = 2200 with restoring forcing during equilibrium:
(a) BOUS (Ror = 0.5); (b) QG.
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pushing local regions with weakly stable stratification towards unstable stratification
(i.e. ∂zb < 0).

The figure 5 time series for total energy are for BOUS (figure 5a) and QG
(figure 5b) during a time period after statistical equilibrium has been established.
There is noticeable variability in the mean and fluctuation energy levels, mainly at
the time scale of the larger eddies in the solutions. Variations in the total (mean plus
fluctuations) energy are much smaller.

Energy diagrams show the very different ways in which BOUS and QG manage to
equilibrate (figure 6). In BOUS, the mean state provides a sustained source of energy
for the fluctuations through a horizontal Reynolds stress (0.002) and a conversion
from mean available potential to fluctuation available potential energy (0.15). This is
consistent with the interpretation that the main source of energy of the fluctuations
is the baroclinic instability of the mean state. About half of the energy that arrives
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as fluctuation Ea is removed by restoring forcing of the buoyancy field and damping
of the largest scales of the fluctuations. An additional amount (about 10 %) is
dissipated as Ea , and the remainder is forcing the fluctuation Ek through the release
of potential energy by the buoyancy flux wb′. From the perspective of Ekf , the
energy input by Reynolds stress and the release of potential energy is balanced by the
damping of low wavenumbers (0.03) and dissipation of Ekf (0.03). For the experiments
with high Reeff , the dissipation occurs at increasingly high wavenumber, and non-
zero dissipation implies a forward cascade of energy (§ 4.3). These results, therefore,
indicate a sustained forward energy flux that is a significant fraction of the inverse
energy cascade. In contrast, the QG solution is characterized by an equilibrium
where all the energy put into the fluctuations through the mean state is removed
at the smallest wavenumber through the low-wavenumber restoring term (αk). No
sustained forward energy cascade is established neither in the kinetic energy nor in the
available potential energy. As a result, no internal dissipation is accomplished in QG,
and, without the large-scale damping, the solution would not be able to equilibrate
without having unrealistically large flows. The different types of energy balance and
the corresponding exchanges of energy for BOUS and QG implied by figure 6 are
central to this paper and are further discussed in §§ 4.2, 4.3 and 5.1.

4.1. Flow structure: fronts and boundary effects

Snapshots for ζ z and b during statistical equilibrium near the upper boundary are
shown in figure 7. For the vertical component of vorticity, both solutions show
filamentation and the occurrence of sharp gradients (i.e. fronts). The difference
between BOUS and QG is most evident in the appearance of small-scale fluctuations
around frontal regions in BOUS that are absent in QG. The horizontal scale of these
BOUS features is very small, about 10 % of Lr ; in § 5.2 we show how they act to limit
frontal sharpness.

The horizontally averaged buoyancy profile during statistical equilibrium for BOUS
is plotted in figure 8. (The QG solution does not allow for the mean stratification
to change from N2 = ∂zB = 1.) Because of the continuing release of potential energy
by the fluctuations, the averaged stratification is larger, by about a factor of 2, than
the initial stratification of the basic state. Without a restoring term in the buoyancy
equation (2.4), the average stratification would keep increasing, and this would result
in an increasing Lr . For large enough Lr , the basic state would cease to be unstable to
baroclinic instabilities. Evident in the B profile is the moderate increase in stratification
near the top and bottom boundary, indicating a modest intensification near the
surface. This stratification enhancement accompanies fluctuation intensification near
the boundaries in the buoyancy b and vertical vorticity ζ z (figure 9). On the other
hand, even without the stratification enhancement, QG shows a much stronger degree
of fluctuation intensification near top and bottom boundaries, especially in ζ z. This
behaviour is not uncommon in SQG models where all dynamics arise from the top
and bottom surfaces. The profiles of wrms differ even more; QG has a sharp increase
of wrms towards the surface, whereas the BOUS wrms smoothly decreases towards zero.
Both QG and BOUS show increased frontal activity near the boundary, as indicated
by the amplitude for |∇b|, but for QG the contrast between boundary and interior is
much more pronounced. Interior ∇brms is 50 % of its boundary value for BOUS, but
it is only 5 % of its boundary value for QG. The probability density functions (PDFs)
for the strength of buoyancy fronts, as indicated in |∇b|, are plotted in figure 10.
The PDFs for BOUS and QG have longer tails near the boundary than in the
interior, indicating stronger boundary fronts. For QG there is essentially no interior
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Figure 7. Snapshots in equilibrium (t = 100) at z = 0.96 for Reeff = 2200: BOUS (Ror = 0.5)
ζ z (a) and b (c); the same for QG in (b,d ). Note the fine-structure present in BOUS.
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after equilibration.
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frontogenesis. Note that the boundary PDF for BOUS falls off somewhat faster
than QG for intermediate frontal amplitudes but extends farther towards extreme
amplitudes. This result is consistent with earlier work (Held et al. 1995), where SQG
models do exhibit frontogenetic processes. However, our results demonstrate that the
strength of frontogenesis is weaker in QG compared to BOUS.

4.2. Dissipation efficiency and fluctuation Rossby number

An equilibrated flow requires a balance between forcing and dissipation. If the
dissipation is to occur at a very small scale, an efficient energy cascade has to be
established so that the energy input at large scales can reach the small scales.



Balanced and unbalanced routes to dissipation in an equilibrated Eady flow 51

102 103 104
0

0.1

0.2

0.3

0.4

0.5

Re

D
ef

f

Figure 11. Dissipation efficiency as a function of Reeff : BOUS (Ror = 0.5, black)
and QG (blue).

We introduce the dissipation efficiency Deff defined by

Deff =
Df

Ekf

. (4.1)

Here, Deff is the volume-integrated, small-scale, fluctuation dissipation rate Dkf , due
to both viscous and numerical diffusion, divided by the integrated fluctuation kinetic
energy Ekf . A small value of Deff indicates a solution with a relatively inefficient
forward energy cascade and, consequently, a poor dissipation efficiency.

Figure 11 plots Deff as a function of Reeff for BOUS and QG. For small Reeff

values (at coarser resolutions), dissipation takes place at scales that are only slightly
separated from the forcing on the domain scale and the primary instability near
Lr . In this regime, both BOUS and QG show a comparable dissipation efficiency.
For increasing Reeff , the dissipation scales are smaller and smaller, and a sustained
forward energy cascade needs to be established to reach the dissipation scales. In
figure 11, we note that QG solutions are increasingly inept at reaching dissipation
scales as they move towards smaller and smaller values. In sharp contrast, BOUS is
characterized by a forward energy flux that converges towards a constant value for
large Reeff values. This result illustrates several important points. First, in the absence
of dissipation near boundaries, BOUS is capable of establishing a direct, sustained
route towards dissipation. Second, this direct route is essentially non-balanced (non-
QG) in nature. QG, although capable of a certain amount of forward energy cascade,
is not able to reach the smallest scales in a sustained way. Therefore, once the smaller
submesoscale scales are considered and the dissipation is relegated to smaller and
smaller scales, QG dynamics are fundamentally insufficient. The fluctuation available
potential energy Eaf also has a non-zero energy dissipation in BOUS (figure 6). The
analogous measure for dissipation efficiency of Eaf varies with Reeff in a similar
manner to Deff (figure 11).

To study the dependence of the results on Ro, we vary the overall Ro for a fixed
Re, although in practice our Ro range is limited by the increasing cost of a BOUS
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Figure 12. Fluctuation Rossby number Rofluct (measured by the r.m.s. value of the
non-dimensional fluctuation vertical vorticity multiplied by Ro; left ordinate and black curve)
and dissipation efficiency (right ordinate and red curve) as functions of mean Rossby number
Romean = Ror . (Reeff = 2200.)

model with decreasing Ro (since the ratio between advection and inertial-wave times
increases as Ro−1). In figure 12, the resulting Rofluct is shown, which is computed
by means of the (root mean square) r.m.s. value of the non-dimensional fluctuation
vertical vorticity multiplied by Ro. As the figure shows, there is remarkably little
variation in Rofluct for the range of Ro studied. Furthermore, in the spectrum of
fluctuation Rossby number (Ro times the Fourier amplitude of the horizontal shear,
not shown), there is only a weak dependence on Kh, with values typically around
0.6 at intermediate scales and slowly increasing with wavenumber ∼K

1/6
h , as expected

from the shape of the kinetic energy spectrum ∼K
−5/3
h (figure 13). By wavenumber

extrapolation, this implies that there should be a finite small scale at which rotational
dynamical influences become unimportant; however, we estimate this wavenumber
as O(103), which is well outside of our model resolution. A similar analysis is made
for Frfluct , defined as Fr times the r.m.s. value of the horizontal gradient of the
buoyancy fluctuation (geostrophically proportional to the vertical shear). Note that
Frfluct has a value of about 0.3 on intermediate scales with a similar slow increase in its
spectrum with Kh. Thus, Rofluct =Frfluct , which differs from the isotropy expected for
geostrophic turbulence for the fluctuations on scales small compared with the domain
size (Charney 1971). Furthermore, Rofluct >Frfluct is consistent with the submesoscale
frontal instability being dominated by horizontal shear and Reynolds stress (§ 5.2).
Driven by the energy input by instability of the mean state, the fluctuations develop
regions with large gradients in which the local Rossby number becomes O(1). It
is in those regions that the forward energy flux towards dissipative scales becomes
significant. The interplay between regions that are dissipatively efficient and the
continuous generation by the mean-flow instability leads to a fluctuation field where
the r.m.s. Roeff remains almost constant for the range of large-scale Ro values
considered here. The behaviour as Ro → 0 can only be inferred by extrapolating the
nearly level curves in figure 12.
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Figure 13. Time- and depth-averaged horizontal kinetic energy spectra (Reeff = 6600): BOUS
(Ror = 0.5, black) and QG (blue). Spectra are normalized by the mean of kinetic energy Ek . A
red line ∝ k−5/3 is plotted for comparison.

4.3. Spectral energy balance

To further examine the flow of energy across horizontal scales, we use a spectral
representation of the energy balance. This allows for a more quantitative analysis of
forward energy flux and dissipation. Equation (2.7) for Ekf is transformed into an

equation for Êkf (kx, ky, z), the fluctuation kinetic energy as a function of horizontal
wavenumber (kx, ky) and z using a two-dimensional Fourier transform:

1

2

∂ûuu · ûuu∗

∂t
= −ûuu · ̂(uuu · ∇)uuu

∗
+ ûuu · ∇̂p

∗
+ ŵ · b̂∗ + ûuu · D̂DD∗

. (4.2)

Here, ŝ(kx, ky, z) indicates the complex spectral amplitude. For this analysis, the
advection term (uuu · ∇)uuu is computed using a strictly non-dissipative, centred advection
scheme. By recomputing the same advection term using the QUICK advection scheme
used in the model and taking the difference, we can compute the numerical dissipation
present in the model. This numerical dissipation is added to the explicitly computed
dissipation of the form uuu · ∇2uuu, shown in (4.2) as the final term on the right-hand side.
The second term on the right-hand side represents the work done by pressure. For our
domain configuration (horizontally periodic with closed top and bottom boundaries),
this term is identically zero for every (kx, ky) wavenumber when vertically integrated
over the full domain. The third right-hand side term is the release of potential energy
by vertical motions.

The spectra are vertically domain-integrated and time-averaged and are plotted as

a function of horizontal wavenumber magnitude, kh =
√

k2
x + k2

y . Both BOUS and QG

spectra for Ekf have a peak at large scales, where they are quite similar (figure 13).
The BOUS spectrum decreases more shallowly with kh than QG, indicating greater
submesoscale energy, and it approaches the ∼k

−5/3
h shape of an anisotropic kinetic-

energy inertial range at large kh (consistent with the forward cascade in figure 15). For
smaller wavenumbers, the spectral slope of Ekf is very similar for both BOUS and QG.
For higher wavenumbers, the energy spectrum for QG falls off faster than the BOUS
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Figure 14. Kinetic energy balance in spectral space (Reeff = 2200): BOUS (Ror =0.5, a,b)
and QG (c,d ). Terms are conversion of potential energy (blue), advective flux divergence
(green), restoring damping of wavenumber 1 (red) and dissipation (black). Panels (b,d ) have
an expanded ordinate for the higher wavenumbers.

spectrum, and at kh = 100 there are two orders of magnitude difference in kinetic
energy between the models. These differences in Ekf at higher wavenumbers reflect
the differences in dissipation efficiency. Note that these spectra are volume-integrated
quantities, as appropriate for the whole-system energy conservation principle. The
surface kinetic energy spectrum in the QG model solution is much shallower and
does approach a k−5/3 slope as predicted for a SQG model of Blumen (1978) and
as demonstrated by Capet et al. (2008a) and Tulloch & Smith (2009); this spectral
regime is associated with an inverse Ekf cascade and a forward Eaf cascade.

The individual terms in the spectral energy balance (4.2) are plotted in figure 14.
The co-spectra are vertically integrated and averaged in time. The sum of these terms
was compared to the accumulated change of kinetic energy Êkf = 1/2ûuu · ûuu during
the averaging period to verify correctness of the balance and to verify that the
time-averaged trend in Êkf (kh) is small compared to individual terms in the balance.
Figures 14(a) and 14(b) show the BOUS results, and figures 14(c) and 14(d ) show
QG results. In red, the effect of the damping at kh = 1 is shown. As expected, the
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damping provides a sink for Ekf , acting exclusively at kh = 1. The blue line is the
release of potential energy, and it has a peak at kh =2 for BOUS and kh = 3 for QG,
corresponding to the most unstable baroclinically unstable mode of the basic states.
QG has an even stronger peak at kh = 1. This results from the fact that there is a very
large amount of energy in the kh = 1 spectral component. Even though that mode is
less effective in releasing potential energy than the most unstable mode at slightly
higher wavenumbers, it still releases more potential energy in an absolute sense. The
green line is the effect of the momentum–advection term. When integrated over the
wavenumber range, this term is identically zero, so it provides only a redistribution
of energy across wavenumbers. With this information we can interpret the balance of
Ekf at kh = 1. Both BOUS and QG release potential energy at that wavenumber, and
in addition both solutions show an inverse energy cascade: energy is transferred from
higher wavenumbers by means of the advective term. These two sources of energy
are balanced by the large-scale damping. Figure 14(b,d ) displays the spectral energy
balance for an expanded wavenumber ordinate at large kh. The diffusive term is visibly
non-zero for BOUS. BOUS shows that release of potential energy becomes negligible
for Kh > 20, where dissipation balances the energy that is forward transferred by the
advective terms. QG provides a very different picture for energy equilibration: the
release of potential energy at relatively small wavenumbers is balanced by an inverse
energy cascade, and the small-scale dissipation remains very small.

An examination of the spectra of the terms in the vertical momentum equation
shows that the gravitational force ẑzzb contributes significantly to the fluctuation
dynamical balance throughout the energy inertial range up to the onset of the
dissipation range. This indicates that the advective forward cascades in kinetic energy
and APE are dynamically coupled with each other. This is consistent with a small non-
dimensional Ozmidov scale of the flow Loz =

√
Dkf /(∂zB)3/2 where three-dimensional

overturning motions become energetically possible. Its value is about 0.05 for the
runs with large Re values. Since the horizontal grid spacing of the runs at the
highest resolution is ∆x ≈ 0.02, we therefore are not resolving the expected small-
scale transition from anisotropic rotating, stratified turbulence to isotropic turbulence
when the buoyancy stratification and APE become dynamically irrelevant; i.e. our
anisotropic diffusivities are dissipating the energy on small scales in the solutions
before such a transition. However, by extrapolation of the forward energy cascade in
our solutions, we can anticipate that such a transition would occur on smaller scales
if they were better resolved. The discussion around figure 12 further confirms the
significant influences of rotation and stable stratification on all of the well-resolved
scales in our solutions.

The energy cascade can be expressed explicitly in terms of a spectral kinetic energy
flux � defined by

�(kh) = −
∫ k=kh

k=0

ûuu · ̂(uuu · ∇)uuu
∗

dk. (4.3)

Since advection is purely a redistribution term over wavenumbers, its wavenumber-
integrated effect must be zero when computed correctly; hence �(0) = �(kmax ) = 0.
Both BOUS and QG �(kh) curves show a negative (inverse) energy flux for small
wavenumbers (figure 15). For higher wavenumbers (kh > 3) the results significantly
differ: BOUS has a consistent forward energy flux, nearly constant for a range
up to kh = 20 (as in a kinetic energy inertial range), whereas QG has a negative
energy flux (inverse cascade) for all wavenumbers. These curves are consistent with
earlier remarks that QG is incapable of reaching dissipation scales at large Reeff . In
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Figure 15. Spectral flux of kinetic energy (Reeff = 6600): BOUS (Ror = 0.5, black) and QG
(blue). Note the forward cascade for BOUS and inverse cascade for QG.

contrast, BOUS is characterized by a sustained forward energy cascade, allowing for
a dissipation efficiency that becomes independent of the Re value for large Re.

Our results for the QG energy cascade are consistent with, and partly anticipated
by, the closure-theoretic analysis by Hoyer & Sadourny (1982) of randomly forced,
equilibrium turbulence in a two-boundary, quasigeostrophic flow with zero interior
potential vorticity. They show that a large-scale, baroclinic, fluctuation energy source
(analogous to fluctuation generation by instability of the Eady flow in our problem)
has a volumetric total energy cascade that is net inverse, but with a finite wavenumber
range of forward volume available potential energy cascade with wb′ > 0 conversion
to volume kinetic energy; the total energy forward cascade asymptotically vanishes as
k → ∞ when Re → ∞ (their figures 2 and 5). Note that our results do not contradict
the well-established notion that available potential energy at the top and bottom
boundaries has a sustained forward cascade towards small scales (Blumen 1978;
Hoyer & Sadourny 1982). However, even though it may be tempting to focus on
surface quantities only for QG (because for zero interior potential vorticity, all
dynamics are controlled by advection of temperature at the boundaries), there is an
implied flow in the interior, and the physically relevant energy measure remains a
volume-averaged quantity.

5. Unbalanced flow
A central issue is the degree to which the BOUS flow satisfies a diagnostic force

balance. The more general horizontal force balance is gradient-wind balance, where
Coriolis force, pressure-gradient force and the advective centrifugal force in curved
flows provide the dominant terms in the divergence of the horizontal momentum
equation (McWilliams 1985):

−∇ · (uuuh · ∇huuuh) + f ζ z =
1

ρ
∇2

hp. (5.1)



Balanced and unbalanced routes to dissipation in an equilibrated Eady flow 57

We assess the degree of balance in our solutions as the departure from (5.1) suitably
normalized to provide a relative measure:

εgw(x, t) =

∣∣∣∇ · (uuuh · ∇huuuh) − f ζ z + 1
ρ

∇2
hp

∣∣∣
|∇ · (uuuh · ∇huuuh)| + f |ζ z| + | 1

ρ
∇2

hp| + µ
. (5.2)

Note that µ = f ζ z
rms + |(1/ρ)(∇2

hp)rms is added to the denominator to exclude situations
with locally weak force divergences from being identified as significantly unbalanced.
The degree of unbalance thus lies between ε ≈ 0 (highly balanced or weak) and ε ≈ 1
(fully unbalanced). An alternative, less restrictive, measure of unbalance based on
geostrophic balance is

εgeo(x, t) =

∣∣∣f ζ z − 1
ρ

∇2
hp

∣∣∣
f |ζ z| + | 1

ρ
∇2

hp| + µ
, (5.3)

but this fails to recognize strong vortices as balanced by excluding the centrifugal
force divergence included in (5.2). An analogous measure to assess the degree to
which the solutions are in hydrostatic balance is

εhydro(x, t) =
|−∂zp + b|

|∂zp| + |b| + µ
. (5.4)

For (5.4), µ = (∂zp)rms + brms is added to the denominator.
Note that εgw and εhydro for the BOUS solutions indicate that the flow, in most

places, is highly balanced. This is seen in figure 16, which is a snapshot of a local
region around a stable front. Outside the frontal region, the solution is nearly in both
gradient-wind balance and hydrostatic balance. However, at the front, large unbalance
is evident. This unbalance is consistent with an inherently unbalanced secondary
circulation around a front that is undergoing active frontogenesis (Hoskins &
Bretherton 1972). A buoyancy gradient that is being strengthened through the
influence of a larger-scale straining field undergoes geostrophic adjustment by means
of a restratifying secondary flow, comprised of upwelling (downwelling) on the more
(less) buoyant side of the front. This circulation is clearly evident in figure 16 in
vertical velocity w with significant unbalance in εgw . In general, the flow is almost
perfectly in hydrostatic balance except for a small part of the front.

Figure 17 is an analogous depiction for another frontal region that is actively
unstable as evidenced by the abundance of small-scale features. This instability limits
the degree to which the front may be further sharpened by a larger-scale straining
field. This small-scale frontal instability enhances both vertical and horizontal mixing
(§ 5.2). The small-scale motions exhibit significant gradient-wind and hydrostatic
unbalance.

During spin-down (§ 3), the solutions have similar spatial patterns and degrees of
unbalance. In the late stages of spin-down (e.g. figure 2), the solutions are in nearly
perfect gradient-wind and hydrostatic balance. This is a result of a cessation of
active generation of new fluctuations and the completed dissipation of all unbalanced
motions.

5.1. Energy cascade

The comparison between QG and BOUS solutions demonstrates a dramatic difference
in the ability to establish a forward cascade route towards dissipation. Although QG
turbulence is characterized by an inverse energy cascade (Charney 1971), the BOUS
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Figure 16. A local region with ∼ stable submesoscale frontogenesis in BOUS (z = 0.96,
Ror = 0.5, Reeff = 6600): (a) vertical velocity, (b) buoyancy, (c) error in gradient wind balance
εgw and (d ) error in hydrostatic balance εhydro .

equations evidently provide for the possibility of a forward cascade. Our experiments
show that even when most of the BOUS solutions is in balance—even the simpler
geostrophic balance—the flow generates sufficient unbalanced motions to initiate a
forward energy cascade.

A formal decomposition of a solution into balanced and unbalanced components
is a topic of continuing debate. It is not yet clear whether such a split will have a
meaningfully unique answer. However, a simplest approximation for such a split is to
orthogonally project the full velocity field of the BOUS solutions uuu onto a velocity
field uuund that is horizontally non-divergent, ∇h · uuund = 0. This projection matches the
property that geostrophic velocity is non-divergent. Figure 18(a) is the kinetic energy
spectra for uuu and uuund . As expected, for smaller wavenumbers, the energies in uuu and uuund

are indistinguishable, whereas for larger wavenumbers the energy in the unbalanced
field may be as much as 50 % of the total energy spectrum, i.e. an approximate
equipartition between balanced and unbalanced parts of the flow. The wavenumber-
integrated energy contained in the unbalanced flow is only about 2 % of the total.

The energy flux across wavenumbers � (§ 4.3) is shown in Figure 18(b), both for
the full BOUS solution (as in figure 14) and for the momentum advection associated
only with uuund (approximating the flux associated with the balanced part of the flow).
It is clear that the forward energy cascade depends on the unbalanced flow in an
essential way. The balanced flow leads to a flux � that is almost completely inverted,
sending energy towards larger scales, identical to the QG solutions. This demonstrates
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Figure 17. A local region with submesoscale frontal instability in BOUS (z = 0.96, Ror = 0.5,
Reeff = 6600). The format is the same as in figure 16.

100

100 101 102 103

10–2

10–4

10–6

Kh

100 101 102

Kh

|E
k| 0

0.005

0.010

0.015

0.020

–0.020

–0.025

–0.015

–0.010

–0.005Π
(K

h)

(a) (b)

Figure 18. (a) Three-dimensional kinetic energy spectrum of uuu for the BOUS solution (blue)
and its horizontally non-divergent counterpart uuund (red). (b) Spectral flux of kinetic energy
for BOUS velocity (blue) and a projected horizontal velocity with ∇h · uuuh = 0 (red). (Ror = 0.5;
Reeff = 6600.)

that even when a flow is mostly balanced, as here and in oceanic mesoscale flows, the
unbalanced motions may only represent a small fraction of the flow energy, but the
motions still have a crucial role in establishing a forward kinetic energy cascade to
reach smaller scales where dissipation occurs.
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A recent study of subtropical eastern boundary currents also finds a forward
kinetic energy cascade in the submesoscale wavenumber range (Capet et al. 2008c).
However, in that study the size of the advection term relative to the energy released
by potential energy at high wavenumbers is relatively small, whereas the Eady flow
has a much more developed forward cascade extending beyond the wavenumbers
of significant potential energy conversion. We would expect that the flow regime of
Capet et al. (2008c) would develop a dominant forward cascade for sufficiently high
grid resolution.

5.2. Fine-scale instability

For the fluctuations in the BOUS solutions, we can clearly identify two distinct
instabilities. At the largest scales, fluctuations arise through baroclinic instability
of the mean vertical-shear flow, and as they grow they act to limit its strength.
Additionally, a small-scale frontal instability arises and limits the ability of the
mesoscale strain field to continue to sharpen the front (cf. figures 5 and 17). The
latter is likely to play an important role in the forward kinetic energy cascade.

We focus on a quasi-rectilinear, unstable front to investigate the energy balance
for the frontal instabilities by computing energy conversion terms for the local
fluctuations relative to the parallel frontal flow. For this purpose, we define a locally
rotated reference frame with its y∗ axis aligned with the front. The local coordinates
are x∗ and y∗ in the cross- and along-front directions with horizontal velocities u∗
and v∗. The front is located at x∗ = 0. Figure 19 depicts an unstable front in these
local coordinates. The vertical velocity is generally downward on the less buoyant
side of the front, consistent with a secondary frontogenetic circulation. The secondary
circulation pattern is also evident in figure 19(d ) where along-front averaged velocity
vectors are overlaid on the averaged buoyancy field. In addition, a pattern of up- and
downward velocity is seen in the fluctuations, indicating an unstable frontal mode.
The horizontal slice of buoyancy overlaid with horizontal velocity vectors (figure 19b)
indicates that the strong frontal buoyancy gradient coincides with an accompanying
horizontal divergence.

The local mean · is defined as the along-front average, and perturbations to
the local mean are denoted by · ′. Figure 20 plots the energy conversion terms
for the fluctuation kinetic energy balance: the horizontal Reynolds stress (u′

∗v
′
∗)v∗x ,

the vertical Reynolds stress (wv′
∗)v∗z and the conversion of potential energy (Wb′).

In addition, the figure plots the conversion of potential energy by the along-front
averaged flow wB. From these x∗ and z∗ profiles, it is clear that the instability arises
mostly from the horizontal shear of the frontal flow and to a lesser extent its vertical
shear. Most of the energy conversion is near the surface where the velocity shear is
largest. Conversion of potential energy is unimportant for the local energy balance,
consistent with its disappearance of ŵb̂∗ at high wavenumbers in figure 14.

Recently, other studies on submesoscale instabilities find that these instabilities
arise because of the release of potential energy rather than the horizontal Reynolds
stress (i.e. a baroclinic instability; Boccaletti, Ferrari & Fox-Kemper 2007; Capet
et al. 2008b). One difference between those studies and the current one is the
absence here of a surface mixed layer with its reduced vertical gradients. Such a
layer introduces a separate, much smaller, mixed-layer deformation radius, implying
possible baroclinic instability on a smaller horizontal scale (Capet et al. 2008b).
Furthermore, the enhanced vertical mixing in such a surface mixed layer may alter the
potential for different types of instabilities. These various influences on submesoscale
and frontal instabilities are not yet fully understood. Another relevant study without
a surface mixed layer (Klein et al. 2008) finds no evidence of a shear-driven frontal
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instability. A plausible explanation is that, relative to the first-baroclinic deformation
radius, our simulations have finer resolution, allowing the fronts to sharpen further
until a horizontal shear instability arises.

6. Summary
We have demonstrated that in the absence of other means of dissipation such as

in turbulent boundary layers, a Boussinesq flow is capable of establishing a direct
route towards dissipation by means of unbalanced motions and a forward energy
cascade. In contrast, a quasigeostrophic flow that by its very nature cannot represent
unbalanced motions is markedly incapable of establishing such a direct route and is
increasingly non-dissipative for increasing Reynolds number. The Boussinesq flow is
energetically dominated by balanced flow, both with regard to gradient-wind balance
and even more so to hydrostatic balance. However, the flow develops sharp frontal
regions on small scales where locally the fluctuation Rossby number is not small
and unbalanced motions emerge. The unbalance in the frontal regions is due to
both secondary circulation associated with frontogenesis and frontal instabilities.
The frontal instabilities arise primarily from the horizontal shear of the along-
front velocity profiles. This means that these unstable modes are neither baroclinic
nor convective in their dynamical generation. Unbalanced motions are essential in
establishing dissipation by means of a forward energy cascade, as demonstrated
by a decomposition of the flow into horizontally non-divergent (∼ balanced) and
divergent (∼ unbalanced) components. Although the unbalanced motions represent
only a small fraction of the total kinetic energy of the flow, they are essential to
the forward energy cascade en route to dissipation. As expected from geostrophic
turbulence theory, the balanced motions provide an inverse energy cascade towards
larger scales and contribute little energy dissipation in the interior region of the flow.

The Eady flow is a special one because of its lack of interior horizontal gradients
of potential vorticity (or nearly so with dissipative Boussinesq dynamics); its lack of
boundary stresses, buoyancy fluxes and turbulent boundary layers; and its lack of a
sharp pycnocline that can isolate some deep interior regions from strong mesoscale
or submesoscale currents. It is important that the conclusions we have drawn from
the idealized Eady flow be tested in a variety of more realistic flow configurations
(e.g. Capet et al. 2008c).

We appreciate the support of the National Science Foundation through grants OCE
02-21177 and OCE 05-50227.
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