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ABSTRACT

Frequently the mixing length / in second-order closure models is assumed to have a constant value [, = yL
at large distances from the bottom with a magnitude proportional to the first moment L of turbulent intensity.
Although it is often stated that turbulence closure model results are relatively insensitive to the value of mixing
length parameter v, we show that this is not the case for a second-order Level II model of the steady bottom
boundary layer in an unstratified fluid. In particular, the eddy viscosity and diffusivity depend strongly on v.
Available oceanic data on geostrophic drag ratio lead to a value of v of approximately 0.2-0.3. Atmospheric
data for steady flow suggest a smaller value of 0.05-0.1 aithough the atmospheric observations are ambiguous
about the choice of v, possibly because it is difficult to find truly neutrally stratified and steady-state conditions
in the bottom boundary layer. A value of v between 0.18 and 0.20 is required for the model to match a
similarity theory having a linear-exponential form for viscosity. Fitting an M, tidal current profile at a station
in Admiralty Inlet, Washington, with an oscillatory analog of the model yields vy = 0.20 + 0.04.

1. Introduction

Closure models have proven useful in the study of
geophysical fluids. One of the simplest of these models
assumes that the turbulent intensity is determined by
a local balance between shear generation and viscous
dissipation. Called a Level II model by Mellor and
Yamada (1974, 1982), this model produces simulations
of unstratified boundary layers comparable to those
of more sophisticated models.

For the present study, we use a Level II model with
a form for the mixing length / proposed by Blackadar
(1962):

l _ KZ
1+ KZ/ l() ’

that works well for models of unstratified boundary
layers according to Weatherly and Martin (1978), Mel-
lor and Yamada (1982) and Richards (1982). Near the
bottom, the mixing length is the product of the von
Karméan constant « (=0.4 in this paper) and the height
z as required for the classic logarithmic profile of ve-
locity. For sufficiently large height, the mixing length
approaches its asymptotic value /.

¢y

Following Weatherly and Martin (1978), Mellor and

Yamada (1982), Du Vachat and Musson-Genon (1982)
and Richards (1982), we assume that the asymptotic
mixing length /, is determined by the vertical distri-
bution of the turbulence
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where L is the scale height of the turbulent intensity,
2o the roughness length, g the turbulent intensity
(square root of the turbulent kinetic energy) and v is
the mixing length parameter.

For oceanic conditions Weatherly and Martin
(1978), Adams and Weatherly (1981) and Richards
(1982) choose a value v = 0.3. Mellor and Yamada
(1974) recommend v = 0.1 and Du Vachat and Mus-
son-Genon (1982) a value vy = 0.05 based on the at-
mospheric data. We shall see that the size of v affects
many properties of the boundary layer including its
vertical extent, viscosity, diffusivity, drag coefficient
and veering angle. It is therefore important to have
an accurate estimate of the mixing length param-

ete’i‘l?é steady mean velocity components U, V satisfy
the equations
v=g[a ] sw-v=£[45]. ©
and the boundary conditions
U V=0 at z=z,
U V—U,0 as z— 0. (4)
The eddy viscosity A is written as the product
A = Spql, 5)
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where S, = ¢/ (see Appendix) and c is the dissipation
constant in the turbulent energy equation.

Writing the Reynolds stresses as products of the
eddy viscosity and shear components, the balance be-
tween local generation of turbulence and dissipation
is assumed to be given by

_ [, 2U8U [ ev]ev @
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Richards (1982) among others has found that the prin-
cipal balance in the full turbulent energy equation is
due to these terms.

As Du Vachat and Musson-Genon (1982) point out,
it is possible to write 4 in terms of the mixing length
[ and the shear alone:

R ERCIE

which is derived explicitly in the Appendix. This form
(7) of A was used by Ekman (1905) with constant /.

Independence of /, U and V from the dissipation
constant ¢ (see Appendix) requires that the solution
to the boundary value problem for mean velocity be
subject to Rossby similarity as described by a number
of authors including Rossby (1932), Rossby and
Montgomery (1935), Csanady (1967), Blackadar and
Tennekes (1968), Deardoff (1969), Wimbush and
Munk (1970), Bowden (1978), Du Vachat and Musson-
Genon (1982) and Brown (1982). Similarity theory
allows the results of the numerical computations to
be organized into a few relationships involving v and
the similarity scales. These scales are: the similarity
height u,/f, the similarity viscosity scale uZ /f and
the surface Rossby number u,/fz,. The turbulent in-
tensity ¢ retains a weak c'> dependence on the dis-
sipation constant ¢ (see Appendix). We solve the
boundary value problem iteratively with standard nu-
merical techniques (see Appendix).

Q)

2. Resuits
a. Examples of profiles

As shown in Fig. 1, the mean flow has a modest
dependence on the mixing length parameter v. For v
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Fi1G. 1. Examples of Ekman spirals for the steady bottom Ekman
layer in an unstratified ocean. The results were obtained by nu-
merically integrating the second-order closure model for three values
of the mixing length parameter v = 0.1, 0.2 and 0.3. Representative
heights above the bottom z, are marked on the Ekman spirals.
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FIG. 2. Vertical profiles of mixing length / and turbulent intensity
g corresponding to the three examples of Ekman velocity profiles
shown in Fig. 1 for v = 0.1, 0.2 and 0.3.

= 0.1, the velocity reaches its asymptotic value closer
to the bottom than it does for v = 0.2 and 0.3 and
the maximum veering angle ¢ is greater for v = 0.1.
Over the range v = 0.1-0.3, the turbulent intensity ¢
and mixing length / (Fig. 2) change greatly. The most
striking feature in the profiles of ¢ is the increase in
the vertical ‘extent of the turbulence with increasing
v. The turbulence extends (Figs. 1 and 2) well above
the region of strong shear near the bottom. The max-
imum turbulent intensity ¢, at the bottom (z = z,)
changes comparatively little over these values of ¥
because it is proportional to the friction velocity
which is relatively insensitive to v (Table 1).

The sensitivity of the mixing length /(1) to v depends
on the height z above the bottom. Very near the bottom
(z < 1 m), the mixing length / ~ xz is essentially
independent of . Immediately above (Fig. 2), the pro-
file of / for v = 0.1 diverges from the other two profiles
and makes a rapid transition to its asymptotic value.
For the examples shown in Fig. 2, the v = 0.2 profile
diverges from that for v = 0.3 at approximately z
= 5to 10 m. Well above the bottom (z > 20 m), there
are major differences between the mixing lengths for
the three values of «.

Because the profiles of turbulent intensity g and
mixing length / depend so strongly on the mixing length
parameter v, it is not surprising that the eddy viscosity
A (5) increases rapidly (Fig. 3) with increasing vy in
both amplitude and vertical extent. Each viscosity pro-
file has the same general shape, increasing upward from
a very small value ku,z, at the bottom in response to
the growth of the mixing length. The decrease in tur-
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TABLE 1. Steady Ekman layer—summary of results for Up/fz, = 5.00 X 107
Y
Mixing length parameter 0.1 0.2 0.3
Friction velocity U, (cms™) 0.875 0.934 0.949
Similarity height u,/f (m) 729 77.8 79.1
Surface Rossby number Us/fZo 1.46 X 10° 1.56 X 10° 1.58 X 10¢
Geostrophic drag ratio uy/Us 0.0292 0.0311 0.0316
Maximum veering angle ¢ (deg) 16.4 12.0 104
Maximum turbulent intensity G (cm s7") 2.16 2.30 2.34
Asymptotic mixing length lo (m) 0.95 3.54 7.09
Height of maximum viscosity Zmax (M) 5.0 119 18.1
Maximum viscosity Amex (cm? 571 41.6 125.2 206.4
Height where 4 = 5% Amax Zs, (m) 33 63 88
bulent intensity g with height overwhelms the increase from which it follows that
in / to form a maximum in viscosity (Fig. 3). Above '
L =~ ~yuy/f. &)

the maximum the decrease in viscosity is controlled
by the decrease in g. From the summary of results
(Table 1) for the examples, we see that there is a fivefold
increase in the maximum viscosity 4.« and a 3.6-fold
increase in its height z,,, over the range v = 0.1-0.3.

b. Summary in similarity variables

The results of numerical computations show that
the height 2., =~ 0.79 yu,/f of maximum viscosity is
very close to a linear function of . The maximum
viscosity A, satisfies a power law in 4 of the form
Aoy =~ 0.14 ¥4 /f. The asymptotic mixing length
lo is nearly equal to a simple expression
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FI1G. 3. As in Fig. 2 but of eddy viscosity 4. Note
the large increase in A with increasing «.
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Hence, v gives the scale height L of the turbulence
relative to the similarity height u, /f.

Turning to the geostrophic drag ratio u,/U, (Fig.
4), which is the ratio of bottom friction velocity u#, to
the geostrophic velocity Up, there is a decrease in the
ratio as the surface Rossby number u,/fz, increases.
For a given value of u,/fz,, the ratio u,/U, increases
as v is increased, although the ratio is less sensitive to
changes in v when ~ is large (>0.2). There is an anal-
ogous behavior (Fig. 4) in the maximum veering angle
¢ between the flow just above the bottom and the
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F1G. 4. Geostrophic drag ratio #,/U, and maximum veering angle
¢ as functions of surface Rossby numbers u,/fz, for different values
of the mixing length parameter v = 0.05, 0.1, 0.2 and 0.3. The dots
are observed values from oceanic data as described by Lavelle and
Mofjeld (1983) to which is added the data of Nakata (1981) and the
squares are representative values from atmospheric data as reported
by Csanady (1967). The dashed curves are from the empirical formulas
[Egs. (10) and (11)] with values 4 = 1.7 and B = 4.7 found by
Blackadar (1962) from atmospheric data.



836 JOURNAL OF PHYSICAL OCEANOGRAPHY

TABLE 2. Values of the constants 4 and B in the formulas for the
ratio u,/ U, (10) and maximum veering angle ¢ (11) that are consistent
with the61cvel I model at the value of surface Rossby number u,/
on = 10° .

Y us/Up ¢ A B
0.05 0.0252 23.9° -0.70 6.43
0.10 0.0298 16.8° 0.97 3.88
0.20 0.0326 12.2° 1.82 2.59
0.30 0.0334 10.5° 2.04 2.18

geostrophic flow U, above the Ekman layer. The few
estimates of u, /U, and ¢ that are available from the
oceanic literature (see Lavelle and Mofjeld, 1983, for
a detailed description and references for the oceanic
estimates as well as Nakata, 1981; the atmospheric
observations are from Csanady, 1967) show the general
decrease of both quantities with surface Rossby num-
ber u,/fzp.

There may be a systematic difference between ob-
served veering angles from atmospheric and oceanic
data. The atmospheric angles favor a small value of
v < 0.1 while the oceanic angles favor a larger value
of v. One reason for the scatter in observed atmospheric
values may be that the atmosphere does not remain
unstratified long enough to develop a steady profile
and is still under the influence of earlier stratification
(J. A. Businger and J. E. Overland, private commu-
nication, 1983). Other reasons for the scatter in both
the atmospheric and oceanic observations include sec-
ondary rolls (Brown, 1980), sloping bottoms (Weath-
erly, 1975; Weatherly and Martin, 1978) and the in-
fluence of tidal motions (Weatherly, 1975).

3. Selection of a value for vy
a. Comparison with Rossby-number similarity theory

It is useful to compare the results of the Level II
model with those of other formulations of the bottom
Ekman layer. The Rossby-number similarity theory as
described, e.g., by Brown (1982) matches a logarithmic
layer near the bottom to an exterior Ekman layer in
which the eddy viscosity is a constant. Formulas are
then obtained for the geostrophic drag coefficient
ux/Up and the maximum veering angle ¢ such that

el [of) o

= 1 y_*. -1
¢ = arcsin I:B (Uo) K ] s

where the similarity functions 4 (not to be confused
with the eddy viscosity) and B are fit to observations.
These formulas can also be derived from asymptotic
theory without specifying the detailed form of the vis-
cosity well above the bottom (i.e., Blackadar and Ten-
nekes, 1968).

(11)
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We require that u,/U, and ¢ from Egs. (10) and
(11) be equal to the corresponding quantities from the
Level 11 model for the same surface Rossby number
Us/f20. The constants 4 and B then become functions
of v as shown in Table 2. Values of 4 = 1.7 and B
= 4.7 obtained from atmospheric observations (Black-
adar, 1962) tend to favor a small value of v although
no value gives simultaneously values of u,/U, and ®
corresponding to this pair of 4 and B values. Based
on more recent atmospheric observations, Du Vachat
and Musson-Genon (1982) prefer a value of v = 0.05
with some reservations about the agreement between
the theory and observations. There is sufficient scatter
in the observations of 4 and B as presented by Brown

(1982) that any value of v between 0.05 and 0.3 gives

values of A and B within this scatter. One may conclude
that the corresponding quantities 4 and B from the
Level II model are insensitive to the value of v within
present experimental error.

Another treatment of the bottom Ekman layer is
based on the similarity theory (Arya, 1973; Businger
and Arya, 1974) in which the eddy viscosity is given
a form

A" = uyze /e, (12)

where the height of maximum viscosity is

Zmax = u3(fUo sing)~". (13)

This form of viscosity has a shape similar to those
shown in Fig. 3. We can obtain a value for v by re-
quiring that the height z,,, from the Level II model
be equal to the form (13) where the values of u, /Uy
and ¢ are taken from Fig. 4. Table 3 shows that this
value is v = 0.20 and that it is independent of surface
Rossby number u,/fz,. Matching the maximum values
of viscosity A4,,.x gives a similar result v = 0.18.

b. An estimate from observed tidal currents

The steady Ekman layer is directly analogous to the
bottom boundary layer associated with unidirectional,
oscillatory flow. The frequency of oscillation replaces
the Coriolis parameter and the out-of-phase velocity

TaABLE 3. Comparison of the height of maximum viscosity Zmax
for the Level II model with that from the similarity theory ST of
Businger and Arya (1974). The heights have been divided by the
similarity scale u,/f. Note the excellent agreement for v = 0.20.
Matching the value of the maximum viscosity gives vy = 0.18.

'-lt/fzo =
10* 10° 108 107
£% 1I ST 11 ST II ST II ST
0.10 0.069 0.103 0.069 0.103 0069 0.103 0.069 0.103
020 0.153 0.150 0.153 0.153 0.153 0.154 0.153 0.152
030 023 0171 0236 0179 0236 0.183 0.236 0.182
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component replaces the steady component perpen-
dicular to the geostrophic flow. For the purpose of
estimating v, we shall consider the M, tidal current
profile observed at Station MESA 10 (48°1.8'N,
122°37.8'W) in Admiraity Inlet, Washington, which
is a long, narrow inlet leading to Puget Sound (see
Cannon et al., 1979, for a description of the obser-
vations). We shall neglect the effect of time-dependence
and other tidal constituents in the eddy viscosity on
the current profile (the effects of time-dependent vis-
cosity are discussed by Lavelle and Mofjeld, 1983).
The least-square fit (Fig. 5) of the Level II model to
the M, current amplitude profile gives a value for the

a
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FIG. 5. (a) M, tidal amplitudes and (b) Greenwich phases for the
principal axis (171° True) at Station MESA 10 (48°1.8'N,
122°37.8'W) in Admiralty Inlet, Washington. The estimates (dots)
of observed amplitude and phase at five heights were obtained via
response tidal analyses. The crossbars through the data points are
99% confidence limits based on six 9-day analyses. The curves are
least square fits of an oscillatory Level I model to the observations
using the four parameters v, zo, U, and a phase shift 6, independent
of height.
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FIG. 6. Confidence surface (contours of summed square deviations
in units of 100 cm? s72) for the fit (Fig. 5) of the oscillatory Level
1I model to observed M, tidal currents at Station MESA 10 in Ad-
miralty Inlet, Washington. The surface was obtained by contouring
the optimal square deviations for a range of v and z,. The dashed
contour is the 99% confidence limit.

mixing length parameter v = 0.20 = 0.04 that is con-
sistent with that obtained using the similarity theory
of Businger and Arya (1974).

The 99% confidence limits on v were obtained from
the confidence surface (Fig. 6). The inclination of the
contours relative to the vy and z, axes shows that si-
multaneous adjustments of the two parameters can
produce nearly as good a fit to the observations as the
best values. The optimal value of z, is relatively large
(0.64 cm) and corresponds to roughness elements on
the bottom of order ~30 X 0.64 = 19 c¢cm. This is
reasonable for Admiralty Inlet which is known to have
a rough, rocky bottom.

4. Conclusions

In this paper, we have considered how one empirical
constant ~ affects the results of a Level II model for
the bottom Ekman layer. Because of Rossby similarity
inherent in the model, all the vertical length scales in
the solution are proportional to the similarity height
us/f. The speed profile and bottom stress are not
very sensitive to the mixing length parameter v. Its
effect on the veering angle is greater. Perhaps the most
important role that v plays in the model is to fix the
vertical scale of the turbulence and hence, the mag-
nitude and distribution of the eddy viscosity. There is
some ambiguity concerning the value of 4 obtained
from oceanic and atmospheric data. The available but
sparse oceanic data on the geostrophic drag ratio for
the steady Ekman layer suggest v ~ 0.2-0.3. Such
large values imply relatively large values for the eddy
viscosity.
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Requiring that the Level II model match the sim-
ilarity theory of Businger and Arya (1974), fixes the
value of the mixing length parameter v = 0.18-0.20.
This range for v is consistent with that (y = 0.20
+ 0.04) obtained by fitting the oscillatory analog of
the Level II model to M, tidal currents at a station in
Admiralty Inlet, Washington.
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APPENDIX

1. Derivation of the form (7) for the viscosity

Substituting the form (5) for the eddy viscosity into
(6) and solving for the turbulent intensity gives

a 2 6V 2-1/2
sl @) w

from which we obtain an expression for the eddy vis-
cosity in terms of the mixing length and shear

2 2+41/2
y =(csg,)v212[(%‘;’) +(%lz’)] . (A2

Since the turbulence production represented by the
first two terms of the turbulent energy equation (6)
cannot depend on how the turbulence is dissipated
(independent of c), the last term of (6) must also be
independent of c¢. Since ¢ is a constant while / (1) is a
function of z (and perhaps c), ¢ must be proportional
to ¢'/3. Because /, dU/dz and dV/dz are functions of
z, Sy is a constant and ¢ is proportional to ¢'/3, Eq.
(A1) requires that

(cSw)'"? = ¢,
or the parameter .Sy, is

SM = C_1/3.

(A3)

(A4)
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Therefore, by Eq. (A2) the eddy viscosity is

a 2 aV 2=1/2
AT w
and the turbulent intensity becomes
a 2 oV 2=1/2
a=eo(3) +(3)] - we

The mixing length / and velocity U, ¥V might still
be implicit functions of c. However, when (A6) is in-
serted into expression (2) for the asymptotic mixing
length [y, the mixing length / (1) looses any explicit
dependence on c¢. Since Egs. (1), (2), (3), (4) and (7)
in the text form a closed set without explicit dependence
on ¢, they do not have any implicit dependence either.
That is, / and U and V are independent of ¢ and thus,
of the Reynolds number.

2. Numerical method

The solutions for the steady Ekman problem were
obtained by integrating the complex velocity equation
formed from (3) using a fourth-order Runge-Kutta
scheme. The velocity equation was integrated down-
ward from the surface and then renormalized to match
the boundary condition at the bottom. The vertical
spacing of the grid was decreased near the bottom to
allow for the large shear there. The values of z at each
odd grid index s was found by solving the implicit
formula

s=az+ blog(z) + c. (A7)

The constants a, b, ¢, were chosen so that half of the
grid points lay below a height of 1 m. The even grid
points were halfway between the odd ones to satisfy
requirements of the Runge-Kutta scheme. A total of
2001 grid points were used. '
All variables were in cgs units. The geostrophic ve-
locity (Up = 30 cm s') and Coriolis parameter (f
= 1.2 X 107* s7!) were fixed. The range of surface
Rossby number was scanned by changing the roughness
length z, from 0.5 m to 0.0005 cm. The depth was
taken to be 150 m except at the Admiralty Inlet Station
(108 m); free-slip (zero shear) was assumed as the sur-
face boundary condition. Fixing U, and fand varying
Z, is equivalent to varying the external Rossby number
Uy/fzo. It produces a relatively constant ratio of the
similarity height u,/f to the total depth, which is
numerically convenient. To prevent numerical prob-
lems, a small viscosity was added to that given by

" second-order closure. This small addition increased

linearly from zero at z = z, to ~1 cm? s™! at the
surface.

Using a initial profile of viscosity based on the linear—
eéxponential form, the first profiles of the dynamic vari-
ables were obtained. Thereafter, the Level II viscosity
(5) was used. The calculations were repeated using the
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previous estimates of viscosity until the friction velocity
u, was stable within 1 X 1073 cm s™!. Instabilities in
the iteration scheme were avoided by setting the eddy
viscosity equal to the mean of the previous two profiles.
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