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of the daily magnetic activity index, aa. In one, for 1870-72, no
peak was found. In the other, for 1876-78, a peak at 164 days
was found, which may be compared with the peak at ~150 days
found in the New England data for 1877-79. A spectrum of the
number of magnetic storms with aa > 60 in 1892-94 shows no
peak in the region of interest.

Figure 1b, ¢ show the spectra in the vicinity of 160 days for
the periods 1736-39 and 1787-90. The spectrum from the earlier
period shows a peak at ~154 days as well as one at ~182 days.
For the later interval, the 150-day peak is either absent or is
present only as a weak shoulder on the strong 180-day peak.
The relative amplitudes of the approximately semi-annual peak
(180 days) are consistent with Swedish data, over the period
1721-1943° (for recent discussions of the annual variation, see
refs 19, 20).

These results indicate that the 155-day periodicity is only
infrequently prominent. The presence of a peak near this period
in data going back to the sixteenth century, however, demon-
strates that it is a persistent feature of solar activity over intervals
of centuries, and confirms the report of the presence of the peak
during the Maunder Minimum"’. The finding that the period is
sporadic is consistent with the results of the past three solar
cycles, in which the peak is not observed clearly in whole-disk
behaviour for the nineteenth cycle (see Fig. 1 of ref. 12), and
in which it is weaker in the twentieth than in the twenty-first
cycle'®. The reality of this erratic peak seems to be established,
both by the criteria used in the analyses and by its occurrence
in a variety of observational parameters. A final comment may
be made on the position of the ~150-day peak. I have assumed

that peaks between 146 and 160 days are related because of
resolution problems in data and the method of analysis. Table
1 indicates a slow drift over the centuries in the position of this
peak. The occurrence of such fuzzy periodicities is not unusual
or unexpected (see, for example, ref. 21). If real, this drift may
reflect a basic change in a so-far unknown solar property. [
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KNOTTED and linked structures arise in such disparate fields as
plasma physics, polymer physics, molecular biology and cosmic
string theory. It is important to be able to characterize and classify
such structures. Early attempts to do so' were stimulated by
Kelvin’s” recognition of the invariance of knotted and linked vortex
tubes in fluid flow governed by the classical Euler equations of
motion. The techniques of fluid mechanics are still very natural
for the investigation of certain problems that are essentially topo-
logical in character. Here I use these techniques to establish the
existence of a new type of topological invariant for knots and
links. Any knot or link may be characterized by an ‘energy spec-
trum’—a set of positive real numbers determined solely by its
topology. The lowest energy provides a possible measure of knot
or link complexity.

Continuous deformation of a knotted structure may be
achieved by embedding the structure in an incompressible fluid
medium moving with continuous velocity v(x, t) (where V -v=
0), convecting and distorting the structure in the process. This
flow induces a continuous, time-dependent, orientatable and
volume-preserving mapping x— X(x, ) of the medium onto
itself, where X(x, ) represents the position at time ¢ of the fluid
particle that passes through position x at time t =0.

Let B(x, t) be any solenoidal vector field (V - B=0) convect-
ing with the fluid under the condition that the flux of B through
any closed circuit moving with the fluid is conserved; such a
field may be described as ‘frozen’ in the fluid, and it satisfies
the frozen-field equation®

oB/3t =V x(vxB) (1)
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The solution can be obtained in the form
Bi(X, 1) = B;(x,0)3X;/ox; (2)

a result that encapsulates both the convection of the field from
position x to X and its simultaneous rotation and distortion by
the deformation tensor .X;/9x;. Equation (2) establishes a topo-
logical equivalence between the initial field By(x) = B(x, 0) and
the field B(X, ¢); in particular, all knots and links in the field-line
structure are conserved under the deformation described by
equation (2).

To exploit the properties of equations (1) and (2) in the search
for topological invariants of a knot K, it is first necessary to
construct a tubular neighbourhood Jy of the knot, and a knot
field Bk (x) confined to this neighbourhood, each field line being
a satellite of K. Care is needed, however, in considering the
twist of the field in J.

Consider a knot K of length L, in a configuration for which
a plane projection exhibits a minimum number of crossings.
The knot may be deformed inextensibly to lie entirely in the
plane z =0 except for smooth indentations into the half-space
z <0 at each of the underpasses. By a finite number of reflections
of underpasses in the plane z =0, a related unknotted curve C
may be formed, which may be continuously deformed to a circle
C, of radius R = Ly/27.

Conversely, one may start with a circle, C,, x>+ y>= R?, and
define a tubular neighbourhood 7, of C,, in cylindrical polar
coordinates (r, ¢, z), by

(r—R)*+2z><(eR)? (3)
where £ <1, the limiting situation when & -0 is of particular
interest. The area of cross-section of J, is A, = we>R?, and its
volume is V =27°¢?R>, This tube can be made into a flux tube
by defining a field By(x) that is zero outside J,, and which has
the form

Bo(x) = (0, 27rr®/ V, 0) (4)
inside J,, where ® is constant (the flux of By(x) across any
meridian section of the tube). This field is invariant under any

367

© 1990 Nature Publishing Group



LETTERS TO NATURE

axisymmetric volume-preserving rearrangement of field lines;
this follows from equation (1), which for axisymmetric convec-
tion of a toroidal field becomes D(B,/r)/Dt =0, where D/D¢
is the Lagrangian derivative (=4/3t+v - V).

The knot field Bx(x) is obtained in three steps. (1) The flux
tube is cut at any section ¢ = constant, twisted through angle
2mh,, the twist being uniformly distributed with respect to the
angle ¢, and reconnected (Fig. 1). If hy=+1, then every pair
of B lines is now simply linked, and the associated helicity*’
of the field, is obtained by integrating over the flux elements d®,

D
%0=2I ®, dd, = ¢? (5)
0
Az
7— \
° ( twist 27hg
b
R r
Co

FIG. 1 The flux tube T, (equation (3)) is a torus of circular section centred
on the circle Cy, and carrying flux &. Twist is introduced by cutting the tube
at a section ¢ =constant, twisting through an angle 2h,, and reconnecting.
The helicity thus generated is hy®>.

!

FIG. 2 The unknotted tube J is converted to the knotted tube Jy by
switching a number of crossings. In the example shown here, two positive
crossings are switched to become negative crossings; each switch is
equivalent to the insertion of a smail loop that cancels the field on one side
and makes it reappear on the other. The change in helicity associated with
the switches in this case is —4®?, so that h=h,—4.
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More generally, the helicity is
o= ho‘I)2 (6)

(2) The tube is now deformed by a continuous incompressible
flow field v,(x,?) (0s¢<T), with associated mapping x—
X,(x, T), so that Co» C and 9, T, a tubular neighbourhood
of the curve C defined above; both ® and V, and also the helicity
9, are conserved in this process. Here, ¢ may be assumed
sufficiently small that I does not intersect itself. (3) The field
is reflected in the relevant indentations about z =0 so that the
flux tube I becomes a flux tube Ty containing the knot K
(Fig. 2). Again, ® and V are conserved. The example of Fig. 2
shows that the helicity changes by £2®? for every reflection that
converts a negative (positive) crossing to a positive (negative)
one; hence ¥#,- ¥ = h®? where

h=ho+2(N.—N_) 7)

where N, and N_ are the numbers of such crossings required
to yield the knot K. There may well be different ways of achieving
this end (different sets of reflections may yield the same knot)
but because h, is arbitrary, any desired value of h, positive or
negative or zero, may be achieved, and this freedom corresponds
to the freedom in specifying the twist of the field in the flux
tube Ji.

The choice hy=—2(N,— N_) makes h =0, that is, the field
helicity is zero; this corresponds to ‘zero-framing’ of the knot
as discussed in a physical context by Witten®; I adopt this natural
choice here. The topology of the field Bx(x) thus constructed
is then uniquely determined.

The knot field is allowed to ‘relax’ by a procedure that has
proved effective in considering the existence and stability of
magnetostatic equilibria’. For any field B(x, ¢) that is non-zero
only in some bounded volume, the field energy may be defined
as

M(z)=%IB2dV (8)

a

t flux ¢ volume V

FIG. 3 Relaxation of a flux tube knotted in the form of a trefoil knot, with
V and ® conserved; relaxation is arrested when the axial length L is of the
order of V3 and the mean cross-sectional area A is of the order of V',
The energy is then ME=m®2V*’3 where m is a dimensionless positive
real number, a topological invariant of the knot. &), The presentation K, 3
of the trefoil for which m = mg; b), the presentation K3 , for which | conjecture
that m=m, > my.
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which, by virtue of equation (1), satisfies

dM
?= J B- [Vx(va)]dV=—Jv- [(VxB)xB)]dV (9)
I use the initial condition

B(x, 0) = Bk (x) (10)

and assume that v(x, t) is itself instantaneously determined by
the equation

kv=-Vp+(VxB)xB (11)

where k is a positive constant and p is a ‘pressure’ field deter-
mined by the condition that V -v=0 for all . Both v and Vp
are at most of the order of {x| > as |x| » c©. Combining equations
(9) and (11)
(-iL/I=—ka2dV (12)
dt
sothat M (¢) is indeed monotonic decreasing if vis not identically
Zero.

It has been shown® that if the topology of B(x, 0) is non-trivial,
then the energy of any field obtainable by a transformation of
the form of equation (2) has a positive lower bound. Hence, if
the knot K is non-trivial, the energy function M(¢) is bounded
below and, by virtue of equation (12), must tend to a limit ME
(>0), as 1> co. Here the superscript E indicates that this is an
equilibrium state for which v=0.

Consider how the decrease of energy described by equation
(12) actually occurs. At the initial instant

Lo=27(V/me?)'? and Ay=V/L, (13)
and, if it is assumed that £« 1, then
M(0)=3(®/Ag)’V =80V *(r/e)/? (14)

As ® and V are invariant during the relaxation process, the
energy can decrease only through increase of the average cross-
sectional area A of T and consequent decrease of (axial) tube
length L. This process is illustrated for the trefoil knot in Fig.
3. It is evident that the process of energy reduction must come
to a halt when different parts of the flux tube come in contact
with each other. It is this topological barrier that implies the
positive lower bound for M(t) referred to above. The lower
bound is attained when L and A are determined by V alone
(in conjunction with the knot topology) that is, L~ V'/> A~
V*3. Then on dimensional grounds (compare to equation (14))

ME=m@?v1/3 (15)

where m is a positive real number, determined only by the knot
topology. By virtue of its construction, m is a topological
invariant of the knot.

There is no guarantee that the end state as kf - < is uniquely
determined, and indeed it seems likely that for knots of any
complexity, a variety of distinct asymptotic configurations may
be attainable starting from different initial geometrical configur-
ations of the same knot. In this case, different values of m will
in general be attained for different end states. I denote these by
m; (i=0,1,2,...) ordered so that 0<mysm,<m,=< .... The
sequence {m,, m;, m,, ...} may then be described as the energy
spectrum of the knot, with m, the ground state energy. Generally
speaking, a high value of m, will indicate a complex knot and
indeed m, could reasonably be used as a measure of knot
complexity.

The suggestion that there is in general a multiplicity of possible
end states derives support from consideration of the two different
forms of the trefoil knot (usually denoted K, ; and K; ;) shown
in Fig. 3. I conjecture that these may relax to distinct stable end
states with distinct energy levels m, (for K, ;) and m, (for K3 ,).

Very similar considerations apply to the problem of charac-
terizing links of two or more components. Considering the case
of two linked curves C, and C,, flux tubes of equal volume V
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and carrying equal flux ® around C; and C, can be constructed
by the same procedure as for knots, and thus an initial link field
B, (x) can be generated for the relaxation problem. Again the
asymptotic energy has the form of equation (15), where the real
number m is a topological invariant for the link in question.
In the four physical contexts mentioned at the outset, the
energy of knotted and linked structures has a central role in
formulating a self-consistent theory. In polymer physics, for
example, a tangled macromolecule will tend to relax towards
the ‘ground-state’ configuration compatible with its topology.
The result that the energy of a structure, if suitably defined, has
a minimum value that is unambiguously related to its topology,
seems to be new, and may suggest techniques whereby topologi-
cally distinct structures may be detected. Related concepts are
discussed in recent papers by Freedman and He®'°. O
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AMONG the superconducting oxides, the cubic, copper-free
Ba,_,K,BiO; (BKBO) and the electron-doped compound
Nd,_,Ce,CuO,_, (NCCO) stand out as being somewhat different
from the rest. Nevertheless, an understanding of the pairing
mechanism in BKBO (transition temperature, T.~ 30 K) and
NCCO (T.= 23 K) may give important insights into the mechan-
isms of the higher-T_ superconductors. Here we report tunnelling
spectroscopy measurements on BKBO and NCCO, using point-
contact junctions that exhibit low leakage currents and sharp
conductance peaks at the gap voltages V = * A/e. Reasonably
symmetric and reproducible structures are observed in the high-
bias tunnelling conductances which are characteristic of phonon
effects as seen in conventional superconductors. We have inverted
the tunnelling data and obtained the Eliashberg functions,
a’F(w), where F(w) is the phonon density of states at emergy
#iw. For BKBO, @ F(w) bears a close resemblance to the available
phonon density of state determined by inelastic neutron scattering,
most importantly consistently reproducing the minima. The fact
that the a>F(w) are not identical for different junctions leads to
some uncertainty, but the calculated values of T, are in good
agreement with experiment for both BKBO and NCCO. Also,
there is a good match between the calculated values of the total
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