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Abstract

This paper describes a spatially one-dimensional algorithm developed to estimate water depths from remotely sensed

information of the water surface, using extended Boussinesq equations. Local phase speed estimates are obtained using a least-

squares approach, from spatial profiles of surface elevation/orbital velocity lagged in time. Inversion algorithms have been

developed for both linearized and fully nonlinear Boussinesq equations to calculate the depth. In all cases, synthetic input data

are generated using a fully nonlinear time-dependent Boussinesq model. Wave conditions including monochromatic and

irregular waves are simulated in the model. Mean flow effects are included in the inversion algorithm to account for currents.

For monochromatic wave conditions, there is good agreement between the actual and estimated depth and particle kinematics.

The fully nonlinear method, as compared to the linearized inversion, improves the depth prediction by 10% for the test case

considered. Irregular wave conditions were simulated using time series generated for a TMA spectrum with varying values of

the peak enhancement factor. The error in the inverted depths increased in the deeper part of the bathymetry as the wave train

become more broad-banded. For monochromatic waves in the presence of weak currents, the modified algorithm (including

mean flow effects) is seen to improve the inverted depth by 10%, over the original formulation.
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1. Introduction

In the dynamically active nearshore region of an

ocean, the bed topography changes due to an active

interaction between sediment transport and hydro-

dynamic processes. An accurate knowledge of the

ocean floor, particularly in the nearshore region and

over various spatial and temporal scales, is very

important in understanding such an interactive

regime. Traditional surveying methods of quantifying

the depth are inherently labor intensive as they

involve manual deployment of expensive instruments

over the area of interest. Even with sophisticated and

accurate depth measuring devices like sonar altime-

ters and global positioning satellite units, the survey-

ing process remains costly in terms of both time and

money. It is not feasible to use these methods to

cover large spatial distances. Wave breaking and
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strong currents near the shore make in situ measure-

ments of the bathymetry a hazardous task. Moreover,

marine fouling, water turbidity and suspended sedi-

ments limit the operation times of such instruments.

Since there already exists quite a significant amount

of understanding of the hydrodynamic coupling

between the water depth and the wave kinematics,

methods which would determine the ocean bathyme-

try from remotely measured surface information are

likely candidates for further development. With the

progressively increasing accuracy and availability of

remotely sensed ocean surface information, depth

inversion, as it is commonly referred to in literature,

has become one of the most promising tools in this

area of research.

Depth inversion methods can broadly be classified

into two approaches: time domain inversion and

frequency domain inversion. Depth inversion in the

frequency domain essentially utilizes time stacks of

surface information to calculate wave parameters

such as the wave frequency, wave number and/or

wave celerity, which are then used in the dispersion

relationship to invert the depth. Stockdon and Hol-

man (2000) inverted depth based on field data, using

digital video images at field sites. Time stacks of

pixel intensities at various cross-shore and long-shore

arrays were stored. Using Fourier analysis of the data,

the long-shore and cross-shore wave number compo-

nents and the peak frequency were obtained. The

linear dispersion relationship

C2 ¼ g

k
tanhðkhÞ ð1Þ

was then used to invert depth. Here, C is the wave

celerity, k is the wave number k=(2p/L), L the wave-

length, h is the local water depth and g the accel-

eration due to gravity. Depths were significantly

over-predicted in shallow water and under-predicted

in deep water. The analysis of the video signal

neglected the effects of surface drift currents, fre-

quency and amplitude dispersion effects, the under-

tow and rip currents. Broad-banded and directionally

spread spectrums degraded the accuracy of the

inverted depth estimates, since their effects could

not be included. A similar analysis has been used

by Holland (2001) for time series data from bottom

mounted pressure sensors. He found that the inclu-

sion of finite amplitude effects in the linear dispersion

relationship improved his depth predictions. Dugan et

al. (1996) have used airborne imaging systems to

collect sequential ocean surface maps, and, using 3-D

frequency-wave number spectra and the linear dis-

persion relation, have inverted depth. Bell (1999) has

demonstrated the usefulness of a sequence of marine

X-band radar images to invert shallow water bathy-

metry. The inversion algorithm he used is essentially

the linear dispersion relationship, with the phase

speed and the wave period estimated from cross-

correlation and frequency spectra analysis, respec-

tively.

Time domain inversion denotes methods to deter-

mine the bathymetry when the surface information is

sparse in time. Dalrymple et al. (1998) describe a

method using Hilbert transforms to estimate phase

speeds from numerically generated surface maps of

wave elevation. Gradients of the phase structure were

then calculated to determine the wave number. A big

disadvantage of this method was the assumption that

wave period be known accurately. For spectral sea

states, another method was developed using lag-cor-

relation techniques. Auto-correlation and cross-corre-

lation matrices were calculated from the images, and

estimates of wavelength and phase speed were respec-

tively obtained. Over-predictions of depth were

observed, which were attributed to nonlinearity and/

or window size effects on correlation estimates.

Grilli (1998) devised two depth inversion algo-

rithms (DIAs) to include amplitude and frequency

dispersion effects in shallow water, when estimating

depth from remotely sensed data. His computations

were done on a fully nonlinear model based on

potential flow theory and the boundary element

method. Shoaling periodic regular waves on mono-

tonic and mildly sloping beach profiles were inves-

tigated and their properties used to invert depth. Bars

and troughs however, are a common feature of interest

close to the shoreline and this method cannot account

for such changes in topography. His test cases were

done with periodic waves, where it was possible to

geometrically determine the wave period. This would

prove to be difficult for the case of irregular waves, in

which several frequencies would be represented in

one waveform, as is the case in the real sea state. The

marked improvements over depth (three to seven

times) over linear inversion predictions, however,

demonstrate that any approach to depth inversion
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should include the complex nonlinear dynamics of

wave propagation. Kennedy et al. (2000b) have used a

fully nonlinear, time-dependent Boussinesq model as

a tool for spatial inversion. The model contains the

fully nonlinear extended Boussinesq equations devel-

oped by Wei et al. (1995), and further modified by

Kennedy et al. (2000a) and Chen et al. (2000) to

include the effects of wave breaking, run-up and

wave-induced current effects. They assume that

time-lagged synthetic spatial maps of both the surface

wave height and orbital velocities are available. Over-

all, depths were predicted accurately. Performing the

fully time-dependent Boussinesq inversion was bur-

densome in terms of computational time.

In the context of time domain depth inversion

algorithms, as compared to Kennedy et al. (2000b),

we assume a less optimal case of data availability,

where information about only one of the two kine-

matic variables is required for inversion in one

horizontal dimension. This is more realistic with

reference to the wave information output from exist-

ing remote sensing instrumentation platforms.

Recently, Hessner et al. (1999b) have discussed the

use of space–time behavior of the sea surface ele-

vation (with an accuracy of 10% in the significant

wave heights) obtained from nautical radars in esti-

mating the water depth. Reichert et al. (1999) and

Hessner et al. (1999a) have compared sea state

measurements obtained from a shallow water instal-

lation of a remote sensing system based on a nautical

X-band radar, to Waverider buoy data, and found that

surface current velocities could be estimated to within

an accuracy of F 0.2 m/s. Williams et al. (2000) have

reported the application of airborne optical measure-

ments in determining surface current vectors in the

nearshore region, accurate to 5% in magnitude and

5E in direction, when compared to ADCP measure-

ments. A time-lagged pair of spatial profiles of wave

height and surface velocities obtained from such data

acquisition systems can be used to quantify the

spatial variability in the phase speeds of propagating

water waves as they approach the shoreline. A least-

squares based method to estimate local phase speeds

is discussed in Section 2.1. In Sections 2.2 and 2.3,

we formulate the hydrodynamic equations that relate

the given input data and the calculated phase speeds

to the unknown bathymetry. The numerical imple-

mentation of the inversion algorithm is explained and

tested with a simple example in Section 3. Several

test cases under varying input wave conditions are

shown and the results discussed in Section 4, fol-

lowed by the conclusions in Section 5.

2. Mathematical formulation

2.1. Phase speed estimation

For spatially dense profiles of ocean surface ele-

vation or velocities separated in time (usually a

fraction of a wave period), correlation formulas can

be used to calculate local phase speeds over the entire

domain. The data are typically analyzed by subdivid-

ing the entire domain using finite windows. The

waveform is assumed to be locally constant. This

essentially implies that the first profile can be trans-

lated to the second profile at a later time by the

computed phase speed within the window. The win-

dow is shifted over the domain in small spatial shifts

to get local estimates of the phase speed (Appendix

A). However, it can be shown that even for two

perfectly sinusoidal signals, the optimal window size

is dependent upon the wavelength, the time-lag

between the two signals and the time period of the

wave (Appendix A.1). The wavelength and the wave

period are not known a priori. Real surface data also

will never contain purely monochromatic waves, and

thus no unique period or length of the wave train can

be determined. To avoid the pitfalls mentioned in the

previous method, a least-squares based method was

developed to calculate local phase speeds from two

time-lagged one-dimensional profiles of the surface.

For a typical window size on the order of the wave-

length, the phase speed estimates are smaller by two

orders of magnitude when compared to the cross-

correlation estimate (Appendix A.2). Instead of sur-

face elevation data, particle velocity profiles can

similarly be used to get local phase speed estimates.

2.2. Linearized shallow water equations

After calculating the local phase speeds through-

out the spatial domain, we need to formulate a time-

independent set of hydrodynamic equations that

relate the given surface data and the computed phase

speed to the unknown depth. Since we are trying to
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estimate the depth in the shallower nearshore part of

the ocean, we consider at first the relatively simpler

linearized shallow water equations. In one horizontal

dimension, the mass equation is

Bg
Bt

þ BðhuÞ
Bx

¼ 0 ð2Þ

The momentum equation is

Bu

Bt
þ g

Bg
Bx

¼ 0 ð3Þ

Assuming a periodic progressive wave traveling in the

positive x direction with the form g = a cos(kx�xt),

we get

Bg
Bt

¼ xasinðkx� wtÞ ¼ � x
k

Bg
Bx

¼ �C
Bg
Bx

ð4Þ

The wave number k and the frequency x are implicitly

assumed to be independent of space (x) and time (t),

respectively. We can replace the time derivatives with

the spatial derivatives and arrive at the shallow water

depth inversion mass and momentum equations

�C
Bg
Bx

þ BðhuÞ
Bx

¼ 0 ð5Þ

�C
Bu

Bx
þ g

Bg
Bx

¼ 0 ð6Þ

If we now integrate along x (assuming that C is locally

constant, i.e. (BC/Bx) = 0), we get,

�Cg þ hu ¼ A ð7Þ

�Cuþ gg ¼ B ð8Þ

where A and B are arbitrary integration constants. If we

consider pure wave propagation without mean flow

effects, then A=B = 0, since motion vanishes in the

absence of a wave. The case of nonzero values of the

constants are discussed later in Section 2.4, where

depth-uniform steady currents will be included in the

inversion algorithm. Given a time-lagged pair of pro-

files of g (or u), from which we can calculate C, we can

solve Eqs. (7) and (8) for the two unknowns, the depth

(h) and the particle velocity u (or g). The shallow water

equations, though simple to formulate, are limited by

their range of applicability to regions near the shore

where the dispersion parameter (l = kh) is less than

about (p/10). The Boussinesq equations on the other

hand, which reduce to the shallow water equations for

small values of l, have been extended to be applicable
in regions with values of l as large as 6, the deep water

limit being l>p.

2.3. Boussinesq equations

The extended Boussinesq equations of Wei et al.

(1995) have been modified by Chen et al. (2000) and

Kennedy et al. (2000a) to include wave breaking, run-

up and wave-induced currents and can accurately

model wave transformation in the nearshore region.

The one-dimensional model equations are

gt ¼ Eðg; uÞ þ mE2ðg; uÞ þ f ðx; tÞ ð9Þ

½UðuÞ�t ¼ Fðg; uÞ þ m½F2ðg; uÞ þ Ftðg; utÞ�

þ Fbr þ Fb þ Fsp ð10Þ

where g(x, t) is the surface elevation and u(x, t) is the

horizontal particle velocity at the reference water

depth z = za. m is a control parameter determining the

nonlinearity of the equations to be used in the model,

with fully nonlinear denoted by m = 1 and weakly

nonlinear denoted by m = 0. The other quantities are

defined as

U ¼ uþ h½b1huxx þ b2ðhuÞxx� ð11Þ

E ¼ �½ðhþ gÞu�x � ½a1h3uxx þ a2h
2ðhuÞxx�x ð12Þ

F ¼ �ggx � uux ð13Þ

The higher order dispersive terms are defined as

E2 ¼ � a1h
2g þ 1

6
gðh2 � g2Þ

� �
ðuxxÞ

� �
x

� a2hg � 1

2
gðhþ gÞ

� �
ðhuÞxx

� �
x

ð14Þ
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F2 ¼ � 1

2
ðz2a � g2Þuuxx

� �
x

� ðza � gÞuðhuÞxx �
1

2
½ðhuÞx þ gðuxÞ�2

� �
x

ð15Þ

Ft ¼ 1

2
g2uxt þ gðhutÞx

� �
x

ð16Þ

Fbr denotes the wave breaking term, Fb the term due

to bottom friction and Fsp is the sponge layer term. f(x,

t) is the source function term used to generate waves

internally in the model, and

a1 ¼
1

2
b2 � 1

6
; a2 ¼ b þ 1

2
;

b1 ¼
1

2
b2; b2 ¼ b ð17Þ

where b = za/h =� 0.531. Even though amplitude dis-

persion and nonlinear effects become pronounced in

the nearshore region and can only be modeled accu-

rately by including nonlinear terms in the hydrody-

namic equations, we first consider a simpler sub-set of

the above equations to develop a corresponding set of

linearized Boussinesq inversion equations.

2.3.1. Linearized Boussinesq equations

Nwogu’s weakly nonlinear Boussinesq equations

are found by setting m = 0 in Eqs. (9) and (10). If we

disregard the wave breaking, bottom friction, sponge

layer and source function terms, linearize the resulting

equations, replace the time derivatives with the space

derivatives as in Section 2.2, and integrate along x, we

arrive at the linearized time-independent mass and

momentum inversion equations

Cg ¼ huþ a1h
3uxx þ a2h

2ðhuÞxx ð18Þ

gg
C

¼ uþ h½b1huxx þ b2ðhuÞxx� ð19Þ

The integration constants in the above equations have

been neglected and are discussed in the next section.

The only difference between the above equations and

the shallow water inversion Eqs. (7) and (8), with the

integration constants neglected, lie in the dispersive

terms included here.

2.3.2. Fully nonlinear extended Boussinesq equations

Starting with the fully nonlinear extended equa-

tions and proceeding in a similar function, but keeping

all the nonlinear terms, we get the fully nonlinear

inversion equations. The mass equation is

Cg
hþ g

¼ Puþ Qux þ Ruxx ð20Þ

where

P ¼ 1þ � g
2
þ a2h

� �
hxx

Q ¼ 2 � g
2
þ a� 2hx

� �

R ¼ a1h
2 þ gðh� gÞ

6
þ � g

2
þ a2h

� �
h

The momentum equation is

LuþMux þ Nuxx ¼ S � gg ð21Þ

where

L ¼ 1þ b2hhxx

M ¼ 2b2hhx � ghx

N ¼ h2b1 þ b2h
2 � g2

2
� gh

S ¼ � u2

2
� 1

2
ðz2a � g2Þuuxx

� ��

�
�
ðza � gÞ½uðhuÞxx�

�

� 1

2

�
½ðhuÞx þ gux�2

�
� gg

�
1

C

where all the nonlinear terms involving velocity have

been collected in S. We now have the time-independ-

ent mass and momentum equations which will be used

S.K. Misra et al. / Coastal Engineering 47 (2003) 265–293 269



in Section 3 to formulate the depth inversion algo-

rithm in the absence of mean flow effects.

2.4. Including mean flow effects

The inversion equations derived above cannot

account for currents, since the integration constants

involving the mean flow quantities were neglected.

Due to this, with respect to a stationary frame of

reference, the wave would appear to travel faster on

a following current and slower on an opposing current.

This shift in the phase speed would be inferred as a

corresponding (but spurious) change in the bathymetry

in the present set of depth inversion equations. To

show how to correctly model mean flow effects, let us

consider the nonlinear shallow water equations, which,

after replacing the time derivatives with the spatial

derivatives, can be integrated along x, to arrive at

�Cg þ ½uðhþ gÞ� ¼ A2 ð22Þ

�Cuþ u2

2
þ gg ¼ B2 ð23Þ

We can split the total surface elevation and orbital

velocity as

g ¼ gw þ ḡ; u ¼ uw þ ū ð24Þ

where subscript w denotes the oscillatory part and the

overbar –, the mean part of a quantity. Substituting in

the mass and momentum equations, we get

� Cðgw þ ḡÞ þ uwðhþ gw þ ḡÞ þ ūhþ ug

þ ūgw ¼ A2 ð25Þ

� Cðūþ uwÞ þ
ū2 þ u2w

2
þ ūuw

� �
þ gḡ

þ ggw ¼ B2 ð26Þ

The integration constants A2 and B2 can be determined

by considering the case when waves are absent, in

which case

A2 ¼ ūðhþ ḡÞ ð27Þ

B2 ¼
ū2

2
þ gḡ ð28Þ

Consider the case when total velocity data are

available. The surface elevation and depth are

unknown. The mean flow is a time averaged quantity

by definition, but since time series of velocity data

are not available (only spatial information at two time

instances is given), we calculate the current from the

total velocity by locally averaging in space over each

individual wavelength. This would be exact for a

strictly periodic wave in space and time. After

calculating ū and assuming a weak current (ḡc 0),

the wave part of the elevation and velocity is calcu-

lated by

uw ¼ u� ū; gwcg ð29Þ

Since Eqs. (22) and (23) involve both the wave and

mean parts of the variables (because of which A2 p 0

and B2 p 0), we formulate the corresponding equa-

tions valid only for the pure wave part

�C0g1w þ u1wðhþ g1wÞ ¼ 0 ð30Þ

�C0u2w þ
u22w
2

þ gg2w ¼ 0 ð31Þ

where C =C0 + ū is the Doppler shifted phase speed.

It is to be noted that A2 and B2 have not been

neglected but cancel out with the mean quantities in

the mass and momentum equations. The phase speed

C0 can be estimated from the spatial maps of the pure

wave part of the total velocity, or by subtracting the

Doppler shift effect, which is essentially the current,

from the phase speed estimated from the total veloc-

ity profiles. If on the other hand, mean flows are

present and only surface elevation data are given in

the form of spatially dense profiles, the determination

of the pure wave quantities remains ambiguous. The

mean currents cannot be determined from elevation

data and neither can they be neglected in favor of the

mean water level changes. The present modification

for mean flow effects to the inversion method can

thus only be performed with velocity data. The

Boussinesq inversion equations including mean flow

effects remain the same as in Sections 2.3.1 and

2.3.2, except that the pure wave quantities have to

be used in the equations as shown above.
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3. Inversion algorithm

We now have a set of two time-independent

inversion equations, involving the surface elevation,

the particle velocity, the phase speed and the water

depth. One of the two particle kinematics and the

phase speed is known. The water depth and the other

kinematic variable are unknown. In this section, we

formulate the solution algorithm for each set of

equations depending on the type of surface informa-

tion available as input data. The linearized algorithm,

owing to its simplicity, is then discussed in detail

through a simple test case.

Consider the time-independent linearized shallow

water inversion equations

�Cg1 þ hu1 ¼ 0 ð32Þ

�Cu2 þ gg2 ¼ 0 ð33Þ

in the absence of mean flows. 1 and 2 are the

subscripts used to denote variables in the mass and

momentum equation, respectively. This convention

will be followed through the rest of this paper. Based

on the type of data availability, we can differentiate

two separate cases—CASE I, when only surface

elevation data (g) are given and CASE II, when only

particle velocity data (u) are given. Consider first

CASE I. The ratio of velocities obtained from the

mass and momentum equations is

u1

u2
¼ C2

gh

g1
g2

ð34Þ

Since the water depth is also unknown, a flat bottom

of arbitrary depth throughout the domain is fixed as a

first guess. Let this be denoted as h0 (h0 = 2m). The

still water level is at z = 0. We then substitute the

elevation data into the mass and momentum equations

so that g1 = g2 = g. The computed phase speed is

expressed in terms of the shallow water depth as

C2 = ghsh, where the shallow water depth (hsh) is the

first estimate in the inversion. On substituting for C in

terms of hsh into Eq. (34), we get

u1

u2
¼ hsh

h0
ð35Þ

Fig. 1(a) shows the mismatch in the velocities calcu-

lated from the mass and momentum equations. The

actual, starting, and inverted depths are shown in the

bottom panel. It can be seen that wherever the

Fig. 1. (a) Velocities calculated for the first estimate of depth (hnew = hsh). u1 (- -) and u2 (—). (b) Actual (—), starting (- -) and first inverted (-�)
bottom elevations.
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inverted depth is less than the actual depth, u1 is

greater than u2 and vice versa. A new estimate of

depth (hnew) would be given (based on this velocity

mismatch) as

hnew ¼ hsh
u1

u2

� �
ð36Þ

The depth is iteratively updated until the ratio of

velocities calculated from the mass and momentum

equations approaches unity.

Consider the alternate inversion case, when only

particle velocity (u) is given over the domain (CASE

II). Then, since u1 = u2 = u,

g1
g2

¼ h0

hsh
ð37Þ

Starting from a flat bed, a new depth estimate can thus

be obtained from

hnew ¼ h0
g2
g1

� �
ð38Þ

As before, the depth is updated till the ratio of surface

elevations approaches unity.

3.1. Linearized inversion equations

The above method can similarly be applied to

the Boussinesq equations to increase the range of

applicability of the inversion process to include

dispersive and nonlinear effects. From Section

2.3.1, the linearized inversion equations based on

Nwogu’s linearized extended Boussinesq equations

are

g1 ¼
hu1 þ a1h

3u1xx þ a2h
2ðhu1Þxx

C
ð39Þ

g2 ¼
fu2 þ h½b1hu2xx þ b2ðhu2Þxx�gC

g
ð40Þ

Let us first consider the mathematically simpler

CASE II. Central finite differences (O(Dx)2) are

used to calculate the spatial derivatives. It is to

be noted that u1 and u2 here do not represent the

data from two separate profiles. The subscripts are

merely used to differentiate the variable in the mass

and momentum equations. The depth is updated as

hnewðjÞ ¼ holdðjÞ

Xi¼jþW=2

i¼j�W=2

Ag2ðiÞA

Xi¼jþW=2

i¼j�W=2

Ag1ðiÞA

0
BBBBB@

1
CCCCCA

b

ð41Þ

where b is a kind of shallowness parameter, similar

to the one used by Kennedy et al. (2000b) in their

depth updating algorithm. b = 1 leads to the shallow

water estimate of the depth. i and j denote spatial

grid positions. hold = h0 and hnew = hsh in the first

iteration of depth. W has to be approximately on

the order of a wavelength to reduce numerical noise

and provide enough wave information within the

window. The mismatch in surface elevations calcu-

lated from the two equations is used as a conver-

gence criterion to stop the iteration process. The

total error over the entire domain is defined as

e ¼
Xi¼N

i¼1

fAAg1ðiÞA� Ag2ðiÞAAg ð42Þ

where N is the total number of grid points in the

domain. Theoretically, the true value of the error,

when the iterated depth converges to its final value,

should be e = 0. However, because of approxima-

tions in the solution, such as a linear interpolation

over the domain and the waveform not being

exactly stationary, the mass and momentum equa-

tions cannot be solved to give exact values of the

elevations. The error e therefore always is a finite

nonzero quantity. Since a minimum error also

cannot be predefined (because the true surface

elevation is an unknown quantity), the iteration is

terminated when the error approaches a constant value

within a predefined arbitrary tolerance. Fig. 2 shows

the total mismatch between the calculated surface

elevations summed over the domain, plotted against

the number of iterations for the linearized case. Based

on previous model runs, the maximum number of

iterations for this case was fixed at nine. The error
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drops to its minimum constant value after about five to

six iterations. The algorithm converges to a final depth

and surface elevation estimate within a few seconds of

computational time.

For CASE I, the inversion problem reduces to

solving the mass and momentum equations for u(x)

and h(x). The linearized inversion equations can be

recast in the following manner

u1½hþ a2h
2hxx� þ u1x ½a2h22hx� þ u1xx ½ða1 þ a2Þh3�

¼ Cg1 ð43Þ

u2½1þ b2hhxx� þ u2x ½2b2hhx� þ u2xx ½ðb1 þ b2Þh2�

¼ gg2
C

ð44Þ

The linearized mass and momentum equations are

solved using centered finite differences. Boundary

values are needed for the unknown, which here are

the unknown particle velocities u1 and u2. We

arbitrarily set the values u1(1) = u1(N) = 0 and

u2(1) = u2(N) = 0. This approximation has been seen

to affect computations only near the boundaries

and does not propagate into the domain. A new

estimate of depth is obtained as

hnewðjÞ ¼ holdðjÞ

Xi¼jþW=2

i¼j�W=2

Au1ðiÞA

Xi¼jþW=2

i¼j�W=2

Au2ðiÞA

0
BBBBB@

1
CCCCCA

b

ð45Þ

The total error is defined as

e ¼
Xi¼N

i¼1

fAAu1ðiÞA� Au2ðiÞAAg ð46Þ

The iteration is similarly terminated when e

approaches a constant value.

3.1.1. Numerical example

To test the inversion method developed above, a

synthetic data set was generated from a progressive

monochromatic wave with wave height H = 0.05 m

and wave period T= 4.37 s, allowed to propagate over

a 1:30 plane slope. The deep water depth was hd = 3.5

m, and in the shallow region, the water depth was

Fig. 2. The total mismatch of surface elevations (e) at successive iterations (m) in the linearized inversion case.
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hs = 0.5 m. The corresponding values of the dispersion

parameter were ld = 0.98 and ls = 0.33, such that the

wave was propagating in intermediate water through-

out the domain. The nondimensional period can be

defined as TV¼ T
ffiffiffiffi
g
hd

q
¼ 7:31. m was set equal to zero

in the model to simulate waves, since the analytic

phase speed in this case can be obtained from Nwo-

gu’s linear dispersion relationship

C2 ¼ gh
1� ða þ ð1=3ÞÞðkhÞ2

1� aðkhÞ2

" #
ð47Þ

where a = 0.39. The aim of this example is not an

attempt at inverting depth under synthetically con-

structed real sea conditions, but to examine the

numerics of the inversion algorithm itself. The model

grid spacing was dx = 0.25 m and the time step was

dt = 0.02 s. The total domain length was 500 m.

Sponge layers of width 25 and 50 m were applied

on the seaward and shoreward boundaries, respec-

tively. No wave breaking was observed as the wave

propagated over the topography. The elevation and

velocity maps were stored at six time steps t1 = 401 s,

t2 = 401.5 s, t3 = 500 s, t4 = 501 s, t5 = 600 s and

t6 = 602 s. Steady state wave conditions had been

reached before the data were recorded. The top panel

(a) in Fig. 3 shows the two surface profiles at times t5

and t6. The dashed line is the first snapshot and the

solid line is the later snapshot lagged by dt= 2.0 s,

which is about half the wave period. gVis the non-

dimensionalized surface elevation (gV=(g/a0)), where
a0 = 0.025 m is the incident wave amplitude. Cross-

shore distance (xV=(x/hd)) and bottom elevation (zV=(z/
hd)) have been nondimensionalized by the deep water

depth hd. In all the inversion tests, the domain has

been truncated to get rid of the sponge layers and parts

of the uninteresting flat regions on either side of the

slope.

The linear analytic phase speed is compared with

the least-square estimated phase speed in the top

panel of Fig. 4. The phase speeds have been non-

dimensionalized (CV=(C/Cd)) by the analytic deep

water phase speed Cd = 5.12 m/s calculated from Eq.

(47). The window size was W= 25 m, which is about

the same as the deep water wavelength (Ld = 22.44

m), and the window shift was 5 m. The nondimen-

sional window size WV=(W/Ld) = 1.11. The analytic

Fig. 3. (a) Wave surface profiles generated with m = 0. (b) Assumed (- -) and actual bottom elevations (—).
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speed is estimated accurately except at the sharp

corners in the bathymetry, because of the large finite

window size. Convergence is fast and the error

decreases monotonically to its minimum value within

about five iterations. The shallowness parameter

b = 1.0.

The top panel of Fig. 5 shows the final converged

inverted depth compared to the actual or true depth.

The depth estimate agrees well with the analytic

bathymetry except at the sharp corners. The smearing

in phase speed translates to a corresponding loss in

resolution in the inverted depth. From Eqs. (32) and

(33), for a given depth and surface elevation data, we

can see that an over-prediction of phase speed leads to

an over-prediction in u1 and an under-prediction in u2.

The orbital velocities from the mass equation have

been nondimensionalized as u1V=(u1/(a0Cd = hd)), and

similarly for u2V and the true velocity uV. If the com-

puted phase speed is smaller than the true phase

speed, u1 would be smaller than u, and u2 would be

greater than u. Also, from Eq. (36), it can be seen that

a discrepancy in the computed velocities translates to

a corresponding error in the inverted depth. For

example, at the offshore toe of the slope, the phase

speed is under-predicted, which leads to an under-

prediction of u1 and a corresponding under-prediction

in depth.

The shallowness parameter can be increased to

accelerate convergence. An increased value of b
directs the depth iterates toward the true depth more

quickly. However, the iteration has been observed to

begin diverging at b>2.0. For all the inversion cases,

the shallowness parameter has been kept fixed at

b = 1.0. To investigate the possible effect of an arbi-

trarily assumed starting depth on the inversion, three

different initial bathymetries were considered, all of

which were constant across the domain. In Fig. 6(a)

are shown the three assumed depths along with the

actual depth. In the bottom panel is plotted the total

velocity mismatch for the different assumed starting

depths. The inversion algorithm converges uniformly

to the same value for all the three cases and the

inverted depth and velocity estimates for inversion

tests performed with the three different starting depths

were the same. Any arbitrary depth can thus be used

as a starting point for the inversion.

Fig. 4. (a) Analytic (—) and estimated (- -) wave phase speed. (b) Total velocity mismatch (e) at successive iterations (m).

S.K. Misra et al. / Coastal Engineering 47 (2003) 265–293 275



Fig. 5. (a) Actual (—) and inverted bottom elevations (- -). (b) Actual (—) and estimated velocities {u1V (-�), u2V (- -)}.

Fig. 6. (a) Actual (—) and assumed bottom elevations: z01V (�), z02V (-�), z03V (- -). (b) Total velocity mismatch at successive iterations during

inversion with the different assumed bottom elevations z01V (*), z02V (+) and z03V (o).

S.K. Misra et al. / Coastal Engineering 47 (2003) 265–293276



3.2. Fully nonlinear inversion equations

Let us consider CASE II first, when only velocity

data are available. The mass equation can be written as

P1g1 þ Q1g
2
1 þ R1g

3
1 ¼ S1 ð48Þ

P1 ¼ u1 � C þ a1h
2u1xx þ

h2u1xx
6

�
hðhu1Þ

xx

2

þ a2hðhu1Þxx

Q1 ¼ � ðhu1Þxx
2

R1 ¼ � u1xx
6

S1 ¼ �a1h
3u1xx � hu1 � a2h

2ðhu1Þxx

The momentum equation can be written as

P3g2 þ Q3g
2
2 ¼ S3 ð49Þ

P3 ¼ g � u2ðhu2Þxx þ ðhu2Þxu2x þ Chxu2x þ Chu2xx

Q3 ¼ �
u2u2xx þ u22x þ u2xxC

2

S3 ¼ C½u2 þ h2u2xxðb1 þ b2Þ þ b2hhxxu2 þ 2b2hhxu2x �

� u22
2
� z2au2u2xx

2
� zau2ðhu2Þxx �

ðhu2Þ2x
2

The momentum equation is quadratic in the unknown

g2 and has standard analytic solutions. Since there

exists more than one solution for both the mass and

momentum equations (the equations being cubic and

quadratic), of which only one is the correct value, and

since solving the mass equation using standard ana-

lytical solutions involves evaluating complex quanti-

ties, a simpler solution procedure using Newton

Raphson method was used. The Newton Raphson

method requires an initial guess or a seed value, which

in this case was provided by first solving the linearized

mass and momentum (Eqs. (39) and (40)), and then

substituting the solution as an initial guess to solve

Eqs. (48) and (49). The iteration of depth remained the

same, based on the mismatch between the calculated

values of g1 and g2.
The inversion procedure for CASE I can be for-

mulated by rewriting the fully nonlinear inversion

equations in terms of the unknown velocities u1 and

u2. The mass equation is

L1u1 þM1u1x þ N1u1xx ¼
Cg1

hþ g1
ð50Þ

L1 ¼ 1þ � g1
2
þ a2h

� �
hxx

M1 ¼ 2 � g1
2
þ a2h

� �
hx

N1 ¼ a1h
2 þ g1ðh� g1Þ

6
þ � g1

2
þ a2h

� �
h

The momentum equation is given by

L2u2 þM2u2x þ N2u2xx ¼
K2 � gg2

C
ð51Þ

L2 ¼ 1þ b2h
2hxx

M2 ¼ 2b2hhx � g2hx

N2 ¼ h2ðb1 þ b2Þ �
g22
2
� g2h

K2 ¼ � u22
2
� 1

2
ðz2a � g22Þu2u2xx

� ��

�
�
ðza � g2Þ½u2ðhu2Þxx�

�

� 1

2

�
½ðhu2Þx þ g2u2x �

2

��
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The mass equation is solved with boundary values for

u1 and u2 set to zero. The left hand side of the

momentum equation is also tridiagonal in u2, but the

term K2 contains nonlinear convective terms involv-

ing the unknown u2 itself. The momentum equation is

thus solved iteratively. At the first iteration, all the

nonlinear terms in u2 are neglected (K2 = 0) and the

following linear equation is solved for u2

L2u2 þM2u2x þ N2u2xx ¼ � gg2
C

ð52Þ

The solution to Eq. (52) is used to calculate K2. K2 is

then substituted into Eq. (51) to calculate the solution

to the fully nonlinear equation. Based on the mismatch

between u1 and u2, the depth is updated as before.

4. Results

4.1. Inversion with surface elevation data (CASE I)

Two different types of surface elevation data from

the fully nonlinear time-dependent Boussinesq model

have been considered, one in which there were no

prescribed mean flows (CASE IA), and the second in

which an initial mean current was prescribed (CASE

IB) in the model.

4.1.1. No prescribed mean flows in surface elevation

data (CASE IA)

There were no prescribed mean flows in CASE IA,

i.e. ḡ= 0 and U = 0. The deep water wave height was

H = 0.12 m and the fully nonlinear model was run to

simulate the waves. The bathymetry and other model

parameters remained the same as in Section 3.1.1.

Since the wave evolves in time because of nonlinear

effects, the estimates of phase speed vary depending

on the time instants at which the waveforms are

recorded. Therefore, the assumption in the inversion

methodology, that the first profile can be translated to

the second by the spatially varying but temporally

constant phase speed ((B/Bt)!C(B/Bx), (B2/Bt2)!
C2(B2/Bx2)) is no longer valid. Profiles were recorded

at 50 random time instances spanning about 18 wave

periods. A second set of 50 profiles was recorded 0.5 s

after the first set. A pair of snapshots is shown in Fig.

7(a). Phase speeds were estimated for each pair of

profiles, with the window size and the window shift

being 15 m. The error bar plot in Fig. 8 shows the

Fig. 7. (a) Surface elevation profiles for CASE IA (m= 1). (b) Actual (—) and assumed bottom elevation (- -).
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maximum variation of the phase speed estimates,

which are randomly distributed about the analytic

value in the deeper part of the slope, while in the

shallower region, they are consistently larger. The

average phase speed is shown as the dashed line.

Inversion was done with both the linearized and fully

nonlinear inversion equations and the depth and

particle velocity estimates were averaged. The

inverted depths are shown in Fig. 9(a). The percentage

error Eh for the estimated depth can be defined as

EhðxÞ ¼
hestðxÞ � hðxÞ

hðxÞ

� �
� 100 ð53Þ

and is shown in Fig. 9(b). In Eq. (53), hest(x) and h(x)

are the estimated and actual depths, respectively. In

the deeper part of the slope, the inverted depths are

indistinguishable from the actual depth. As the wave

shoals up the slope, the nonlinearity increases, and in

the shallowest region, the error in the linearized

inverted depth is larger than the fully nonlinear

estimate by about 10%. The estimated velocities from

the fully nonlinear mass and momentum inversion

equations agree well with the actual value and are

shown in Fig. 10. The over-prediction of the phase

speed causes the over-prediction in the mass velocity

and correspondingly, an over-prediction of depth.

To further test the limitation imposed by our

assumptions, we simulate the experiments performed

by Beji and Battjes (1993) in the fully nonlinear

Boussinesq model. The bar is shown in Fig. 11(a),

with the dashed line denoting the assumed depth for

the fully nonlinear inversion computations. The inci-

dent wave characteristics for the test case considered

here were T= 2.02 s and H = 0.02 m, l = k0h0 = 0.67

and d=(H/2h0) = 0.025. The waves remained unbro-

ken throughout the simulation. Previous computa-

tions and comparisons with experimental data

(Gobbi and Kirby, 1999) have shown that the fully

nonlinear extended Boussinesq equations can predict

the wave evolution for this case with reasonable

accuracy. Fifty profiles were recorded at random time

instances spanning about nine wave periods. Each of

the second set of 50 profiles were collected 0.1 s after

the first snapshot, dt= 0.1 s. The time-lag (dtc (T/

20)) was kept small since the wave evolves very

quickly in time. The first pair of waveforms are

shown in Fig. 11(b), with the dashed line being the

first profile in time. Fig. 12(a) shows the linear

analytic and estimated phase speeds. A window with

WV= 0.53 was used to calculate local estimates of the

phase speed. As the wave propagates over the bar,

almost all the energy associated with the primary

Fig. 8. Error bar plot of estimated (- -) and analytic (—) phase speeds.
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wave is transferred to the second and third harmon-

ics. The primary wave and the harmonics travel at

different speeds in this region and the resulting wave

signature is fairly complicated. Before the bar, since

nonlinearity is not so pronounced, it is the funda-

mental wave which has all the energy and represents

Fig. 10. Actual (—) and estimated velocities u1V (-�), u2V (- -) with fully nonlinear inversion.

Fig. 9. (a) Actual (—) and estimated depths. Linearized inversion (-�), fully nonlinear inversion (- -). (b) Percentage error of estimated depths.

Linearized inversion (- -), fully nonlinear inversion (—).
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by itself the wave train. The estimated phase speeds

are distributed evenly about the analytic linear phase

speed for the primary wave in this region. After the

bar, the estimated values lie between the individual

phase speeds of the second and the third harmonics.

This is expected since these harmonics are the

dominant wave components in this region. The fully

nonlinear inverted depths for the first set of profiles

are plotted along with the actual depth in Fig. 12(b).

The actual depth is predicted well (after averaging the

inverted estimates) till the top of the bar. After the

bar, since the estimated phase speeds are smaller than

that of the primary wave component, the predicted

depth is also shallower. The reason for this discrep-

ancy is because of the inherent lack of time domain

information in the least squares as well as the depth

inversion algorithms. The estimates of local phase

speeds from a given pair of profiles assumes that the

waveform remains unchanged during that time inter-

val. The broad-banded wave train in this particular

case, which evolves very fast with time, violates that

assumption. The local phase speed within a given

window is calculated by identifying the spatial lag at

which the least-squares error for the two profiles is a

minimum. The magnitude of this error should theo-

retically be zero for a permanent form wave (see

Appendix A.2). It can be seen in Fig. 13 that the error

becomes very large after the top of the submerged bar

when the wave becomes unsteady. The least-squares

error has been nondimensionalized by the square of

the incident wave amplitude (eV=(e/a0
2)). The error

decreases with window size, but the phase speed

estimates become noisy and unreliable since wave

information within the window also decreases. As

expected, the error increases with the time-lag

because of the evolving waveform. The time-lag

was chosen as 0.1 s since, for dt< 0.1 s, the transla-

tional displacements within such a short time interval

are very small and the phase speed could not be

accurately estimated.

In reality, the nearshore wave field is rarely mono-

chromatic. To simulate irregular wave conditions,

several input time series were generated from a TMA

spectrum program. The peak frequency ( fp=(1/Tp))

was 0.229 s� 1, nondimensionalized as fpV=fp
ffiffiffiffi
hd
g

q
=

0.134. The maximum frequency ( fmaxV = 0.3). The sig-

nificant wave height (Hs) was 0.04 m. The actual

bathymetry is the same as before and fully nonlinear

Fig. 11. (a) Actual (—) and assumed bottom elevation (- -). (b) Wave surface elevation profiles (m= 1.0).
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Fig. 12. (a) Linear phase speeds for fundamental wave (—), second harmonic (-�), third harmonic (�), error bar plot for estimated phase

speeds and the averaged value (- -). (b) Actual (—) and error bars for estimated bottom elevations for the first set of profiles, Averaged

estimated depth (- -).

Fig. 13. (a) The nondimensionalized minimum least squares phase speed error (eV(nmin)) for a time lag of dtV= 0.05 and for different window

sizes. (b) eV(nmin) for WV= 0.54 and for different time lags.
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equations were used to simulate waves. Ten tests were

conducted by varying the value of the peak enhance-

ment factor c in the input TMA spectrum. As c
increases, the wave train becomes more broad-banded

and irregular. The values of chosen are shown in Table

1. Two sets of 50 profiles, each spanning about 43

peak periods, were recorded at 50 random time instan-

ces. Each profile in the second set was lagged from the

first by dtV= 0.114. The first pair of profiles for c = 0.5
and c= 200.0 are shown in Fig. 14. Fig. 15(a) shows

the average estimated phase speed for three different

values of c. The percentage error in the average (over

the first set) inverted depths is shown in the bottom

panel.

The inverted depths converge to the true depth in

the shallower part, but are biased toward smaller

values in the deeper part (Eh< 0). The large errors

near xV= 60 and xV= 80 are because of the sharp

corners in the actual bathymetry, where the phase

speed estimates are smeared by the finite sized win-

dows. The nondimensional RMS error in the depth

over the entire domain can be defined as

eh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðhestðiÞ � hðiÞÞ2

N

vuuuut
2
666664

3
777775� 100

hd
ð54Þ

where i is the spatial index and N is the total number

of points in the domain. The variation of eh with c is

shown in Table 1 and Fig. 16. The RMS error

increases as the wave train becomes more broad-

banded, with the largest total error being 13.6% for

the smallest value of c = 0.5.
It can be shown numerically, by considering a

simple wave group consisting of two sinusoidal

waves, that the modulation of the waveform causes

a slope in the wave envelope which increases toward

the node of the wave group envelope and that the error

Table 1

Nondimensionalized root mean square errors for estimated depths (eh) for different values of the peak enhancement factor (c)

c 0.5 1.0 2.0 3.0 6.0 10.0 20.0 50.0 100.0 1000.0

eh 13.62 13.62 13.29 12.99 11.98 11.99 8.62 5.72 4.30 1.30

Fig. 14. (a) First profile pair c= 0.5. (b). First profile pair for c= 1000.0. First profile (- -), second profile (—).
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between the carrier phase speed and the computed

value increases as we go from shallow to deeper

water. Each time we evaluate the phase speed close

to a node of the wave envelope, the estimate is in

error. In the shallower part of the depth, the waves in

the group are propagating at speeds independent of

Fig. 16. Variation of nondimensionalized RMS error in inverted depth with the peak enhancement factor c.

Fig. 15. (a) Averaged phase speed estimates for c= 1000 (—), 10 (- -) and 0.5 (-�). (b) Percentage error in estimated depth for c= 1000 (—),

10 (- -) and 0.5 (-�).
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individual frequencies and are dependent only on the

local water depth. The errors in the estimated phase

speed are thus small.

4.1.2. With mean flows present in surface elevation

data (Case IB)

We now consider CASE IB, where mean flows

were present in the input data (spatial maps of

surface elevation) and where the integration con-

stants were neglected in the inversion equations. This

test case demonstrates the errors in the estimated

phase speed and inverted depth by not accounting for

mean flow effects during inversion. A constant

volume flux ( qw = 0.2 m2/s) was specified through-

out the spatial domain in the model. The resulting

current is given by

UðxÞ ¼ qw

hðxÞ ð55Þ

The Froude number for the mean flow ðFr ¼ U=ffiffiffiffiffi
gh

p
Þ in the deeper part was Fr = 0.0097 and in the

shallower shelf part Fr = 0.1806. The mean water

level variation is small due to the weak current. Fully

nonlinear extended equations were used to compute

the surface maps, with the wave height H = 0.08 m,

all other model and depth parameters remaining the

same as for CASE IA. Because of the following

current, the phase speed is Doppler shifted and is

larger than the true phase speed. The velocity esti-

mates are also in error. This error translates to the

inverted depth and is larger in the shallower part

because the current effect (magnitude) is also larger

in that region of the depth. This error would increase

for stronger currents. As discussed in Section 2.4, the

present inversion method cannot account for mean

flows with only surface elevation data, and at

present, no unambiguous modifications can be sug-

gested for CASE IB to improve depth and particle

velocity predictions.

4.2. Inversion with velocity data (CASE II)

Time-lagged snapshots of particle velocity can also

be used as data to estimate the depth and surface

elevations. We distinguish two cases—CASE IIA,

when there were no mean flows present in the data,

Fig. 17. (a) Prescribed (—) and estimated (- -) current profiles. (b) Biased (—) and corrected (- -) velocity input data.
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and CASE IIB, when the velocity maps had prescribed

mean flows in them. The inversion results for CASE

IIA, as expected, are similar to those obtained from

CASE IA and are not shown here.

4.2.1. With mean flows present (CASE IIB)

As before in CASE IIA, mean flows were pre-

scribed by specifying a positive constant volume flux

( qw = 0.2 m2/s) across the domain. The current is

weak enough to neglect the mean water level varia-

tions (g(̄x))in the fully nonlinear inversion equations.

The phase speed estimate is Doppler shifted by the

current and leads to an increase due to the following

current. The calculated current profile is compared to

the prescribed current in Fig. 17(a). The current has

been nondimensionalized by the deep water value of

the linear analytic phase speed Cd. On subtracting this

current from the total velocity, we get the pure wave

part of the velocity, shown as the dashed line in Fig.

17(b). The Doppler shift in the phase speed is also

corrected for by subtracting this current from the

computed phase speed. Using the corrected phase

speed and pure wave part of the velocity data, the

inverted depth is calculated. The corrected estimate

shows an improvement of 10% over parts of the

domain as seen in Fig. 18(a). The surface elevation

estimate shown as the dashed line in Fig. 18(b) is also

better predicted. The errors over the slope are due to

the incorrect estimate of the current profile in this

region.

5. Conclusions

A depth inversion algorithm has been developed

for one horizontal dimension and nonbreaking

waves. The inversion input data are assumed to be

in the form of time-lagged spatial profiles of either

surface elevation or particle velocity. A least-squares

method has been developed to compute local phase

speeds from time-lagged spatial variations of either

surface elevation or particle velocity. In addition to

estimating the bathymetry, the inversion algorithm

also computes particle kinematics, i.e. given surface

elevation data, particle velocities can be calculated,

and vice versa. Linearized as well as fully nonlinear

Fig. 18. (a) Percentage error in estimated depth with biased data (- -) and corrected data (—). (b) Actual (—) and estimated (biased (-�) and
corrected (- -) surface elevation profiles from mass equation.
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inversion equations were developed depending on

the type of input data. For monochromatic wave

conditions in the absence of currents, the predicted

depths and particle kinematics show good agreement

with actual values. For wave propagation over a (1/

100) plane slope, the fully nonlinear inversion

improves the depth estimates by 10% compared to

the linearized inversion. In strongly nonlinear,

unsteady wave conditions, such as wave propagation

over a steep submerged bar, when the waveform

changes in the time-lag between the two profiles, the

least-squares method fails to predict the local phase

speeds and leads to erroneous depth estimates. Mean

flow effects due to weak currents have been included

by modifying the inversion equations and for the test

case considered, and improvements of 10% were

found in the inverted depths. The inversion for this

case can only be done with velocity data. Inversion

was also done under various irregular wave condi-

tions by varying the input TMA spectrum. The

accuracy of the inverted depth deteriorated as the

wave train became more broad-banded, with

increased errors in the deeper part of the bathymetry.

The 1-D algorithm developed here is computation-

ally efficient, and converges for all the cases con-

sidered within a few seconds.
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Appendix A. Estimates of displacement

A widely used and effective method to obtain a

map of the two-dimensional velocity field is Particle

Image Velocimetry, where the correlation of two

image patterns having a short time interval between

them is used to estimate a velocity vector based on

local average displacement in subregions of the over-

all image (Kinoshita, 1967; Keane and Adrian, 1992).

By focusing over a small area in the profiles, the

spatial separation giving the maximum correlation

yields the local convection velocity of the particles

(Utami et al., 1991). In this section, we consider a

typical cross-correlation method to estimate local

phase speeds from a time-lagged pair of spatial

profiles of surface elevation or surface velocity. We

show that the accuracy of the resulting velocity

estimate is limited in cases where the spatial scale

of the pattern is comparable to the analyzed snapshot

dimension. We then suggest an alternate procedure

based on a least-squares technique.

A.1. Conventional cross-correlation analysis

The true cross-correlation function between two

stationary random processes f(x) and g(x) (x here

denotes the horizontal spatial coordinate, �l < x

<l) is defined as

R̂fgðnÞ ¼ E½ f ðxÞgðxþ nÞ� ð56Þ

where n is the spatial lag between the two processes,

and E stands for ‘‘the statistical expectation of’’. In

practice, the correlation function must be estimated,

since the record lengths are discrete and finite. The

deterministic cross-correlation sequence based on N

samples of f(x) and g(x) is given by

RfgðlÞ ¼
XN�AlA�1

i¼0

f ðiÞgðiþ lÞ ð57Þ

where we assume here that f(i) and g(i) are indexed

from 0 to N� 1, and Rfg(l) from � (N� 1) to (N� 1).

The wave phase speed C is calculated by first iden-

tifying the lag at which the maximum or peak value

occurs in the correlation function. The peak cross-

correlation value can be thought of as the maximum

overlap between the two records when they are slid

over each other. For a moving waveform, the lag

where the peak occurs (nmax) simply means the

displacement of the wave during the time interval

separating the two snapshots (dt). The phase speed is

then given by

C ¼ nmax

dt
ð58Þ

The phase speed estimated above is the translational

velocity of the whole record, which is assumed to
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remain unchanged in the time interval. Willert and

Gharib (1991) have noted that the average displace-

ment vector is unbiased only if there is no velocity

gradient present, that is, all particles move with the

same velocity. Ocean waves on the other hand

undergo spatial transformations as they propagate

toward shore, and are hardly ever of a permanent

form to afford such a simple analysis. There are two

conflicting requirements one faces while evaluating

the phase speeds at discretized positions in the spatial

domain using correlation functions. Ideally, one

would like to get speed estimates at every point in the

domain where surface data are available. This would

provide the best spatial resolution and indication of

changes in celerity over space. Cross-correlation cal-

culations (because of the need for computational ef-

ficiency) inherently require the use of fast Fourier

transforms (FFTs). A periodic data set or an infinitely

long (which can be assumed to have an infinite period)

record would recover the analytic result because of the

harmonic nature of the Fourier expansion. The finite

length of the record is a drawback encountered fre-

quently in cross-correlation techniques because there

is always the risk of introducing artifacts by the

implicit periodic continuation of the signal. Given

two finite surface signal, however, the aim is thus to

determine the phase speed at closely spaced intervals

in space. The entire data are windowed by subdividing

the entire domain using finite windows of length W.

The window is shifted over the domain in small spatial

shifts to get local estimates of the phase speed. The

use of ‘‘sliding windows’’ has also been suggested by

Roesgen and Totaro (1995) in applications where the

flow field is changing slowly. The cross-correlation

function for a given window is then given by

RfgðnÞ ¼
1

ðW � nÞ

Z W�n

0

f ðxÞgðxþ nÞdx ð59Þ

Notice that the above expression yields an unbiased

estimate for the cross-correlation function. In typical

particle velocimetry applications, the size of the inter-

rogation window has no direct influence on the spatial

resolution since the displacement estimate reflects an

average displacement of all the particle images (see

Willert and Gharib, 1991). The wavelengths associ-

ated with such flow visualization applications are

much smaller than the window size. In the present

case, however, the window size is on the order of the

wavelength. W has to be small enough to avoid

smearing the local phase speed estimate within the

window, and large enough to get reasonable estimates

of the cross-correlation matrix.

Fig. 19(a) shows a one-dimensional (x) example

calculation of phase speed from two given spatial

profiles using spatial cross-correlations. The dashed

and solid lines in the top panel are the surface

elevation snapshots (the dashed line being the first

record) of a propagating sinusoidal wave (wave period

T= 8.0 s and wavelength L= 40 m) with a phase speed

Cexact = 5.0 m/s, separated by a time interval dt=(T/
8) = 1.0 s. The two profiles are f(x) = cos(kx) and

g(x) = cos(kx�xdt). k is the wave number (k = 2p/L)
and x the frequency (x = 2p/T) of the wave. The

window size here is W= 100 m. In the bottom panel is

plotted the cross-correlation function Rfg (n) for the

positive and negative spatial lag n. The cross-correla-
tion vector has been normalized, so that the cross-

correlation at zero lag is 1.0. Since it is known that the

wave is propagating in the positive x direction, the

positive lag at the first cross-correlation peak (nmax), is

found to be nmax = 4.3115 m. nmax has been deter-

mined from the correlation vector to sub-grid accuracy

by a three-point parabolic interpolation around the

peak (Willert and Gharib, 1991). The phase speed as

calculated from Eq. (58) is Cest = 4.3115 m/s. The

error in the estimated phase speed is thus about 14%.

The effect of a finite window size on the phase speed

estimate can be seen analytically by constructing the

cross-correlation for the two signals. From Eq. (59),

we get

RfgðnÞ ¼
1

W � n

Z W�n

0

cosðkxÞcos½kðxþ nÞ � xdt�

¼ 1

2ðW � nÞ

� sinð2kW � xdt � knÞ þ sinðxdt � knÞ
2k

�

þ ðW � nÞcosðxdt � knÞ
�

ð60Þ

To identify the lag at the cross-correlation peak (the

maximum value of the cross-correlation vector), we
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differentiate Rfg (n) with respect to the spatial lag n
and equate it to zero.

This gives

dRfgðnÞ
dn

¼ 0

¼ �kðW � nÞcosð2kW � xdt � knÞ þ sinð2kW � xdt � knÞ
2kðW � nÞ2

� kðW � nÞcosðxdt � knÞ þ sinðxdt � knÞ
2kðW � nÞ2

þ ksinðxdt � knÞ ð61Þ

Let the lag at the peak be n = nmax, which can be

obtained from the definition of the maximum spatial

lag

nmax ¼ Cdt ¼ x
k

dt ð62Þ

If we now substitute for n = nmax from Eqs. (62) into

(61), we get

W ¼ L
dt
T

þ ð2nþ 1Þ
4

� �
ð63Þ

where n is any integer. Choosing a window size and

the other parameters given by Eq. (63), we would

recover the exact analytic phase speed of the wave-

form. The expression (63) shows that, even for two

perfectly sinusoidal signals, the window size is

dependent upon the wavelength, the time-lag between

the two signals, the time period of the wave and an

integer n. This is an unfortunate result when applied to

phase speed determination from two surface profiles

for a number of reasons. The wavelength and the wave

period are not known a priori. Real surface data also

will never contain purely monochromatic waves, and

thus, no unique period or length of the wave train can

be determined, even if methods be available to esti-

mate the two.

For the cosine waveform considered above, the

analytic phase speed Cana can be obtained by solving

Eq. (61) for nmax and then dividing it by the time-lag

dt. Cana (nondimensionalized by the exact value), for

various window sizes W (nondimensionalized by the

wavelength) is shown in Fig. 20, as the dash–dot line.

The dashed line is the nondimensionalized analytic

phase speed obtained from two snapshots of a sine

wave signal with the same wave period and wave-

Fig. 19. (a) Wave surface snapshots lagged in time. (b) Cross-correlation vector Rfg(n) calculated at varying spatial lags (n).
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length. At a window size of twice the wavelength, the

error in the cross-correlation estimate is more than

50%, with the error decreasing as the window size

increases. Theoretically, the window size can be arbi-

trarily made as small as desired. It might seem that this

would improve spatial resolution, but the errors due to

end effects arising from the truncation of the waveform

increase with decreasing window size. On the other

hand, increasing W leads to a loss in resolution. Using

window sizes given by Eq. (63), which are marked by

the * in the figure, the exact result is recovered for both

waveforms. It is seen that the phase speed for the

cosine waveform is always under-predicted, and for

the sine waveform always over-predicted. It is there-

fore difficult to accurately estimate phase speeds for

regular wave conditions, using cross-correlation func-

tions. For the same two waveforms, we also calculated

the phase speeds numerically using cross-correlations.

The estimates are shown in Fig. 21 and agree with the

analytic results in Fig. 20.

A.2. Least-squares estimation

Researchers in the field of fracture mechanics have

shown that a least-squares optimization procedure

removes the drawbacks associated with estimating

displacements and flow velocities using cross-corre-

lation functions (McNeil et al., 1987). Following their

approach, we develop a least-squares method to avoid

the pitfalls associated with small window sizes men-

tioned in the previous method. We use finite windows

as before to sub-sample the given profiles.

The least-squares error at a spatial lag n is defined

as

eðnÞ ¼
Z W�n

0

f f ðxÞ � gðxþ nÞg2dx ð64Þ

The spatial lag at which this error becomes a mini-

mum can be defined as nmin, which is obtained from

deðnÞ
dn jn¼nmin

¼ 0 ð65Þ

The phase speed estimate is then given by

C ¼ nmin

dt
ð66Þ

Fig. 22(a) shows the one-dimensional wave signals

considered before for the cross-correlation case, with

Fig. 20. Analytically determined phase speed by cross-correlation method, for a sine wave signal (- -) and for a cosine wave signal (-�). Analytic
least squares phase speed (—) for both signals. Analytically determined window sizes (*) for n= 0, n= 1,. . ., n= 19 from Eq. (63).
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Fig. 22. (a) Spatial maps of surface elevation separated in time. (b) Least squares error between the two profiles as a function of spatial lag.

Fig. 21. Numerically estimated phase speed by cross-correlation method, for a sine wave signal (- -) and for a cosine wave signal (-�).
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all parameters remaining the same. The bottom panel

shows the least-square error plotted against the

spatial lags. The error can be seen to trail off as

the lags increase, since less and less of the two

waveforms is available for comparison. The first

minimum in the error vector is marked as a * in

the plot, which occurs at a lag nmin = 5.0022 m. nmin

has been determined to sub-grid accuracy by an

analytic three-point parabolic interpolation around

the minimum. Since the time-lag between the two

signals (dt) is 1 s, the phase speed calculated from

Eq. (62) is 5.0022 m/s.

The effect of window size on celerity calculations

using least squares has been investigated. On substi-

tuting the definition of nmin from Eq. (66), Eq. (65) is

identically satisfied irrespective of window size. The

analytic least-squares (the solid line in Fig. 20) value

recovers the exact phase speed, since the least-squares

error at the minimum lag is zero. The numerically

estimated phase speeds (nondimensionalized by the

exact value) are plotted against the nondimensional-

ized window size, for the sine waveform and the

cosine waveform in Fig. 23. The mismatch in the

estimated and exact phase speed is only due to

digitization errors. The error can be observed to

decrease as W increases, with the error at a window

size equal to the wavelength, being about 0.5%, which

is two orders of magnitude smaller than for the cross-

correlation case.
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