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ABSTRACT

The development of numerical wave prediction models for hindcast applications allows a detailed de-

scription of wave climate in locations where long-term instrumental records are not available. Wave hindcast

databases (WHDBs) have become a powerful tool for the design of offshore and coastal structures, offering

important advantages for the statistical characterization of wave climate all over the globe (continuous time

series, wide spatial coverage, constant time span, homogeneous forcing, and more than 60-yr-long time se-

ries). However, WHDBs present several deficiencies reported in the literature. One of these deficiencies is

related to typhoons and hurricanes, which are inappropriately reproduced by numerical models. The main

reasons are (i) the difficulty of specifying accurate wind fields during these events and (ii) the insufficient

spatiotemporal resolution used. These difficulties make the data related to these events appear as ‘‘outliers’’

when compared with instrumental records. These bad data distort results from calibration and/or correction

techniques. In this paper, several methods for detecting the presence of typhoons and/or hurricane data are

presented, and their automatic outlier identification capabilities are analyzed and compared. All the methods

are applied to a global wave hindcast database and results are compared with existing hurricane and buoy

databases in the Gulf of Mexico, Caribbean Sea, and North Atlantic Ocean.

1. Introduction

In the last decade, the traditional approach to clima-

tology based on observations has evolved toward a state-

of-the-art data assimilation system, which is used to

reprocess all past environmental observations in combi-

nation with numerical models consistent with atmospheric

equations. The improved methodology allows us to obtain

the best estimate of the state and evolution of the atmo-

sphere. It can also be considered as a reintegration of our

knowledge about the atmosphere into an easily accessible

global atmospheric reanalysis database. This source of

information provides different climate variables, such as

wind fields, in a regular grid.

These atmospheric reanalysis databases can be sub-

sequently reprocessed using wind wave models, which

allow the simulation of the wave generation and prop-

agation processes all over the globe. As in the meteo-

rological case, these models provide consistent datasets

to define the wave climatology. However, since wave

models do not incorporate wave instrumental observa-

tions, the resulting databases are called wave hindcast

rather than reanalysis.

In the last years, the importance of wave hindcast da-

tabases for the design of offshore and coastal structures

has increased considerably. The main reason is their

ability to provide a detailed description of wave climate

(i.e., long continuous time series records with wide spatial

coverage) in locations where long-term instrumental
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records are not available. However, hindcast models

use (i) several simplifying assumptions of reality and

(ii) discrete forcing fields consisting of surface winds at

different times, and for these reasons hindcast results

present differences when compared with instrumental

data (buoys and/or satellites; Caires and Sterl 2005;

Cavaleri and Sclavo 2006). Besides, if the orography is

complex, the hindcast inaccuracy becomes more evident

(Cavaleri and Bertotti 2004) as a result of the inappropriate

spatial and temporal resolution and inaccurate description

of wind fields.

An additional problem related to wave hindcast da-

tabases is the bad performance during hurricanes and

typhoons. These inconsistencies are produced because

of the difficulty of specifying accurate wind fields and the

scarcity of high-quality wave measurements during these

events. Thus, to better catch up ocean surface behavior

when hurricane and typhoons occur, models with higher

spatial and temporal resolution must be used. These

models take advantage of (i) the advances made in recent

years in the analysis of the time and space evolution of

surface wind fields, especially in North Atlantic basin

hurricanes (Powell et al. 1998), and (ii) the high-quality

wind datasets from remote sensing systems. However,

these models are too time consuming and they should

only be used when and where the global wave hindcast

does not appropriately reproduce the wave climate (i.e.,

during those hurricanes and typhoons that produce im-

portant discrepancies between hindcast results and in-

strumental data).

Coastal management and design demand the appro-

priate definition of the wave climate. This requirement

has resulted in an increased interest in collecting in-

formation through instrumental devices (i.e., buoys and

satellites). For example, the National Oceanic and At-

mospheric Administration (NOAA) National Data Buoy

Center (NDBC) has a fairly dense rich array of moored

data buoys around the United States. In addition, several

satellite missions [Skylab, GEOS-3, Seasat, Geosat, the

Ocean Topography Experiment (TOPEX)/Poseidon, the

European Remote Sensing Satellites-1 and -2 (ERS-1) and

(ERS-2), the GEOSAT Follow-On (GFO), Jason-1,

the Environmental Satellite (Envisat), and Jason-2] in-

corporate altimetry sensors for the evaluation of different

ocean climate variables with a high level of precision

(i.e., 63 cm; Krogstad and Barstow 1999). These mea-

surements are considerably more accurate than wave

hindcast databases (WHDBs). However, there are also

several shortcomings to be considered, such as disrup-

tions on normal use due to failures, and temporal and

spatial inhomogeneous records, which limit their use to

certain regions, mostly related to developed countries.

These reasons have motivated an increased interest in

developing different wave generation models, such as

the Wave Model (WAM) developed by the Wave Model

Development and Implementation Group (WAMDI;

WAMDI Group 1988) or Wave Watch (Tolman 1997, 1999,

2002). These models try to reproduce wave generation and

propagation processes using wind fields as input data

(Caires et al. 2004; Pilar et al. 2008; Dodet et al. 2010).

Since instrumental (buoys and/or satellites) and hind-

cast sources of information have advantages and draw-

backs (Cavaleri and Sclavo 2006), several authors attempt

to combine both types of information. Caires and Sterl

(2005) establish a nonparametric correction based on

analogs taken from a learning dataset. Cavaleri and Sclavo

(2006) obtain calibrated decadal time series at a large

number of points over the Mediterranean Sea. They use

the overall information on models, buoys, and satellites.

Tomás et al. (2008) include spatial correlation in the cal-

ibration process, proposing a spatial calibration procedure

based on empirical orthogonal functions and a nonlinear

transformation of the spatial–time modes. Mı́nguez et al.

(2011) propose a calibration method based on a nonlinear

regression problem in which the corresponding correction

parameters vary smoothly along the possible wave di-

rections by means of cubic splines. This procedure is

based on a point-to-point basis including wave direction,

but without considering the spatial correlation between

neighboring nodes. However, none of these approaches

provide a rational criterion to detect data associated with

hurricanes and typhoons, which should be treated with

care within the calibration process. Note that failing to

exclude these outlying observations may provoke large

distortion of calibration results. Besides, these data should

be treated and analyzed separately for the results to be

fully reliable. Efforts in this direction can be found in

Cardone et al. (1976, 1996). This outlier detection task

is of great importance if hindcast database information

is used for maximum significant wave analysis, especially

for the design of coastal protection and offshore struc-

tures, because it may underestimate maximum significant

wave heights associated with given return periods, thus

compromising safety and functionality.

Because of the difficulties of defining the wave climate,

we are forced to work with mathematical and statistical

models, as those proposed in this paper. Nevertheless,

mathematical and statistical models are simplifications of

reality and their results must be used with caution. For

instance, it is known that in certain regions of the world,

hurricane data may be present in instrumental records.

Therefore, it is interesting to have statistical methods to

automatically detect and/or remove outliers and other

unduly influential observations. This would protect the

results of the analysis from the influence of these rare

events. Note that the techniques proposed in this paper
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would allow deciding ‘‘where’’ and ‘‘when’’ specific nu-

merical models for hurricanes and typhoons should be

used instead of wave hindcast databases.

There is a large amount of literature on outlier de-

tection; see, for example, the books by Hawkins (1980),

Belsley et al. (1980), Cook and Weisberg (1982), Atkinson

(1985), Chatterjee and Hadi (1988), and Barnett and

Lewis (1994), and the articles by Pregibon (1981), Gray

and Ling (1984), Gray (1986), Cook (1986), Jones and Ling

(1988), Weissfeld and Schneider (1990a,b), Schwarzmann

(1991), Paul and Fung (1991), Simonoff (1991), Nyquist

(1992), Hadi and Simonoff (1993), Atkinson (1984), Peña

and Yohai (1995), Barrett and Gray (1997), Mayo and

Gray (1997), Billor et al. (2001), and Winsnowski et al.

(2001). As can be seen in these books and articles, the

literature has focused mainly on the area of least squares

linear regression. Other statistical models and estimation

methods, such as reweighed techniques (Luceño 1997,

1998a,b), nonlinear methods (Castillo et al. 2004), het-

eroscedastic models (Cheng 2011), or some robust es-

timators (Rousseeuw and Leroy 1987; Rousseeuw and

Van Driessen 1999) have received comparatively less

attention.

The aim of this paper is twofold: first to present several

outlier detection techniques for hurricanes and typhoons,

and second to compare results from those techniques

giving some recommendations.

The paper is organized as follows. In section 2, the

dataset used for this study is described. section 3 presents

four different methods for outlier detection. In section 4,

the functioning of the different methods is illustrated

through several examples using data from the Gulf of

Mexico, the Caribbean Sea, and the North Atlantic Ocean.

Finally, in section 5 relevant conclusions are drawn and

some recommendations are given.

2. Data sources

For this study we have used the following database

information:

(i) Significant wave height data from 43 buoys from

NOAA/NDBC (http://www.ndbc.noaa.gov/) over

the Gulf of Mexico, the Caribbean Sea, and the

Atlantic Ocean. The main characteristics of the

buoys used are given in Table 1, and their locations

are shown in Fig. 1.

(ii) Atlantic Hurricane Database (HURDAT): This

database consists of an ASCII (text) file contain-

ing the 6-hourly center locations (latitude and

longitude in tenths of degrees) and intensities

(maximum 1-min surface wind speeds in knots and

minimum central pressures in millibars) for all

tropical storms and hurricanes from 1851 to 2009

(Jarvinen et al. 1984; Landsea et al. 2004, 2008).

Figure 1 shows the hurricane tracks from Atlantic

HURDAT database and the tracks of some Atlantic

storms.

(iii) Global Ocean Waves (GOW): This is a global wave

hindcast from 1948 onward developed by the Envi-

ronmental Hydraulics Institute ‘‘IH Cantabria.’’ It

uses the third-generation model Wave Watch III

(Tolman 1997, 1999) forced by 6-hourly wind fields

from the National Centers for Environmental

Prediction–National Center for Atmospheric Re-

search (NCEP–NCAR) atmosphere model. The

GOW database has different spatial scales: (i)

a global grid at 1.58 3 18 (longitude–latitude) spatial

resolution, (ii) an Atlantic coast grid at 0.58 3 0.58

spatial resolution, and (iii) a Caribbean coast grid at

0.258 3 0.258 spatial resolution.

To increase the confidence in wave hindcast data-

bases, results must be postprocessed and validated with

instrumental data (buoys and/or satellites). For this task,

hindcast versus instrumental data pairs coincident in

time and space must be selected. For this particular case,

and because of the hindcast homogeneity both in time

and space, database information is interpolated to the

buoy positions and to the times where buoy data are

recorded. These data pairs are used for validation and

calibration. The aim of this paper is to propose methods

for detecting data pairs associated with hurricanes and

typhoons previously to validating and/or applying any

calibration–correction technique.

An example of these data and the hurricane effect on

hindcast validation is shown in Fig. 2, where the in-

strumental and hindcast significant wave records at buoy

42059 (eastern Caribbean) are plotted. Note in Fig. 2a

that the hindcast time series captures appropriately the

magnitude and temporal evolution of the instrumental

significant wave height record; however, there exist clear

discrepancies when hurricane events occur, especially

during Dean 2007 and Omar 2008. This effect is also

shown in the scatterplot (Fig. 2b), where instrumental

and hindcast data occurring during these tropical storms

present important discrepancies, which would affect the

calibration process and detract the good performance

of the hindcast if they were not accounted for appro-

priately. This paper does not try to detect and remove all

data related to hurricanes, but only those data that differ

substantially between hindcast and instrumental re-

cords. In Fig. 2b there are many data points recorded

during the occurrence of different tropical storms where

the hindcast performs appropriately. The reason for this

behavior is that the hurricane wave generation is a local
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effect. As shown in Fig. 2c, there are four tropical storm

tracks passing within 28 distance from the buoy location;

however, there are only considerable discrepancies dur-

ing two of these events:

(i) Dean 2007 evolved from east to west and went

through the buoy location on 18 August. At that

time, its hurricane category was H5. This is why

discrepancies during this event are so high.

(ii) Noel 2007 was born close to the buoy location, being

an extratropical storm at the time it passed close

to the buoy on 25 October. The maximum category

during this event was tropical or subtropical storm.

For these reasons, discrepancies may be considered

to be within tolerable limits.

(iii) Gustav 2008 was analogous to Noel 2007; its

category was tropical or subtropical depression

at the time it passed close to the buoy location on

25 August.

(iv) Omar 2008 reached category H1 on 15 October,

when it passed close to the buoy location, increasing

up to category H4 on 16 October, 500 km away

from the buoy location, also producing remark-

able discrepancies.

TABLE 1. General characteristics of the 43 buoys from the NDBC used for the outlier detection analysis.

Region Name ID Lat Lon (08–3608) Depth (m) T0 Tf Spectral?

Florida eastern

Gulf Mexico

Grays Reef 41008 31.4028 280.8718 18 1988 2008 From 1996

— 41003 30.48 280.18 — 1977 1982 No

St. Augustine 41012 30.0418 280.5338 37.2 2002 2008 Yes

East Cape Canaveral 41009 28.5198 280.1668 44.2 1988 2008 From 1996

— 41006 29.38 277.48 — 1982 1996 From 1996

East Cape Canaveral 41010 28.9068 278.4718 872.6 1988 2008 From 1996

— 42025 24.98 280.48 — 1991 1995 No

East Southeast Pensacola 42039 28.7918 286.0088 307 1995 2008 From 1996

— 42009 29.38 287.58 — 1980 1987 No

South of Dauphin Island 42040 29.2058 288.2058 274.3 1995 2008 From 1996

Northeast United States Nantucket 44007 40.5038 269.2478 59.1 1982 2008 From 1996

Gulf of Maine 44005 43.1898 269.148 201.2 1978 2008 From 1996

Boston 44013 42.3468 270.6518 60 1984 2008 From 1996

SE Cape Cod 44018 41.2558 269.3058 63.7 2002 2008 Yes

Georges Bank 44011 41.1118 266.588 88.4 1984 2008 From 1996

Nantucket 44008 40.5038 269.2478 59.1 1982 2008 From 1996

— 44001 38.78 273.68 — 1975 1979 1990 1991 No

— 44012 38.88 274.68 — 1984 1992 No

Delaware Bay 44009 38.4648 274.7028 28 1984 2008 From 1996

Virginia Beach 44014 36.6118 274.8368 47.5 1990 2008 From 1996

Southeast United States — 44006 36.38 275.48 — 1980 1988 19941996 No

East Cape Hatteras 41001 34.7048 272.7348 4425.7 1976 2008 From 1996

Onslow Bay 41036 34.2118 276.9538 30.8 2006 2008 Yes

East of Charleston 41002 32.3828 275.4158 3546 1973 2008 From 1996

Southeast of Charleston 41004 32.5018 279.0998 33.5 1978 2008 From 1996

Bermuda 41048 30.9788 269.6498 5261 2007 2008 Yes

Western Atlantic Bahamas 41047 27.4698 271.4918 5231 2007 2008 Yes

Bahamas 41046 23.8678 270.878 5498.6 2007 2008 Yes

Western Gulf Mexico — 10000 27.58 2888 — 1972 1976 No

South of Southwest Pass 42001 25.98 289.6678 3246 1975 2008 From 1996

South of Grand Isle 42041 27.5048 290.4628 — 1999 2005 From 1999

North mid–Gulf of Mexico 42038 27.4218 292.5558 — 2004 2006 Yes

East of Brownsville 42002 25.798 293.6668 3566.16 1973 2008 From 1996

Freeport 42019 27.9138 295.368 83.2 1990 2008 From 1996

Corpus Christi 42020 26.9668 296.6958 88.1 1990 2008 From 1996

Caribbean Middle Atlantic 41041 14.3578 246.0088 3502 2005 2008 Yes

West Atlantic 41040 14.4778 253.0088 5267.2 2005 2008 Yes

Eastern Caribbean 42059 15.0068 267.4968 4900 2007 2008 Yes

— 41018 158 2758 — 1994 1996 No

Western Caribbean Bay of Campeche 42055 22.0178 294.0468 3380.5 2005 2008 Yes

Yucatan Basin 42056 19.8748 285.0598 4446 2005 2008 Yes

Western Caribbean 42057 16.8348 281.5018 293 2005 2008 Yes

Central Caribbean 42058 15.0938 275.0648 4042 2005 2008 Yes

270 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 29



3. Outlier detection techniques

In this section, we start considering the weighted gen-

eral linear regression model and continue showing dif-

ferent methods to deal with outliers.

a. Weighted least squares

Consider the standard linear regression model

Y 5 Xb 1 e, (1)

where Y 5 (y1, y2, . . . , yn)T is a n 3 1 response variable

vector, X is a n 3 k matrix of predictor variables often

called the ‘‘design matrix,’’ b is a k 3 1 vector of regression

coefficients or parameters, and e 5 («1, «2, . . . , «n)T is a

n 3 1 vector of random errors assumed to be jointly

normally distributed random variables e ; N(0, s2V),

where s2V is a positive definite variance-covariance

matrix.

Regression parameters b are usually estimated using

the weighted least squares (WLS) method:

Minimize
b

eTWe 5 Minimize
b

(Y 2 Xb)TW(Y 2 Xb),

(2)

where W 5 V21. For Eq. (1), WLS coincides with the

maximum likelihood (ML) estimation method. Note that,

for homoscedastic models, W corresponds to the identity

matrix (i.e., wii 5 1; i 5 1, . . . , n; wij 5 0; i, j 5 1, . . . , n

and i 6¼ j), and Eq. (2) becomes the traditional least

squares (LS) method. However, we include matrix W in

the formulation so that regression formulas remain valid

for the reweighting approach presented in section 3b.

Fitting results are (Draper and Smith 1981) the following:

b̂ 5 (XTWX)21(XTWY), (3)

Var(b̂) 5 s2(XTWX)21, (4)

Ŷ 5 Xb̂ 5 PWY, (5)

where the hat (ˆ) refers to estimates, and

P 5 X(XTWX)21XT, (6)

Var(Ŷ) 5 s2P, (7)

ê 5 Y 2 Ŷ 5 (I 2 PW)Y, (8)

Var(ê) 5 s2(V 2 P), (9)

Var(«̂i) 5 s2(yii 2 pii); i 5 1, . . . , n, (10)

where yii and pii are the ith diagonal element of V and the

projection matrix P, respectively. The residual mean

square estimator of s2 is

ŝ2 5
eTWe

n 2 k
. (11)

1) DIFFERENCES BETWEEN INFLUENTIAL

OBSERVATIONS AND OUTLIERS

Influential observations can be defined, according to

Belsley et al. (1980), as those observations having a larger

and excessive impact on the calculated values of some

estimates. There are numerous influence measures in the

literature, which according to Chatterjee and Hadi (1986)

can be classified into five groups based on 1) residuals,

2) the prediction matrix, 3) volume of confidence ellip-

soids, 4) influence functions, and 5) partial influence. In

contrast, outliers are data that cannot be explained by the

model, because they are produced under different dy-

namics than regular data. One can find outliers that are

influential, as well as outliers that are not. Some outliers

present large residuals and therefore are easy to detect.

However, it is important to realize that some outliers may

have small residuals because they have large influence on

the parameter estimates; when outliers of this type appear

in groups, they are often more difficult to detect even

though they are very influential. Finally, there may be some

outliers with small residuals that are not influential; these

are also difficult to detect, but they are much less important.

Figures 2a,b show (i) the significant wave height evo-

lution in time and (ii) the scatterplots corresponding to

buoy 42059 (eastern Caribbean) and hindcast interpolated

FIG. 1. Area of study showing NBDC buoys locations (open

circles), tracks of tropical storms and hurricanes database, and the

tracks of some Atlantic storms.
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data. According to these plots, many outliers related to

hurricanes seem to have large residuals, but a moderate

influence on the fitted regression model.

2) INFLUENCE MEASURES

To assess the effect of outliers associated with hurri-

canes on the estimators, we use different influence mea-

sures, some of them based on the deletion approach (i.e.,

the influence of the ith observation on a given estimator is

calculated comparing results using all data versus results

obtained removing the ith observation from the dataset).

We have considered the following statistics, which are

valid only for W 5 V21 diagonal matrix so that wii 5 yii
21:

(i) The ith diagonal element of the projection matrix

P:

pii 5 xi(X
TWX)21xT

i ; i 5 1, . . . , n, (12)

where xi is the ith row of the design matrix, which

represents the amount of leverage of the response

value yi on the corresponding response estimate ŷi.

Note that Var(ŷi) 5 s2pii. High leverage points in

regression (i.e., points that are outlying in the x

space) should be further examined (Hoaglin and

Welsch 1978).

(ii) Internally studentized residuals, which are a scaled

version of residuals, that is,

zi 5

ffiffiffiffiffiffi
wii
p

«i

ŝ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 wiipii

p ; i 5 1, . . . , n. (13)

For ‘‘outlier’’ identification purposes, an internally

studentized residual corresponds to suspected

‘‘bad’’ data with a 1 2 a confidence level (e.g.,

0.99) if jzij . F21 (1 2 a/2).

(iii) Externally studentized residuals, a second version

of studentized residuals in (13) where ŝ is replaced

by ŝ(i) and ŝ2
(i) is the estimator of s2 when the ith

observation is omitted:

ŝ2
(i) 5

(n 2 k)ŝ2

(n 2 k 2 1)
2

wii«
2
i

(n 2 k 2 1)(1 2 wiipii)
;

i 5 1, . . . , n. (14)

FIG. 2. Data associated with buoy 42059 (eastern Caribbean): (a) instrumental and hindcast significant wave height

(m) time evolution, (b) scatterplot including bisector, and (c) tracks of hurricanes passing within a 28 distance from

the buoy location.
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Large values of the two studentized residuals are

related to outliers in the response-factor space and

represent points not well fitted by the model.

(iv) Ratio between estimation variance in (7) and

residual variance in (9):

RATIOi 5
wiipii

1 2 wiipii

; i 5 1, . . . , n. (15)

This statistic serves the same purpose as (12), but it

is often more sensitive to detect leverage points.

(v) The standardized squared modulus of the differ-

ence between the vector estimate b̂ for the whole

set of data and the same vector when the ith

observation is omitted b̂(i):

1

ŝ2

h
b̂ 2 b̂

(i)

iTh
b̂ 2 b̂

(i)

i
5

pii
*

ŝ2

wii«i

1 2 wiipii

� �
2
;

i 5 1, . . . , n, (16)

where p
ii
* 5 x

i
(XTWX)22xT

i . This measure is based

on the sensitivity curve (Chatterjee and Hadi 1986).

(vi) The increase in the trace of the matrix (XTWX)21

after removing the ith observation:

trace(XTWX)
21

(i) 2 trace(XTWX)21
5

wiipii
*

1 2 wiipii

;

i 5 1, . . . , n. (17)

Note that (16) is the product of (17) by z2
i given

by (13).

(vii) The weighted squared standardized distance (WSSD;

Daniel and Wood 1980) of the ith observation in

the x space:

WSSDi 5
1

s2
y

�
k

j51
b̂j

h ffiffiffiffiffi
wi

p
xij 2 x

(w)
j

i2
;

i 5 1, . . . , n, (18)

where s2
y is an estimate of s2 and x

(w)
j 5

1/�n

i51wii

� �
�n

i51wiixij.

3) HETEROSCEDASTIC TRANSFORMATIONS

When the homoscedastic assumption (constant vari-

ance) does not hold, it is often possible to transform the

response variable to stabilize the variance by using the

transformation:

Z 5 g(Y) 5
KY12g if g 6¼ 1

K log(Y) if g 5 1,

�
(19)

for some appropriate value of g. This value of g can be

estimated using two different methods:

(i) Including the transformation in (19) within a non-

linear LS model. Thus, the estimated value ĝ is

obtained jointly with the regression parameters.

(ii) Using repeated observations of the response vari-

able Y at approximately the same point in the x

space. The estimated parameter ĝ is obtained from

fitting the model:

log(ŝY
i
) 5 d 1 g log(m̂Y

i
) 1 «Y

i
, (20)

where (m̂
Yi

, ŝ
Yi

) are the estimated mean and standard

deviation of Y for each set of repeated observations.

The second alternative is preferable, if one can find

sets of repeated observations, because it allows using

solutions given in section 3a. Consequently, hetero-

scedastic data can be analyzed using WLS, an appro-

priate transformation of the response variable, or a

combination of both. We also show next that weights

can be recalculated iteratively to match them with the

observed standardized residuals.

b. Reweighted least squares

The aim of many outlier detection methods is to de-

termine whether an observation should be considered as

an outlier or not, without allowing for intermediate situ-

ations. In contrast, the reweighted least squares (RWLS)

method aims at empirically determining a weight 0 # wii

# 1 for every observation ranging continuously from 0,

for observations that are completely unreliable, and up

to 1, for observations that are completely reliable. This

can be attained by applying the following recursive

procedure:

d Step 0: Set wii 5 1; i 5 1, . . . , n.
d Step 1: Compute weighted least squares regression

solving Eq. (2).
d Step 2: Compute new weights from the residuals of the

last fit.

Steps 1 and 2 are repeated till convergence.

A key issue for the successful application of this al-

gorithm is the new weight computation in step 2. From

different formulas proposed in the literature (Huber

1981; Chatterjee and Mächler 1997; Luceño 1998b), we

choose Tuckey’s biweight:

wii 5

�
1 2

ui

6

� �2
	2

if juij# 6,

0 if juij. 6

8><
>: (21)

where ui 5 («i/s*) is a standardized residual based on the

scaled median absolute deviation estimator s* 5 (medij«ij/
c*) of s, with c* 5 0.6745 (for consistency of s*).
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Within the RWLS scheme, outliers related to hurri-

canes and typhoons are characterized with low wii weights.

Note that in addition to its multiple outlier detection ca-

pabilities, reweighting also provides a better performance

on model estimation, because the influence of potential

outliers is removed from the final estimates.

c. Nonlinear weighted least squares

Regression models presented previously allow the

treatment of nonlinear and/or heteroscedastic problems

using adequate transformations and/or weighting.

Tomás et al. (2008) and Mı́nguez et al. (2011) show that

potential nonlinear relationships of the type yi 5 axb
i 1 «i

and heteroscedastic variance Var(«i) 5 cxd
i provide very

good calibration results. For this reason, an outlier de-

tection method based on a nonlinear heteroscedastic re-

gression model is presented.

An intrinsically (nonlinearizable) nonlinear regression

model can be written as

yi 5 f
m

(xi; b) 1 «i; i 5 1, 2, . . . , n, (22)

where the function fm is known and nonlinear in the

parameter vector b, and «i; i 5 1, . . . , n are jointly nor-

mally distributed e ; N(0, s2V) errors as in Eq. (1).

As in (2), the standard nonlinear weighted least

squares (NWLS) method, for W 5 V21 diagonal, can be

stated as

Minimize
b

eTWe 5 Minimize
b

�
n

i51
wii

h
yi 2 f

m
(xi; b)

i2
, (23)

where n is the number of observations. Note that anal-

ogously to the linear case, nonlinear regression models

can also be used including weights in the formulation.

For wave hindcast data, a simple scatterplot of hind-

cast versus instrumental data allows observing how the

variance of the regression model changes over the re-

gression function. Consequently, we consider a non-

linear heteroscedastic regression model in which the

standard deviation si of the ith error is a function of the

predictor variable (xi):

si 5 f
s

(xi; u) 5 w21/2
ii , (24)

where u is a new s 3 1 vector of coefficients or param-

eters. If the parameter vector u were known, estimation

of the parameter vector b could be based on the NWLS

method in (23). However, the values of u are usually

unknown, and can be estimated using maximum likeli-

hood methods. Thus, assuming that random errors are

uncorrelated and normally distributed random variables

each with mean zero and standard deviation given by

(24), the whole set of model parameters (b and u) can be

jointly estimated maximizing the log-likelihood function:

‘(b, u) 5 2�
n

i51
log


f
s

(xi; u)
�

2
1

2
�

n

i51

"
yi 2 f

m
(xi; b)

f
s

(xi; u)

#2
.

(25)

The estimates b̂ that maximize the log-likelihood

function in (25), and solve (23), allow calculating the

residual vector ê, which is defined as

ê 5 y 2 f
m

(x; b̂). (26)

Observe that the maximization of the log-likelihood

function can be done using any of the available solvers

for nonlinear programming, possibly subject to bounds

on variables. One such solver is MINOS (Murtagh and

Saunders 1998) under General Algebraic Modeling Sys-

tem (GAMS) (Brooke et al. 1998) which allows for upper

and lower bounds on parameters to be estimated, and uses

a reduced-gradient algorithm (Wolfe 1963) combined

with the quasi-Newton algorithm described in Murtagh

and Saunders (1978), or the Trust Region Reflective

Algorithm under Matlab, also capable of dealing with

upper and lower bounds through the function fmincon.

For details about the method see Coleman and Li (1994)

and Coleman and Li (1996). To improve convergence

properties both the gradient and Hessian of the objective

function are calculated analytically (see the appendix for

details).

Following the analogy between WLS and NWLS, it is

also possible to apply reweighting strategies within non-

linear regression models, which will enhance the quality

of parameter estimates reducing the effect of possible

existing outliers. This will lead to an increase in the

computational time, or a somewhat more difficult to fit

nonlinear regression model.

1) RESIDUAL COVARIANCE MATRIX AND

STUDENTIZED RESIDUALS

Using a first-order Taylor series expansion of the

function in (26) around the optimal estimated parameter

vector b̂, the estimated differential residual vector is

obtained as

dê 5 dy 2
›f

m
(x; b)

›b

�����
b5b̂

db 5 dy 2 H db, (27)

where H is the n 3 k Jacobian matrix evaluated at b̂. It

readily follows that

›ê

›y
5 I 2 H

›b

›y

����
b5b̂

5 I 2 HMby 5 S, (28)
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where the k 3 n matrix Mby contains the derivatives of

vector b with respect to y evaluated at b̂, matrix I is the

n-dimensional identity matrix, and matrix S is the so-

called residual sensitivity matrix.

Integration of (28) allows obtaining the first-order

linear approximation to the (nonlinear in b̂) trans-

formation (26) from y to ê:

ê 5 Sy 1 k, (29)

where k is the integration constant vector.

The corresponding estimated residual covariance ma-

trix V 5 Var(̂e) is

V 5 SCyST, (30)

where matrix Cy is the error covariance matrix provided

by (24):

Cy 5

2
666664

f
s

(x1, û)2 0 � � � 0

0 f
s

(x2, û)2 � � � 0

..

. ..
.

1 ..
.

0 � � � 0 f
s

(xn, û)2

3
777775. (31)

Therefore, considering (28), the general expression for

matrix V is

V 5 (I 2 HMby)Cy(I 2 HMby)T, (32)

where matrices H and Mby depend on the selected fm(x;

b) and fs(x; u) functions. Note that (32) is a nonlinear

equivalent to (9).

Finally, from (26) and (32), studentized residuals are

computed as

zi 5
«̂iffiffiffiffiffiffiffi
Vi,i

q 5
yi 2 f

m
(xi; b̂)ffiffiffiffiffiffiffi

Vi,i

q i 5 1, . . . , n, (33)

where Vi,i is the ith diagonal element of V.

Vector z provides the studentized residuals, and hence

can be used straightforwardly for outlier identification

as in the linear case.

2) SENSITIVITY MATRIX FROM SENSITIVITY

ANALYSIS

Section 3c(1) shows that the sensitivity matrix S, which

allows calculating the estimated residual covariance

matrix V, which depends on matrix Mby. This matrix is

obtained below, based on sensitivity analysis results

reported in Castillo et al. (2006).

For the maximum likelihood estimation problem,

which is an unconstrained nonlinear optimization prob-

lem, the Karush–Kuhn–Tucker (KKT) first-order opti-

mality conditions at its optimal solution (b̂, û, ‘) (Bazaraa

et al. 1993; Luenberger 1984) reduce to

$h‘(ĥ, y) 5 0, (34)

where ĥ 5 (b̂; û), and $h stands for the vector of partial

derivatives (of ‘) with respect to h.

This condition establishes that the gradient of the ob-

jective function with respect to b and u at the optimal

solution b̂ and û must be zero.

To obtain sensitivity equations, we perturb or modify y

so that ĥ is modified accordingly to continue satisfying the

KKT conditions (Castillo et al. 2006). After manipulating

the resulting expressions, the required sensitivity equation

reduces to the following linear system of equations:

(2Hhh)
›h

›y [(k1s)3n]

5 Hhy, (35)

where the vectors and submatrices in (35) are defined

below (dimensions in parentheses):

Hhh[(k1s)3(k1s)]
5 $hh‘(h, y), (36)

Hhy[(k1s)3n]
5 $hy‘(h, y), (37)

which constitute Hessians with respect to parameters

and data. Note that (36) is a nonlinear equivalent to (3)

with unit weights.

Expression (35) allows deriving sensitivities of the pa-

rameter estimates with respect to the data. Under mild

regularity conditions that are often satisfied (Coles 2001;

Castillo et al. 2005) 2 H
hh

(the Fisher information ma-

trix) is invertible, and (35) has a unique solution. Matrix

›h/›y
[(k1s)3n]

can be partitioned in two different blocks

associated with mean and standard deviation parameter

functions, respectively:

›h

›y [(k1s)3n]

5

2
664

›b

›y
›u

›y

3
775. (38)

The first block corresponds to matrix Mby, which allows

obtaining the sensitivity matrix S using Eq. (28).

From a computational point of view, inversion of the

Hessian matrix Hhh is not needed because it can be easily

factorized using LU algorithms. Sensitivities (›h/›y) are

thus obtained using forward and backward elimination

methods. Note that for the calculation of all sensitivities,
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second-order derivatives of the log-likelihood function

with respect to parameters and data are needed. They can

be obtained numerically by finite differences or ana-

lytically. For the analytical case, a detail derivation of

Jacobians and Hessians with respect to parameters and

data is given in the appendix. Although analytical results

seem to be complex, we rather like this approach because

it is easy to implement using any programming language,

and it avoids possible numerical problems deriving from

finite differences. In addition, to calculate studentized

residuals, only the computation of the diagonal elements

of the V matrix is required, which considerably reduces

the computational time.

d. Minimum covariance determinant estimator

A different method capable of detecting outliers is the

minimum covariance determinant estimator (Rousseeuw

and Van Driessen 1999), which is used in this paper for

comparison purposes. The minimum covariance de-

terminant estimator (MCD) method looks for the h ob-

servations out of n whose classical covariance matrix has

the lowest possible determinant. This method allows us to

calculate a robust distance:

RDi 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi 2 mMCD)S

21

MCD(xi 2 mMCD)T
q

, (39)

where m
MCD

and S
21

MCD are robust MCD location and

scatter estimates, respectively, so as to determine whether

the associated observation i is an outlier or not. Under

the normal assumption, the outliers correspond to those

values whose robust distances are larger than a given cutoff

value usually defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

p,12a/2

r
for some small 0 , a ,

1. The robust distance in (39) is a robustification of the

Mahalanobis distance.

4. Case study

In this section we illustrate the performance of the

methods presented in section 3. We have applied them

to the 43 buoys from the NDBC given in Table 1 and

shown in Fig. 1. In this application we only deal with

two variables: yi corresponds to the ith value of the

response variable (buoy data), and xi is the predictor

variable (interpolated hindcast data) corresponding to

the ith observation. However, methods presented in

the paper are valid for multivariate analysis. We could,

for example, use more than one function of X in the

regression Eqs. (1) or (22). Consequently, we have

investigated some of these more complex models, but we

will only show results for those models we have found to

work best.

Before performing the analysis, the particular re-

gression models we have chosen are presented:

d For the WLS method (section 3a), the response vari-

able is transformed using Eq. (19) and the estimate ĝ is

calculated based on Eq. (20). Because the relationship

between X and Y is approximately linear, we apply the

same power transformation 1 2 g to the covariate X

and response Y, which leads to the following regression

model:

Y12g 5 b0 1 b1X12g 1 «. (40)

This model is linear with respect to b0 and b1 and

nonlinear with respect to g. However, because the

estimate of g is obtained previously rather than using

a nonlinear iteration, model (40) can be considered

linear for practical purposes.
d The RWLS method (section 3b) is applied using Eq. (40).
d For the NWLS model (section 3c), the following

parameterization is used for the mean and dispersion

functions:

f
m

(xi, b) 5 b0x
b

1

i , (41)

f
s

(xi, u) 5 u0x
u

1

i . (42)

d Transformed data Y12g and X12g are also used within

the MCD framework (section 3d).

Note that previous to deciding the particular regression

model for each case, alternative expressions have been

considered particularly to check whether other trans-

formations of X and Y could be useful. We only provide

those giving a better performance.

a. Detailed results for eastern Caribbean buoy 42059

We first analyze some detailed results for buoy 42059

(eastern Caribbean) shown in Fig. 2. We have applied

the WLS (section 3a), RWLS (section 3b), NWLS

(section 3c), and MCD (section 3d) methods. For the

WLS and NWLS, outliers are identified using the in-

ternally studentized residuals zi given in (13) and (33),

respectively. In both cases, a case is identified as an out-

lier if jzij . F21(1 2 a/2). Results for different signifi-

cance levels a 5 f0.1, 0.05, 0.01, 0.001, 0.0001g are shown

in Figs. 3a,b, where data removed for each significance

level are highlighted by using different dot marker spec-

ifiers. Table 2 also provides the number of data points

detected as outliers for each significance level, and the

computational time in seconds. Note that models have

been run on a portable computer with one processor

clocking at 2.39 GHz and 3.25 GB of RAM. From all

these results the following observations are pertinent:
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(i) Both WLS and NWLS provide similar results. The

numbers of outliers detected by the two methods

for each significance level are almost the same.

(ii) The WLS method requires the evaluation of the

optimal g value in transformation in (19) for the

homoscedastic assumption to hold, which for this

particular buoy corresponds to ĝ ’ 0:41. However,

once this value is calculated, the problem is easily

solvable using (3)–(11), which requires little com-

putational time. On the other hand, the nonlinear

version requires solving an optimization problem,

which takes longer to solve although it is easily

solvable using standard nonlinear mathematical

programming techniques.

(iii) Since the RWLS method iteratively updates the

weights associated with each case, the detection

criterion is established as a function of the final

weights wii. Outliers relevant for calibration pur-

poses are those whose weights are lower than about

0.2 (note that 0 # wii # 1; i 5 1, . . . , n). RWLS also

appropriately detects the most relevant outliers

(see Fig. 3c). The computational time increases

slightly with respect to WLS, but decreases consid-

erably with respect to NWLS. The iterative process

FIG. 3. Outlier detection performance at buoy 42059 (eastern Caribbean): (a) WLS, (b) NWLS, (c) RWLS, and

(d) MCD.

TABLE 2. Number of detected outliers from applying different outlier detection techniques on buoy 42059 (eastern Caribbean).

Method a 5 0.1 a 5 0.05 a 5 0.01 a 5 0.001 a 5 1024 CPU time (s)

WLS 1048 551 182 70 42 ’0.15

NWLS 965 523 181 70 45 ’0.5

0.8 , w # 0.9 0.5 , w # 0.8 0.2 , w # 0.5 w # 0.2 CPU time (s)

RWLS 1645 819 79 41 — ’0.19

Classical Robust CPU time (s)

MCD 569 741 ’1
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usually converges in a few iterations (e.g., for this

particular buoy, it requires six iterations).

(iv) It is also important to realize that RWLS avoids the

dichotomy outlier versus ‘‘not outlier’’ for each

particular case in the sample. In contrast, the fitted

regression line is estimated giving to each case

a weight (0 # wii # 1) ranging from 0 to 1 according

to our empirically determined degree of credibility

on the goodness of each case in the sample.

(v) Hurricane data related to Dean (2007) and Omar

(2008) (see Fig. 2), where the discrepancies are

remarkable, are correctly detected with both WLS

and NWLS methods using a significance level a 5

0.0001, as well as with the RWLS using a weight

threshold of w 5 0.2.

For comparison purposes, we have also applied the

MCD approach (section 3d). Results are also given in

Fig. 3d and Table 2. The MCD method is applied using

the function mcdcov from MATLAB toolbox LIBRA

(Verboven and Hubert 2005), which is an implementa-

tion of the fast-MCD algorithm proposed by Rousseeuw

and Van Driessen (1999). Note that Fig. 3d shows the

data detected using the classical approach based on

Mahalanobis distance along with those for the robust

approach. From these results, we can conclude that both

methods (classical and robust) related to the MCD ap-

proach provide unsatisfactory results, since besides de-

tecting data associated with outliers, they also eliminate

extreme values of hindcast and instrumental distributions

that are close to the regression line. These points are ap-

propriately reproduced by the hindcast, and extremely

important from the engineering design point of view. In

addition, computational cost is much higher with re-

spect to the other methods.

b. Results for the remainder buoys

Table 3 provides the following information related to

the performance of the WLS and NWLS methods on the

43 buoys from the NDBC: the number of cases at each

buoy location (n), the number of detected outliers for

significance levels a1 5 0.001 and a2 5 0.0001 (n
a1

, n
a2

),

the mean and standard deviation of the studentized re-

sidual absolute value (jzj, sjzj), the maximum and mini-

mum studentized residual absolute value (jzjmax, jzjmin),

and the CPU time in seconds. Note that jzj, sjzj, jzjmax

and jzjmin are based on data removed using a2 5 0.0001.

From results given in Table 3 the following observa-

tions are pertinent:

(i) Both WLS and NWLS approaches provide satisfac-

tory results on outlier identification in most cases,

with the computational time required for WLS being

lower.

(ii) In all buoys, and for the same significance level, the

number of data points detected using the nonlinear

approach is higher, and the maximum studentized

residual absolute value jzjmax is also higher, result-

ing in a more conservative approach, which may

produce better postcalibration results.

For comparison purposes, Fig. 4 shows the perfor-

mance of both WLS and NWLS methods on three dif-

ferent buoys: 41040, 41046, and 41047. For buoy 41040

both methods perform appropriately, detecting the most

relevant outliers. However, whereas the mean, standard

deviation, and minimum studentized residual absolute

value are similar (see the corresponding row in Table 3),

the maximum studentized residual absolute values are

11.8317 and 19.2277, respectively, the NWLS jzjmax

value being considerably higher. In this particular case,

using a 5 0.0001, the performance can be considered

equivalent from the postcalibration process perspective.

This effect is also observed in buoys 41047 and 41046. In

buoy 41047, the maximum studentized residual absolute

values are 4.4024 and 5.6516, relatively close, but in 41046

the maximum studentized residual absolute values are

5.2096 and 9.3842, where differences increase consider-

ably with respect to buoy 41047. On the other hand, the

minimum studentized residual absolute values are very

similar in both locations. Thus, NWLS method provides

more conservative detection results at the a 5 0.0001

level, as shown in Figs. 4c,d, because it includes as

outliers those points associated with Hs
GOW between 3

and 4 m, and Hs
I around 6 m. Note that both methods

are also capable of detecting points associated with neg-

ative studentized residuals, as shown in Figs. 4a,b (left

side of the regression lines), which may be related to

points taken during disruption of normal use of the in-

strumental device.

An important contribution of our analysis is the as-

sessment of the effect on outlier detection of using the

different diagnostic statistics given in (12)–(18). We

have confirmed that the most appropriate statistic for

this particular application is the internally studentized

residual, since the other statistics detect high leverage

points that are not usually related to hurricanes. Re-

garding the differences between internally and exter-

nally studentized residuals, differences are negligible for

the buoys considered.

Table 4 provides the following information related to

the performance of the RWLS and NWLS methods on

the 43 buoys from the NDBC: the number of cases at

each buoy location (n), the number of detected outliers

for weights holding 0.2 # w1 # 0.5 and w2 # 0.2

(nw1
, nw2

), the number of detected outliers for signifi-

cance levels a1 5 0.001 and a2 5 0.0001 (n
a1

, n
a2

), the
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mean and standard deviation of the weights (w, s
w

), the

maximum and minimum weights (wmax, wmin), and the

CPU time in seconds. Note that w, sw, wmax, wmin are for

data removed using the w2 # 0.2 criterion. This table

also shows that the number of iterations required for

convergence of the RWLS method is between 5 and 7,

and is thus computationally faster than NWLS.

The number of outliers detected using RWLS (i.e.,

n
w1

) is very similar to the number detected using NWLS

(i.e., n
a2

) with both methods capable of detecting all the

relevant outliers. Differences are due to certain outliers

detected by RWLS, which are related to lower values of

the instrumental dataset. Figure 5 shows the perfor-

mance of the RWLS method on buoys 41040, 41046, and

41047. Comparing these results with those in Figs. 4b,d,f,

it can be observed that the outliers detected with NWLS

using a 5 0.0001 and RWLS using w , 0.5, associated

with hurricanes (higher values of the instrumental re-

cord), are almost the same. However, RWLS also in-

cludes data records related to the medium and lower

part of the instrumental distribution, which are not con-

sidered as outliers by NWLS.

TABLE 3. Summarizing results from applying WLS and NWLS outlier detection techniques on the 43 buoys from the NDBC.

WLS NWLS WLS NWLS WLS NWLS WLS NWLS WLS NWLS WLS NWLS

ID No. n
a1

n
a2

n
a1

n
a2

jzj jzj sjzj sjzj jzjmax jzjmax jzjmin jzjmin time (s) time (s)

41008 137 122 442 111 774 362 4.2757 4.7235 0.3421 0.7477 5.4274 7.3709 3.8945 3.8932 0.3438 10.2188

41003 15 037 79 21 113 58 4.2153 4.6897 0.2933 0.7558 4.8156 6.6724 3.9014 3.8907 0.1250 1.0781

41012 48 665 109 17 379 169 4.5718 4.5959 0.7011 0.9658 6.1662 10.9116 3.8985 3.8911 0.2188 3.5313

41009 273 795 1058 341 2057 1054 4.3736 4.7649 0.4484 0.8143 6.2315 8.5761 3.8907 3.8912 0.5938 18.6719

41006 98 052 389 99 693 316 4.3094 4.6585 0.3565 0.7724 5.2834 7.9569 3.8987 3.8944 0.2813 8.4688

41010 290 837 1048 292 2558 1372 4.4027 4.8687 0.4321 1.0359 6.0154 10.9560 3.8915 3.8909 0.7344 23.5938

42025 24 107 47 0 168 69 0 4.6992 0 0.7854 0 7.6880 0 3.9206 0.0938 1.7500

42039 109 759 539 209 829 474 4.3279 5.0119 0.3526 0.9298 5.4317 8.7355 3.8927 3.8922 0.2500 11.2656

42009 16 509 88 17 160 101 4.3553 4.9739 0.4329 0.9035 5.3190 7.8597 3.8908 3.8925 0.1250 2.0625

42040 108 092 598 235 902 523 4.6673 5.1866 0.8600 1.3959 8.6480 12.5488 3.8937 3.8912 0.3438 11.3594

44007 219 280 737 289 2194 1106 4.4072 4.8247 0.3573 0.9785 5.5247 12.5047 3.8906 3.8965 0.5625 17.9688

44005 203 184 309 60 1184 455 4.3134 4.5796 0.3847 0.7489 6.1976 9.7382 3.9137 3.8910 0.4375 20.6563

44013 191 121 363 131 1961 882 4.1446 4.9813 0.1878 1.3401 4.8251 13.4606 3.8971 3.8909 0.4375 17

44018 50 955 104 12 239 77 4.0787 4.3682 0.1351 0.5781 4.3345 7.6285 3.8945 3.9062 0.2031 4.4531

44011 182 806 355 72 789 344 4.1847 4.7747 0.5386 0.9145 8.2330 9.5811 3.8997 3.8995 0.4375 18.0781

44008 205 335 547 142 977 424 4.8552 4.8312 2.1657 1.0678 12.8360 12.3123 3.8929 3.8949 0.5781 16.6250

44001 9015 21 8 50 22 4.7839 4.7903 0.7567 1.4153 5.6723 10.3077 3.9115 3.9076 0.0313 1.0313

44012 35 014 179 51 337 204 4.2983 4.7619 0.2815 0.7615 5.4204 6.9618 3.9074 3.8920 0.1563 2.8125

44009 180 367 693 136 1606 824 4.2184 4.7491 0.2922 0.8653 5.4091 11.6203 3.8916 3.8911 0.4531 14.7344

44014 141 588 768 283 948 425 4.8632 4.7238 0.9744 0.9211 9.6952 12.3205 3.8922 3.8921 0.4219 10.8438

44006 9198 40 18 42 29 4.5780 5.1854 0.4624 1.0739 5.4003 7.6501 3.9254 3.9403 0.0625 1.0625

41001 187 253 564 199 1264 614 4.7033 4.8276 1.1646 1.1173 9.9324 16.7261 3.8906 3.8911 0.5000 17.8438

41036 45 367 108 33 317 141 4.2977 4.9978 0.3128 1.2102 5.0835 9.1222 3.9295 3.9023 0.1250 3.2813

41002 193 022 882 310 1507 765 5.4547 5.0393 1.9334 1.3083 10.7551 12.6517 3.8913 3.8913 0.5156 16.1406

41004 136 731 465 138 1083 570 4.7424 5.1960 0.9099 1.9037 7.9380 18.3539 3.8936 3.8916 0.3438 11.2031

41048 13 264 44 12 90 53 4.2602 5.0406 0.3263 0.9646 4.9236 7.8573 3.9011 3.9001 0.1250 1.8125

41047 9250 46 13 92 43 4.0779 4.4495 0.1490 0.4962 4.4024 5.6516 3.8907 3.8952 0.1250 1.1250

41046 9928 64 20 124 76 4.5710 5.3070 0.3987 1.4910 5.2096 9.3842 4.0068 3.8919 0.0313 1.2813

10000 955 10 5 16 10 4.4737 4.9588 0.2860 0.7059 4.9356 6.4495 4.2241 4.0774 0 0.2813

42001 236 281 975 339 1867 1002 4.6371 5.0152 0.8528 1.2876 9.0892 14.6672 3.8908 3.8924 0.5781 15.4531

42041 33 562 153 48 246 136 4.5476 5.0405 0.7737 1.3249 7.2164 10.6177 3.9025 3.8978 0.1094 2.7656

42038 16 537 105 19 92 54 4.3114 4.8445 0.3693 0.6728 5.3217 6.7321 3.8965 3.8995 0.1094 1.5625

42002 236 760 886 255 1500 777 4.5308 5.0328 0.6117 1.3841 6.9903 11.9223 3.8913 3.8936 0.5313 15.4688

42019 139 808 626 224 1038 540 4.5715 4.9334 0.7347 1.4301 7.7769 14.4643 3.8924 3.8914 0.3125 12.2188

42020 136 294 597 244 915 493 4.8074 5.2244 1.1559 1.8425 8.7640 15.3183 3.8913 3.8967 0.3906 11.9375

41041 31 298 146 68 192 90 5.5995 6.9746 1.9807 4.3726 10.4220 19.9469 3.9235 3.8970 0.0781 4.1875

41040 24 191 135 74 181 121 5.4958 5.4673 2.0014 2.4022 11.8317 19.2277 3.8994 3.8924 0.0938 3.0313

42059 14 135 70 42 70 45 6.9869 7.4736 2.8397 3.2642 14.3411 15.0454 3.9078 3.9323 0.0625 1.2344

41018 8669 11 1 17 1 3.9272 4.0830 0 0 3.9272 4.0830 3.9272 4.0830 0.0625 0.7813

42055 22 964 95 40 122 69 4.7890 5.1393 0.8298 1.1693 7.0481 8.8778 3.9155 3.9128 0.1250 2.2500

42056 30 195 172 120 315 202 6.9233 5.9229 2.3239 2.0479 11.7877 12.4083 3.9208 3.8909 0.1250 2.7188

42057 9602 131 101 148 116 4.9631 6.1350 0.5244 1.2292 6.4778 9.6274 3.9382 3.8964 0.0625 0.7813

42058 16 216 58 13 40 16 5.1281 5.6985 1.5274 2.1645 8.5397 11.0783 3.8929 3.9295 0.1250 1.9219
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Note that although computational time increases

slightly with respect to WLS method, the RWLS detect-

ing capabilities should be regarded as an insurance policy

to obtain (i) better protection against outliers that are

more difficult to detect, and (ii) better estimates for the

model parameters, because suspected outliers are given

small or null weights (see columns wmax and wmin in Table

4) depending on our belief in their true outlying nature.

5. Conclusions

Several methods for automatic ‘‘outlier’’ identifica-

tion, when comparing wave hindcast versus instrumental

FIG. 4. Outlier detection performance at buoys 41040, 41046, and 41047 using WLS and NWLS methods.
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time series, are analyzed and compared in this paper.

We prove that these outlying data are mostly related to

the presence of typhoons and/or hurricanes, which must

be removed to avoid distorting postcalibration results.

The main conclusions of the study are as follows:

(i) The best diagnostic statistic for outlier identifica-

tion purposes in the WLS and NWLS methods is

the internally studentized residual.

(ii) Both WLS and NWLS models perform appropriately

in most cases. The WLS method is computationally

faster; however, NWLS provides better postcalibra-

tion results because it is more conservative for the

same significance level, which may be convenient if

computational time is not relevant.

(iii) The RWLS method is also recommended for this

specific application since it provides analogous re-

sults to NWLS. This method increases its relevance

if there is a special interest on the final regression

model parameters beyond outlier detection.

(vi) RWLS and NWLS provide systematic procedures

to (i) detect outliers and (ii) remove outliers for

TABLE 4. Comparative results from applying RWLS and NWLS outlier detection techniques on the 43 buoys from the NDBC.

RWLS NWLS RWLS NWLS

ID No. n
w1

n
w2

n
a1

n
a2

w sw wmax wmin Iter Time (s) time (s)

41008 137 122 514 29 774 362 0.1238 0.0502 0.1900 0.0207 5 2.2344 10.5469

41003 15 037 147 12 113 58 0.1151 0.0499 0.1886 0.0420 6 0.2969 1.2500

41012 48 665 154 10 379 169 0.1048 0.0794 0.1991 0 5 0.7656 3.4063

41009 273 795 1272 157 2057 1054 0.1166 0.0629 0.2000 0 6 3.5781 18.7188

41006 98 052 704 62 693 316 0.1166 0.0558 0.1991 0.0058 6 1.7188 8.4531

41010 290 837 1344 148 2558 1372 0.1148 0.0582 0.2000 0 6 3.9688 23.7656

42025 24 107 71 0 168 69 0 0 0 0 5 0.3594 1.6094

42039 109 759 565 91 829 474 0.1286 0.0495 0.1993 0.0134 6 1.5781 11.6719

42009 16 509 136 12 160 101 0.1150 0.0686 0.1936 0.0029 5 0.2031 2

42040 108 092 772 166 902 523 0.0933 0.0653 0.1993 0 5 1.1719 11.1563

44007 219 280 992 199 2194 1106 0.1160 0.0526 0.1973 0.0007 6 3.7656 18.2344

44005 203 184 304 15 1184 455 0.1445 0.0530 0.1985 0 5 2.8438 20.1719

44013 191 121 673 50 1961 882 0.1632 0.0296 0.1986 0.0677 7 3.2656 18.3125

44018 50 955 175 2 239 77 0.1889 0.0022 0.1905 0.1873 6 0.7969 4.2031

44011 182 806 418 7 789 344 0.1200 0.0717 0.1997 0 6 2.7969 18.0625

44008 205 335 755 53 977 424 0.1083 0.0751 0.2000 0 6 3.0469 17.1406

44001 9015 37 5 50 22 0.0346 0.0610 0.1429 0 5 0.1406 0.9219

44012 35 014 318 42 337 204 0.1293 0.0460 0.1962 0 6 0.6719 3.0625

44009 180 367 1061 56 1606 824 0.1449 0.0486 0.1998 0.0095 6 3.0938 14.4063

44014 141 588 1007 221 948 425 0.0664 0.0667 0.1986 0 6 2.1719 10.3125

44006 9198 31 9 42 29 0.1136 0.0387 0.1768 0.0483 5 0.1250 0.7969

41001 187 253 669 94 1264 614 0.0891 0.0711 0.1982 0 5 2.1719 17.7031

41036 45 367 104 12 317 141 0.1587 0.0359 0.1982 0.0773 5 0.6563 3.2344

41002 193 022 1309 230 1507 765 0.0708 0.0737 0.1995 0 6 3.2031 16.3438

41004 136 731 562 84 1083 570 0.0887 0.0726 0.1990 0 6 2.3750 10.9219

41048 13 264 39 2 90 53 0.1477 0.0280 0.1675 0.1279 6 0.2344 1.5781

41047 9250 78 5 92 43 0.1722 0.0240 0.1958 0.1329 5 0.1875 1.0938

41046 9928 157 26 124 76 0.0769 0.0719 0.1967 0 6 0.1875 1.2813

10000 955 20 11 16 10 0.0630 0.0745 0.1954 0 7 0.0625 0.1406

42001 236 281 1406 227 1867 1002 0.0870 0.0711 0.1974 0 6 3.0938 15.3281

42041 33 562 185 27 246 136 0.0985 0.0701 0.1974 0 5 0.4688 2.4688

42038 16 537 165 15 92 54 0.1092 0.0568 0.1950 0 5 0.2500 1.3438

42002 236 760 1083 136 1500 777 0.0966 0.0690 0.1983 0 6 3.8125 14.6094

42019 139 808 965 158 1038 540 0.0920 0.0669 0.1981 0 6 2.5000 12.0781

42020 136 294 737 163 915 493 0.0901 0.0714 0.1999 0 5 1.6875 12.2188

41041 31 298 202 59 192 90 0.0681 0.0711 0.1992 0 6 0.5000 4.0781

41040 24 191 160 70 181 121 0.0711 0.0661 0.1986 0 6 0.4063 3.3750

42059 14 135 79 41 70 45 0.0351 0.0605 0.1799 0 6 0.1875 1.6094

41018 8669 9 0 17 1 0 0 0 0 4 0.1250 1.0938

42055 22 964 109 33 122 69 0.0782 0.0704 0.1995 0 5 0.3906 2.2344

42056 30 195 206 137 315 202 0.0331 0.0570 0.1967 0 6 0.5625 2.6719

42057 9602 149 144 148 116 0.0366 0.0607 0.1975 0 7 0.1875 1.0469

42058 16 216 94 7 40 16 0.0545 0.0908 0.1904 0 5 0.2188 1.6563
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calibration purposes. In addition, NWLS allows us

to identify those areas where the presence of hurri-

canes and typhoons is more relevant, which are

related to high values of the maximum studentized

residual. This is especially important if wave hind-

cast time series are intended to be used for engi-

neering purposes.

(v) Methods based on the minimum covariance de-

terminant (MCD) produce inappropriate results for

this particular application. The main reason is the

assumption of an underlying multivariate normal

pattern that wave data do not follow, even after

transforming the variables.

Note that our automatic hurricane–typhoon identifi-

cation procedures allow detecting those areas and pe-

riods of time in which it is necessary to carry out a more

accurate analysis by increasing the spatial and temporal

resolution of winds during these events.

An open question is to assess the importance of using

the proposed outlier detection techniques in new cali-

bration studies. However, this effort is beyond the scope

of the present paper.
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APPENDIX

Derivatives for Sensitivity Matrix Calculations

The analytical derivation for all required matrices for

the calculation of the sensitivity matrix is provided be-

low. For this task, first- and second-order derivatives of

the log-likelihood function with respect to parameters h

at the optimum must be obtained. Note that all deriva-

tions are based on the chain rule.

a. First-order derivatives of the log-likelihood
function

First-order derivatives of the log-likelihood function

with respect to mean (m) and standard deviation (s)

parameters are

FIG. 5. Outlier detection performance at buoys 41040, 41046, and

41047 using RWLS method.
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In addition, the evaluation of the second-order de-

rivatives of the log-likelihood function with respect to

parameters to be estimated and data Hhy is required.

These are as follows:
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