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ABSTRACT

The development of numerical wave prediction models for hindcast applications allows a de-

tailed description of wave climate in locations where long-term instrumental records are not

available. Wave hindcast databases (WHDBs) have become a powerful tool for the design

of offshore and coastal structures, offering important advantages for the statistical charac-

terization of wave climate all over the globe (continuous time series, wide spatial coverage,

constant time span, homogeneous forcing, more than 60 year-long time series). However,

WHDBs present several deficiencies reported in the literature. One of these deficiencies

is related to typhoons and hurricanes, which are inappropriately reproduced by numerical

models. The main reasons are i) the difficulty of specifying accurate wind fields during

these events and ii) the insufficient spatiotemporal resolution used. These difficulties make

the data related to these events to appear as “outliers” when comparing with instrumental

records. These bad data distort results from calibration and/or correction techniques. In

this paper, several methods for detecting the presence of typhoons and/or hurricane data

are presented, and their automatic “outlier” identification capabilities are analyzed and com-

pared. All the methods are applied to a global wave hindcast database and results compared

with existing Hurricane and buoy databases in the Gulf of Mexico, Caribbean Sea and North

Atlantic Ocean.
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1. Introduction

In the last decade, the traditional approach to climatology based on observations has

evolved towards a state-of-the-art data assimilation system, which is used to reprocess all

past environmental observations in combination with numerical models consistent with at-

mospheric equations. The improved methodology allows obtaining the best estimate of

the state and evolution of the atmosphere. It can also be considered as a reintegration of

our knowledge about the atmosphere into an easily accessible global atmospheric reanalysis

database. This source of information provides different climate variables, such as wind fields,

in a regular grid.

These atmospheric reanalysis databases can be subsequently reprocessed using wind wave

models, which allow the simulation of the wave generation and propagation processes all over

the globe. As in the meteorological case, these models provide consistent data sets to define

the wave climatology. However, since wave models do not incorporate wave instrumental

observations, the resulting databases are called wave hindcast rather than reanalysis.

In the last years, the importance of wave hindcast databases for the design of offshore and

coastal structures has increased considerably. The main reason is their ability to provide a

detailed description of wave climate, i.e. long continuous time series records with wide spatial

coverage, in locations where long-term instrumental records are not available. However,

hindcast models use: i) several simplifying assumptions of reality and ii) discrete forcing

fields consisting of surface winds at different times, and for these reasons hindcast results

present differences when compared with instrumental data (buoys and/or satellites) (Caires

and Sterl 2005; Cavaleri and Sclavo 2006). Besides, if the orography is complex, the hindcast
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inaccuracy becomes more evident (Cavaleri and Bertotti 2004) due to the inappropriate

spatial and temporal resolution and inaccurate description of wind fields.

An additional problem related to wave hindcast databases is the bad performance during

hurricanes and typhoons. These inconsistencies are produced due to the difficulty of speci-

fying accurate wind fields and the scarcity of high quality wave measurements during these

events. Thus, to better catch up ocean surface behavior when hurricane and typhoons occur,

models with higher spatial and temporal resolution must be used. These models take advan-

tage of i) the advances made in recent years in the analysis of the time and space evolution

of surface wind fields, specially in North Atlantic basin hurricanes (Powell et al. 1998), and

ii) the high quality wind data sets from remote sensing systems. However, these models are

too time consuming and they should only be used when and where the global wave hind-

cast does not reproduce appropriately the wave climate, i.e. during those hurricanes and

typhoons that produce important discrepancies between hindcast results and instrumental

data.

Coastal management and design demand the appropriate definition of the wave climate.

This requirement has resulted in an increased interest in collecting information through

instrumental devices, i.e. buoys and satellites. For example, NOAA National Data Buoy

Center (NDBC) has a fairly dense rich array of moored data buoys around the United States.

In addition, several satellite missions (Skylab, Geos-3, Seasat, Geosat, Topex/Poseidon, Ers-

1, Ers-2, Gfo, Jason-1, Envisat, and Jason-2) incorporate altimetry sensors for the evaluation

of different ocean climate variables with a high level of precision, i.e. ±3 cm (Krogstad

and Barstow 1999). These measurements are considerably more accurate than WHDBs.

However, there are also several shortcomings to be considered, such as disruptions on normal
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use due to failures, and temporal and spatial inhomogeneous records, which limit their use

to certain regions, mostly related to developed countries. These reasons have motivated an

increased interest in developing different wave generation models, such as WAM (Hasselman

et al. 1998) or Wave Watch (Tolman 1997, 1999). These models try to reproduce wave

generation and propagation processes using wind fields as input data (Caires et al. 2004;

Pilar et al. 2008; Dodet et al. 2010).

Since instrumental (buoys and/or satellites) and hindcast sources of information have

advantages and drawbacks (Cavaleri and Sclavo 2006), several authors attempt to combine

both types of information. Caires and Sterl (2005) establish a nonparametric correction

based on analogs taken from a learning dataset. Cavaleri and Sclavo (2006) obtain cali-

brated decadal time series at a large number of points over the Mediterranean Sea. They

use the overall information on models, buoys and satellites. Tomás et al. (2008) include spa-

tial correlation in the calibration process, proposing a spatial calibration procedure based

on empirical ortogonal functions and a non-linear transformation of the spatial-time modes.

Mı́nguez et al. (2011) propose a calibration method based on a nonlinear regression problem

in which the corresponding correction parameters vary smoothly along the possible wave

directions by means of cubic splines. This procedure is based on a point-to-point basis in-

cluding wave direction, but without considering the spatial correlation between neighboring

nodes. However, none of these approaches provide a rational criterion to detect data associ-

ated with hurricanes and typhoons, which should be treated with care within the calibration

process. Note that failing to exclude these outlying observations may provoke large distor-

tion of calibration results. Besides, these data should be treated and analyzed separately for

the results to be fully reliable. Efforts in this direction can be found in Cardone et al. (1976,
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1996). This outlier detection task is of great importance if hindcast database information

is used for maximum significant wave analysis, specially for the design of coastal protection

and offshore estructures, because it may underestimate maximum significant wave heights

associated with given return periods, compromising safety and functionality.

Due to the difficulties of defining wave climate, we are forced to work with mathematical

and statistical models, as those proposed in this paper. Nevertheless, mathematical and

statistical models are simplifications of reality and their results must be used with caution.

For instance, it is known that in certain regions of the world, hurricane data may be present in

instrumental records. Therefore, it is interesting to have statistical methods to automatically

detect and/or remove outliers and other unduly influential observations. This would protect

the results of the analysis from the influence of these rare events. Note that the techniques

proposed in this paper would allow deciding “where” and “when” specific numerical models

for hurricanes and typhoons should be used instead of wave hindcast databases.

There is a large literature on outlier detection; see, for example, the books by Hawkins

(1980), Belsley et al. (1980), Cook and Weisberg (1982), Atkinson (1985), Chatterjee and

Hadi (1988), and Barnett and Lewis (1994), and the articles by Pregibon (1981), Gray and

Ling (1984), Gray (1986), Cook (1986), Jones and Ling (1988), Weissfeld and Schneider

(1990a,b), Schwarzmann (1991), Paul and Fung (1991), Simonoff (1991), Nyquist (1992),

Hadi and Simonoff (1993), Atkinson (1984), Peña and Yohai (1995), Barrett and Gray

(1997), Mayo and Gray (1997), Billor et al. (2001), and Winsnowski et al. (2001). As

can be seen in these books and articles, the literature has focused mainly on the area of

least squares linear regression. Other statistical models and estimation methods, such as

reweighed techniques (Luceño 1997, 1998a,b), non-linear methods (Castillo et al. 2004),
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heteroscedastic models (Cheng 2011), or some robust estimators (Rousseeuw and Leroy

1987; Rousseeuw and Van Driessen 1999) have received comparatively less attention.

The aim of this paper is twofold, firstly to present several outlier detection techniques

for hurricanes and typhoons, and secondly to compare results from those techniques giving

some recommendations.

The paper is organized as follows. In Section 2, the data set used for this study is

described. Section 3 presents four different methods for outlier detection. In Section 4, the

functioning of the different methods is illustrated through several examples using data from

the Gulf of Mexico, Caribbean Sea and North Atlantic Ocean. Finally, in Section 5 relevant

conclusions are drawn and some recommendations are given.

2. Data sources

For this study we have used the following database information:

i. Significant wave height data from 43 buoys from National Data Buoy Center’s (NDBC,

NOAA http://www.ndbc.noaa.gov/) over the Gulf of Mexico, Caribbean Sea and At-

lantic Ocean. The main characteristics of the buoys used are given in Table 1, and

their locations are shown in Figure 1.

ii. Atlantic HURDAT: Atlantic Tracks Database from 1851 to 2009. This database

consists of an ASCII (text) file containing the 6-hourly center locations (latitude and

longitude in tenths of degrees) and intensities (maximum 1-minute surface wind speeds

in knots and minimum central pressures in millibars) for all Tropical Storms and Hur-
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ricanes from 1851 through 2009 (Jarvinen et al. 1984; Landsea et al. 2004, 2008).

Figure 1 shows the hurricane tracks from Atlantic HURDAT database and the tracks

of some Atlantic storms.

iii. Global Ocean Waves (GOW): This is a global wave hindcast from 1948 onwards

developed by the Environmental Hydraulics Institute “IH Cantabria”. It uses the third

generation model Wave Watch III (Tolman 1997, 1999) forced by 6-hourly wind fields

from the atmosphere model NCEP/NCAR. GOW database has different spatial scales:

i) a global grid at 1.5◦× 1◦ (longitude-latitude) spatial resolution, ii) an Atlantic coast

grid at 0.5◦ × 0.5◦ spatial resolution, and iii) a Caribbean coast grid at 0.25◦ × 0.25◦

spatial resolution.

In order to increase the confidence in wave hindcast databases, results must be post-

processed and validated with instrumental data (buoys and/or satellites). For this task,

hindcast versus instrumental data pairs coincident in time and space must be selected. For

this particular case, and due to the hindcast homogeneity both in time and space, database

information is interpolated to the buoy positions and to the times where buoy data are

recorded. These data pairs are used for validation and calibration. The aim of this paper

is to propose methods for detecting data pairs associated with hurricanes and typhoons

previously to validating and/or applying any calibration/correction technique.

An example of these data and the hurricane effect on hindcast validation is shown in

Figure 2, where the instrumental and hindcast significant wave records at buoy 42059 (East-

ern Caribbean) are plotted. Note in Figure 2(a) that the hindcast time series captures

appropriately the magnitude and temporal evolution of the instrumental significant wave
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height record; however, there exist clear discrepancies when hurricane events occur, es-

pecially during Dean 2007 and Omar 2008. This effect is also shown in the scatter plot

(Figure 2(b)), where instrumental and hindcast data occurring during these tropical storms

present important discrepancies, which would affect the calibration process and detract the

good performance of the hindcast if they were not accounted for appropriately. This paper

does not try to detect and remove all data related to hurricanes, but only those data that

differ substantially between hindcast and instrumental records. In Figure 2(b) there are

many data points recorded during the occurrence of different tropical storms where hindcast

performs appropriately. The reason for this behavior is that hurricane wave generation is a

local effect. As shown in Figure 2(c), there are four tropical storm tracks passing within 2

degrees distance from the buoy location; however, there are only considerable discrepancies

during two of these events:

i. Dean 2007 evolved from East to West and went through the buoy location on August

18. At that time, its hurricane category was H5. This is why discrepancies during this

event are so high.

ii. Noel 2007 was born close to the buoy location, being an extratropical storm at the time

it passed close to the buoy on October 25. The maximum category during this event

was tropical or subtropical storm. For these reasons, discrepancies may be considered

to be within tolerable limits.

iii. Gustav 2008 was analogous to Noel 2007; its category was tropical or subtropical

depression at the time it passed close to the buoy location on August 25.

iv. Omar 2008 reached category H1 on October 15, when it passed close to the buoy
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location, increasing up to category H4 on October 16, 500 km away from the buoy

location, producing also remarkable discrepancies.

3. Outlier detection techniques

In this section, we start considering the weighted general linear regression model and

continue showing different methods to deal with outliers.

a. Weighted least squares (WLS)

Consider the standard linear regression model

y = Xβ + ε, (1)

where y = (y1, y2, . . . , yn)T is a n × 1 response variable vector, X is a n × k matrix of

predictor variables often called “design matrix”, β is a k× 1 vector of regression coefficients

or parameters, and ε = (ε1, ε2, . . . , εn)T is a n × 1 vector of random errors assumed to

be jointly normally distributed random variables ε ∼ N(0, σ2V ), where σ2V is a positive

definite variance-covariance matrix.

Regression parameters β are usually estimated using the WLS method,

Minimize
β

εT Wε = Minimize
β

(Y −Xβ)T W (y −Xβ) , (2)

where W = V −1. For model (1), WLS coincides with the maximum likelihood (ML) estima-

tion method. Note that, for homoscedastic models, W corresponds to the identity matrix,

i.e. wii = 1; i = 1, . . . , n; wij = 0; i, j = 1, . . . , n and i 6= j, and (2) becomes the tradi-
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tional least squares (LS) method. However, we include matrix W in the formulation so that

regression formulas remain valid for the reweighting approach presented in subsection 3.b.

Fitting results are (Draper and Smith 1981):

β̂ =
(
XT WX

)−1
XT WY (3)

Var(β̂) = σ2
(
XT WX

)−1
(4)

Ŷ = Xβ̂ = PWY (5)

where the hat (̂ ) refers to estimates, and

P = X
(
XT WX

)−1
XT (6)

Var(Ŷ ) = σ2P (7)

ε̂ = Y − Ŷ = (I − PW )Y (8)

Var(ε̂) = σ2(V − P ) (9)

Var(ε̂i) = σ2(vii − pii); i = 1, . . . , n, (10)

where vii and pii are the ith diagonal element of V and the projection matrix P , respectively.

The residual mean square estimator of σ2 is

σ̂2 =
εT Wε

n− k
. (11)

1) Differences between influential observations and outliers

Influential observations can be defined, according to Belsley et al. (1980), as those obser-

vations having larger and excessive impact on the calculated values of some estimates. There

are numerous influence measures in the literature, which according to Chatterjee and Hadi
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(1986) can be classified into five groups based on: 1) residuals, 2) the prediction matrix, 3)

volume of confidence ellipsoids, 4) influence functions, and 5) partial influence. In contrast,

outliers are data that cannot be explained by the model, because they are produced under

different dynamics than regular data. One can find outliers that are influential, as well as

outliers that are not. Some outliers present large residuals and therefore are easy to detect.

However, it is important to realize that some outliers may have small residuals because they

have large influence on the parameter estimates; when outliers of this type appear in groups,

they are often more difficult to detect even though they are very influential. Finally, there

may be some outliers with small residuals that are not influential; these are also difficult to

detect, but they are much less important.

Figures 2 (a) and (b) show: i) the significant wave height evolution in time and ii) the

scatter plots corresponding to buoy 42059 (Easter Caribbean) and hindcast interpolated

data. According to these plots, many outliers related to hurricanes seem to have large

residuals but moderate influence on the fitted regression model.

2) Influence measures

To assess the effect of outliers associated with hurricanes on the estimators, we use

different influence measures, some of them based on the deletion approach, i.e. the influence

of the ith observation on a given estimator is calculated comparing results using all data

versus results obtained removing the ith observation from the data set. We have considered

the following statistics, which are valid only for W = V −1 diagonal matrix so that wii = v−1
ii :
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i. The ith diagonal element of the projection matrix P ,

pii = xi

(
XT WX

)−1
xT

i ; i = 1, . . . , n, (12)

where xi is the ith row of the design matrix, which represents the amount of leverage of

the response value yi on the corresponding response estimate ŷi. Note that Var(ŷi) =

σ2pii. High leverage points in regression, i.e. points which are outlying in the x-space,

should be further examined (Hoaglin and Welsh 1978).

ii. Internally studentized residuals, which are a scaled version of residuals, that is

zi =

√
wiiεi

σ̂
√

1− wiipii

; i = 1, . . . , n. (13)

For “outlier” identification purposes, an internally studentized residual corresponds to

a suspected “bad” data with a 1− α confidence level(sera significance?) (e.g., 0.99)

if |zi| > Φ−1(1− α/2).

iii. Externally studentized residuals, a second version of studentized residuals (13) where

σ̂ is replaced by σ̂(i) and σ̂2
(i) is the estimator of σ2 when the ith observation is omitted:

σ̂2
(i) =

(n− k)σ̂2

(n− k − 1)
− wiiε

2
i

(n− k − 1)(1− wiipii)
; i = 1, . . . , n. (14)

Large values of the two studentized residuals are related to outliers in the response-

factor space and represent points not well fitted by the model.

iv. Ratio between estimation variance (7) and residual variance (9):

RATIOi =
wiipii

1− wiipii

; i = 1, . . . , n. (15)

This statistic serves the same purpose as (12), but it is often more sensitive to detect

leverage points.
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v. The standardized squared modulus of the difference between the vector estimate β̂ for

the whole set of data and the same vector when the ith observation is omitted β̂(i):

1

σ̂2

(
β̂ − β̂(i)

)T (
β̂ − β̂(i)

)
=

p∗ii
σ̂2

(
wiiεi

1− wiipii

)2

; i = 1, . . . , n, (16)

where p∗ii = xi

(
XT WX

)−2
xT

i . This measure is based on the sensitivity curve (Chat-

terjee and Hadi 1986).

vi. The increase in the trace of the matrix
(
XT WX

)−1
after removing the ith observation:

trace
(
XT WX

)−1

(i)
− trace

(
XT WX

)−1
=

wiip
∗
ii

1− wiipii

; i = 1, . . . , n. (17)

Note that (16) is the product of (17) by z2
i given by (13).

vii. The weighted squared standardized distance (WSSD) (Daniel and Wood 1980) of the

ith observation in the x-space:

WSSDi =
1

s2
y

k∑
j=1

β̂j

(√
wixij − x̄

(w)
j

)2

; i = 1, . . . , n, (18)

where s2
y is an estimate of σ2 and x̄

(w)
j = 1∑n

i=1 wii

∑n
i=1 wiixij.

3) Heteroscedastic transformations

When the homoscedastic assumption (constant variance) does not hold, it is often possible

to transform the response variable to stabilize the variance by using the transformation:

Z = g(Y ) =





KY 1−γ if γ 6= 1

K log(Y ) if γ = 1,

(19)

for some appropriate value of γ. This value of γ can be estimated using two different methods:
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i. Including transformation (19) within a nonlinear LS model. Thus, the estimated value

γ̂ is obtained jointly with the regression parameters.

ii. Using repeated observations of the response variable Y at approximately the same

point in the x-space. The estimated parameter γ̂ is obtained from fitting the model:

log(σ̂Yi
) = δ + γ log(µ̂Yi

) + εYi
, (20)

where (µ̂Yi
,σ̂Yi

) are the estimated mean and standard deviation of Y for each set of

repeated observations.

The second alternative is preferable, if one can find sets of repeated observations, because

it allows using solutions given in subsection 3.a. Consequently, heteroscedastic data can be

analyzed using WLS, an appropriate transformation of the response variable, or a combina-

tion of both. We also show next that weights can be recalculated iteratively to match them

with the observed standardized residuals.

b. Reweighted least squares (RWLS)

The aim of many outlier detection methods is to determine whether an observation

should be considered as an outlier or not, without allowing for intermediate situations. In

contrast, the RWLS method aims at empirically determining a weight 0 ≤ wii ≤ 1 for every

observation ranging continuously from 0, for observations that are completely unreliable, up

to 1, for observations that are completely reliable. This can be attained by applying the

following recursive procedure:

• Step 0: Set wii = 1; i = 1, . . . , n.
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Step 1: Compute weighted least squares regression solving (2).

• Step 2: Compute new weights from the residuals of the last fit.

Steps 1 and 2 are repeated till convergence.

A key issue for the successful application of this algorithm is the new weight computation

in step 2. From different formulae proposed in the literature (Huber 1981; Chatterjee and

Mächler 1997; Luceño 1998b), we choose Tuckey’s biweight:

wii =





[
1− (

ui

6

)2
]2

if |ui| ≤ 6,

0 if |ui| > 6

(21)

where ui =
εi

σ∗
is a standardized residual based on the scaled median absolute deviation

estimator σ∗ = medi|εi|
c∗ of σ, with c∗ = 0.6745 (for consistency of σ∗).

Within the RWLS scheme, outliers related to hurricanes and typhoons are characterized

with low wii weights. Note that in addition to its multiple outlier detection capabilities,

reweighting also provides better performance on model estimation, because the influence of

potential outliers is removed from the final estimates.

c. Nonlinear weighted least squares (NWLS)

Regression models presented previously allow the treatment of nonlinear and/or het-

eroscedastic problems using adequate transformations and/or weighting.

Tomás et al. (2008) and Mı́nguez et al. (2011) show that potential nonlinear relationships

of the type yi = axb
i + εi and heteroscedastic variance Var(εi) = cxd

i provide very good

calibration results. For this reason, an outlier detection method based on a non-linear

heteroscedastic regression model is presented.
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An intrinsically (nonlinearizable) nonlinear regression model can be written as

yi = fµ(xi; β) + εi; i = 1, 2, . . . , n, (22)

where the function fµ is known and nonlinear in the parameter vector β, and εi; i = 1, . . . , n

are jointly normally distributed ε ∼ N(0, σ2V ) errors as in model (1).

Like in (2), the standard NWLS method, for W = V −1 diagonal, can be stated as

Minimize
β

εT Wε = Minimize
β

n∑
i=1

wii (yi − fµ(xi; β))2 , (23)

where n is the number of observations. Note that analogously to the linear case, nonlinear

regression models can also be used including weights in the formulation.

For wave hindcast data, a simple scatter plot of hindcast versus instrumental data allows

observing how the variance of the regression model changes over the regression function.

Consequently, we consider a nonlinear heteroscedastic regression model in which the standard

deviation σi of the ith error is a function of the predictor variable (xi):

σi = fσ(xi; θ) = w
−1/2
ii , (24)

where θ is a new s × 1 vector of coefficients or parameters. If the parameter vector θ

were known, estimation of the parameter vector β could be based on the NWLS method

(23). However, the values of θ are usually unknown, and can be estimated using maximum

likelihood methods. Thus, assuming that random errors are uncorrelated and normally

distributed random variables each with mean zero and standard deviation given by (24),

the whole set of model parameters (β and θ) can be jointly estimated maximizing the log-

likelihood function:

`(β,θ) = −
n∑

i=1

log (fσ(xi; θ))− 1

2

n∑
i=1

(
yi − fµ(xi; β)

fσ(xi; θ)

)2

. (25)

17



The estimates β̂ that maximize the log-likelihood function (25), and solve (23), allow

calculating the residual vector ε̂, which is defined as:

ε̂ = y − fµ(x; β̂) . (26)

Observe that the maximization of the log-likelihood function can be done using any of

the available solvers for nonlinear programming, possibly subject to bounds on variables.

One such solver is MINOS (Murtagh and Saunders 1998) under GAMS (Brooke et al. 1998)

which allows for upper and lower bounds on parameters to be estimated, and uses a reduced-

gradient algorithm (Wolfe 1963) combined with the quasi-Newton algorithm described in

Murtagh and Saunders (1978), or the Trust Region Reflective Algorithm under Matlab, also

capable of dealing with upper and lower bounds through the function fmincon. For details

about the method, see Coleman and Li (1994) and Coleman and Li (1996). In order to

improve convergence properties both the gradient and hessian of the objective function are

calculated analytically (see the Appendix for details).

Following the analogy between WLS and NWLS, it is also possible to apply reweighting

strategies within nonlinear regression models, which will enhance the quality of parameter

estimates reducing the effect of possible existing outliers. This will lead to an increase in the

computational time, or a somewhat more difficult to fit nonlinear regression model.
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1) Residual covariance matrix and studentized residuals

Using a first-order Taylor series expansion of function (26) around the optimal estimated

parameter vector β̂, the estimated differential residual vector is obtained as:

dε̂ = dy − ∂fµ(x; β)

∂β

∣∣∣∣
β=

ˆβ
dβ = dy −Hdβ (27)

where H is the n× k Jacobian matrix evaluated at β̂. It readily follows:

∂ε̂

∂y
= I − H

∂β

∂y

∣∣∣∣
β=

ˆβ
= I −HMβy = S (28)

where the k×n matrix Mβy contains the derivatives of vector β with respect to y evaluated

at β̂, matrix I is the n-dimensional identity matrix, and matrix S is the so called residual

sensitivity matrix.

Integration of (28) allows obtaining the first order linear approximation to the (nonlinear

in β̂) transformation (26) from y to ε̂:

ε̂ = Sy + k (29)

where k is the integration constant vector.

The corresponding estimated residual covariance matrix Ω = Var(ε̂) is:

Ω = SCyS
T (30)

where matrix Cy is the error covariance matrix provided by (24):

Cy =




fσ(x1, θ̂)2 0 · · · 0

0 fσ(x2, θ̂)2 · · · 0

...
...

. . .
...

0 · · · 0 fσ(xn, θ̂)2




. (31)
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Therefore, considering (28), the general expression for matrix Ω is:

Ω = (I −HMβy)Cz(I −HMβy)
T , (32)

where matrices H and Mβy depend on the selected fµ(x; β) and fσ(x; θ) functions. Note

that (32) is a nonlinear equivalent to (9).

Finally, from (26) and (32), studentized residuals are computed as

zi =
ε̂i√
Ωi,i

=
yi − fµ(xi; β̂)√

Ωi,i

i = 1, . . . , n, (33)

where Ωi,i is the ith diagonal element of Ω.

Vector z provides the studentized residuals, and hence can be used straightforwardly for

outlier identification as in the linear case.

2) Sensitivity matrix from sensitivity analysis

Subsection 3.c.1 shows that the sensitivity matrix S, which allows calculating the es-

timated residual covariance matrix Ω, depends on matrix Mβy. This matrix is obtained

below, based on sensitivity analysis results reported in Castillo et al. (2006).

For the maximum likelihood estimation problem, which is an unconstrained non-linear

optimization problem, the Karush-Kuhn-Tucker (KKT) first order optimality conditions at

its optimal solution (β̂, θ̂, ˆ̀) (Bazaraa et al. 1993; Luenberger 1984) reduce to:

∇η`(η̂,y) = 0, (34)

where η̂ = [β̂; θ̂], and ∇η stands for the vector of partial derivatives (of `) with respect to

η.
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This condition establishes that the gradient of the objective function with respect to β

and θ at the optimal solution β̂ and θ̂ must be zero.

To obtain sensitivity equations, we perturb or modify y so that η̂ is modified accordingly

to continue satisfying the KKT conditions (Castillo et al. 2006). After manipulating the

resulting expressions, the required sensitivity equation reduces to the following linear system

of equations:

(−Hηη
) ∂η

∂y ((k+s)×n)

= Hηy, (35)

where the vectors and submatrices in (35) are defined below (dimensions in parenthesis):

Hηη((k+s)×(k+s))
= ∇ηη`(η̂, y) (36)

Hηy((k+s)×n)
= ∇ηy`(η̂,y) (37)

which constitute Hessians with respect to parameters and data. Note that (36) is a nonlinear

equivalent to (3) with unit weights.

Expression (35) allows deriving sensitivities of the parameter estimates with respect to

the data. Under mild regularity conditions that are often satisfied (Coles 2001; Castillo

et al. 2005) −Hηη (the Fisher information matrix) is invertible, and (35) has a unique

solution. Matrix
∂η

∂y ((k+s)×n)

can be partitioned in two different blocks associated with mean

and standard deviation parameter functions, respectively:

∂η

∂y ((k+s)×n)

=




∂β

∂y
∂θ

∂y


 . (38)

The first block corresponds to matrix Mβy, which allows obtaining the sensitivity matrix S

using (28).
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From a computational point of view, inversion of the Hessian matrix Hηη is not needed

because it can be easily factorized using LU algorithms. Sensitivities
∂η
∂y are thus obtained

using forward and backward elimination methods. Note that for the calculation of all sen-

sitivities, second order derivatives of the log-likelihood function with respect to parameters

and data are needed. They can be obtained numerically by finite differences or analytically.

For the analytical case, a detail derivation of Jacobians and Hessians with respect to param-

eters and data is given in the Appendix. Although analytical results seem to be complex, we

rather like this approach because it is easy to implement using any programming language,

and it avoids possible numerical problems deriving from finite differences. In addition, to cal-

culate studentized residuals, only the computation of the diagonal elements of the Ω matrix

is required, which reduces considerably the computational time.

d. Minimum covariance determinant estimator (MCD)

A different method capable of detecting outliers is the minimum covariance determinant

estimator (Rousseeuw and Van Driessen 1999), which is used in this paper for comparison

purposes. The MCD method looks for the h observations out of n whose classical covari-

ance matrix has the lowest possible determinant. This method allows to calculate a robust

distance:

RDi =

√
(xi − µ̄MCD) Σ̄

−1
MCD (xi − µ̄MCD)

T (39)

where µ̄MCD and Σ̄MCD are robust MCD location and scatter estimates, so as to determine

whether the associated observation i is an outlier or not. Under the normal assumption, the

outliers correspond to those values whose robust distances are larger than a given cut-off
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value usually defined as
√

χ2
p,1−α/2 for some small 0 < α < 1. Robust distance (39) is a

robustification of the Mahalanobis distance.

4. Case study

In this section we illustrate the performance of the methods presented in Section 3 . We

have applied them to the 43 buoys from National Data Buoy Center’s given in Table 1 and

shown in Figure 1. In this application we only deal with two variables, yi corresponds to the

ith value of the response variable (buoy data), and xi is the predictor variable (interpolated

hindcast data) corresponding to the ith observation. However, methods presented in the

paper are valid for multivariate analysis. We could, for example, use more than one function

of X in the regression equations (1) or (22). Consequently, we have investigated some of

these more complex models, but we will only show results for those models we have found

to work best.

Before performing the analysis, the particular regression models we have chosen are

presented:

• For the WLS method (subsection 3.a), the response variable is transformed using (19)

and the estimate γ̂ is calculated based on model (20). Because the relationship between

X and Y is approximately linear, we apply the same power transformation 1 − γ to

the covariate X and response Y , which leads to the following regression model:

Y 1−γ = β0 + β1X
1−γ + ε. (40)

This model is linear with respect to β0 and β1 and nonlinear with respect to γ. However,
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because the estimate of γ is obtained previously rather than using a nonlinear iteration,

model (40) can be considered linear for practical purposes.

• RWLS method (subsection 3.b) is applied using model (40).

• For the NWLS model (subsection 3.c), the following parameterization is used for the

mean and dispersion functions:

fµ(xi,β) = β0x
β1

i (41)

fσ(xi, θ) = θ0x
θ1
i . (42)

• Transformed data Y 1−γ and X1−γ are also used within the MCD framework (subsec-

tion 3.d).

Note that previous to deciding the particular regression model for each case, alternative

expressions have been considered particularly to check whether other transformations of X

and Y could be useful. We only provide those giving better performance.

a. Detailed results for Eastern Caribbean buoy 42059

We first analyze some detailed results for buoy 42059 (Eastern Caribbean) shown in

Figure 2. We have applied the WLS (section 3.a), RWLS (section 3.b), NWLS (section 3.c),

and MCD (section 3.d) methods. For the WLS and NWLS, outliers are identified using

the internally studentized residuals zi given in (13) and (33), respectively. In both cases, a

case is identified as an outlier if |zi| > Φ−1(1− α/2). Results for different significance levels

α = {0.1, 0.05, 0.01, 0.001, 0.0001} are shown in Figures 3 (a) and (b), where data removed

24



for each significance level are highlighted by using different dot marker specifiers. Table 2

also provides the number of data points detected as outliers for each significance level, and

the computational time in seconds. Note that models have been run on a portable computer

with one processor clocking at 2.39 GHz and 3.25 GB of RAM. From all these results the

following observations are pertinent:

i. Both WLS and NWLS provide similar results. The numbers of outliers detected by

the two methods for each significance level are almost the same.

ii. WLS method requires the evaluation of the optimal γ-value in transformation (19) for

the homoscedastic assumption to hold, which for this particular buoy corresponds to

γ̂ ≈ 0.41. However, once this value is calculated, the problem is easily solvable using

(3)-(11), which requires little computational time. On the other hand, the nonlinear

version requires solving an optimization problem, which takes longer to solve although

it is easily solvable using standard nonlinear mathematical programming techniques.

iii. Since the RWLS method iteratively updates the weights associated with each case, the

detection criterion is established as a function of the final weights wii. Outliers relevant

for calibration purposes are those whose weights are lower than about 0.2 (note that

0 ≤ wii ≤ 1; i = 1, . . . , n). RWLS also detects appropriately the most relevant outliers

(see Figure 3 (c)). The computational time increases slightly with respect to WLS, but

decreases considerably with respect to NWLS. The iterative process usually converges

in a few iterations; e.g., for this particular buoy, it requires 6 iterations.

iv. It is also important to realize that RWLS avoids the dichotomy “outlier” versus “not-

outlier” for each particular case in the sample. In contrast, the fitted regression line
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is estimated giving to each case a weight (0 ≤ wii ≤ 1) ranging from 0 to 1 according

to our empirically determined degree of credibility on the goodness of each case in the

sample.

v. Hurricane data related to Dean 2007 and Omar 2008 (see Figure 2), where the dis-

crepancies are remarkable, are correctly detected with both WLS and NWLS methods

using a significance level α = 0.0001, as well as with the RWLS using a weight threshold

of w = 0.2.

For comparison purposes, we have also applied the MCD approach (subsection 3.d).

Results are also given in Figure 3 (d) and Table 2. The MCD method is applied using

the function mcdcov from MATLAB toolbox LIBRA (Verboven and Hubert 2005), which

is an implementation of the fast-MCD algorithm proposed by Rousseeuw and Van Driessen

(1999). Note that Figure 3 (d) shows the data detected using the classical approach based

on Mahalanobis distance along with those for the robust approach. From these results,

we can conclude that both methods (classical and robust) related to the MCD approach

provide unsatisfactory results, since besides detecting data associated with outliers, they

also eliminate extreme values of hindcast and instrumental distributions that are close to the

regression line. These points are appropriately reproduced by the hindcast, and extremely

important from the engineering design point of view. In addition, computational cost is

much higher with respect to the other methods.
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b. Results for the remainder buoys

Table 3 provides the following information related to the performance of the WLS and

NWLS methods on the 43 buoys from the National Data Buoy Center’s (NDBC): number of

cases at each buoy location (n), number of detected outliers for significance levels α1 = 0.001

and α2 = 0.0001 (nα1 , nα2), the mean and standard deviation of the studentized residual

absolute value (|z̄|, σ|z|), the maximum and minimum studentized residual absolute value

(|z|max, |z|min), and CPU time in seconds. Note that |z̄|, σ|z|, |z|max and |z|min are based on

data removed using α2 = 0.0001.

From results given in Table 3 the following observations are pertinent:

i. Both WLS and NWLS approaches provide satisfactory results on outlier identification

in most cases, with the computational time required for WLS being lower.

ii. In all buoys, and for the same significance level, the number of data points detected

using the nonlinear approach is higher, and the maximum studentized residual absolute

value |z|max is also higher, resulting in a more conservative approach which may produce

better post-calibration results.

For comparison purposes, Figure 4 shows the performance of both WLS and NWLS meth-

ods on three different buoys: 41040, 41046 and 41047. For buoy 41040 both methods perform

appropriately, detecting the most relevant outliers. However, whereas the mean, standard

deviation and minimum studentized residual absolute value are similar (see the correspond-

ing row in Table 3), the maximum studentized residual absolute values are 11.8317 and

19.2277, respectively, the NWLS |z|max-value being considerably higher. In this particular
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case, using α = 0.0001, performance can be considered equivalent from the post-calibration

process perspective. This effect is also observed in buoys 41047 and 41046. In buoy 41047,

the maximum studentized residual absolute values are 4.4024 and 5.6516, relatively close,

but in 41046 the maximum studentized residual absolute values are 5.2096 and 9.3842, where

differences increase considerably with respect to buoy 41047. On the other hand, the mini-

mum studentized residual absolute values are very similar in both locations. Thus, NWLS

method provides more conservative detection results at the α = 0.0001 level, as shown in

Figures 4 (c) and (d), because it includes as outliers those points associated with HGOW
s

between 3 and 4 meters, and H I
s around 6 meters. Note also that both methods are also

capable of detecting points associated with negative studentized residuals, as shown in Fig-

ure 4 (a) and (b) (left side of the regression lines), which may be related to points taken

during disruption of normal use of the instrumental device.

An important contribution of our analysis is the assessment of the effect on outliers de-

tection of using the different diagnostic statistics given in (12)-(18). We have confirmed that

the most appropriate statistic for this particular application is the internally studentized

residual, since the other statistics detect high leverage points which are not usually related

to hurricanes. Regarding the differences between internally and externally studentized resid-

uals, differences are negligible for the buoys considered.

Table 4 provides the following information related to the performance of the RWLS and

NWLS methods on the 43 buoys from the National Data Buoy Center’s (NDBC): number of

cases at each buoy location (n), number of detected outliers for weights holding 0.2 ≤ w1 ≤

0.5 and w2 ≤ 0.2 (nw1 , nw2), number of detected outliers for significance levels α1 = 0.001

and α2 = 0.0001 (nα1 , nα2), the mean and standard deviation of the weights (w̄, σw), the
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maximum and minimum weights (wmax, wmin), and CPU time in seconds. Note that w̄, σw,

wmax, wmin are for data removed using w2 ≤ 0.2 criterion. This table also shows that the

number of iterations required for convergence of the RWLS method is between 5 and 7, and

is thus computationally faster than NWLS.

The number of outliers detected using RWLS; i.e. nw1 , is very similar to the number

detected using NWLS; i.e. nα2 , with both methods capable of detecting all the relevant

outliers. Differences are due to certain outliers detected by RWLS, which are related to

lower values of the instrumental data set. Figure 5 shows the performance of the RWLS

method on buoys 41040, 41046 and 41047. Comparing these results with those in Figures 4

(b), (d) and (f), it can be observed that the outliers detected with NWLS using α = 0.0001

and RWLS using w < 0.5, associated with hurricanes (higher values of the instrumental

record), are almost the same. However, RWLS also includes data records related to the

medium and lower part of the instrumental distribution, which are not considered as outliers

by NWLS.

Note that although computational time increases slightly with respect to WLS method,

RWLS detecting capabilities should be regarded as an insurance policy to obtain i) better

protection against outliers that are more difficult to detect, and ii) better estimates for the

model parameters, because suspected outliers are given small or null weights (see columns

wmax and wmin in Table 4) depending on our believe in their true outlying nature.
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5. Conclusions

Several methods for automatic “outlier” identification, when comparing wave hindcast

versus instrumental time series, are analyzed and compared in this paper. We prove that

these outlying data are mostly related to the presence of typhoons and/or hurricanes, which

must be removed to avoid distorting post-calibration results. The main conclusions of the

study are:

i. The best diagnostic statistic for outlier identification purposes in the WLS and NWLS

methods is the internally studentized residual.

ii. Both WLS and NWLS models perform appropriately in most cases. WLS method is

computationally faster; however NWLS provides better post-calibration results because

it is more conservative for the same significance level, which may be convenient if

computational time is not relevant.

iii. RWLS method is also recommended for this specific application since it provides anal-

ogous results to NWLS. This method increases its relevance if there is a special interest

on the final regression model parameters beyond outlier detection.

iv. RWLS and NWLS provide systematic procedures to: i) detect outliers, ii) remove

outliers for calibration purposes. In addition, NWLS allows to identify those areas

where the presence of hurricanes and typhoons is more relevant, which are related to

high values of the maximum studentized residual. This is specially important if wave

hindcast time series are intended to be used for engineering purposes.

v. Methods based on the minimum covariance determinant (MCD) produce inappropriate
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results for this particular application. The main reason is the assumption of an under-

lying multivariate normal pattern that wave data do not follow, even after transforming

the variables.

Note that our automatic hurricane/typhoon identification procedures allow detecting

those areas and periods of time in which it is necessary to carry out a more accurate analysis

by increasing the spatial and temporal resolution of winds during these events.

An open question is to assess the importance of using the proposed outlier detection

techniques in new calibration studies. However, this effort is beyond the scope of the present

paper.
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APPENDIX

Derivatives for Sensitivity Matrix Calculations

The analytical derivation for all required matrices for the calculation of the sensitivity

matrix is provided below. For this task, first and second order derivatives of the log-likelihood

function with respect to parameters η at the optimum must be obtained. Note that all

derivations are based on the chain rule.

a. First order derivatives of the log-likelihood function

First order derivatives of the log-likelihood function with respect to mean (µ) and stan-

dard deviation (σ) parameters are:

∂`

∂βj

=
n∑

i=1

(
yi − fµ(xi; β)

f 2
σ(xi,θ)

)
∂fµ(xi; β)

∂βj

; ∀j, (A1)

∂`

∂θj

= −
n∑

i=1

1

fσ(xi; θ)

∂fσ(xi; θ)

∂θj

+
n∑

i=1

(yi − fµ(xi; β))2

f 3
σ(xi,θ)

∂fσ(xi; θ)

∂θj

; ∀j, (A2)

where the derivatives of the functions fµ and fσ proposed in (41)-(42), and used in expressions

(A1)-(A2) are:

∂fµ(xi; β)

∂β0

= xβ1

i ;
∂fµ(xi; β)

∂β1

= β0x
β1

i log(xi); ∀i
∂fσ(xi; θ)

∂θ0

= xθ1
i ;

∂fσ1(xi; θ)

∂θ1

= θ0x
θ1
i log(xi); ∀i.

(A3)
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b. Second order derivatives of the log-likelihood function

Second order derivatives of the log-likelihood function with respect to mean (µ) and

standard deviation (σ) parameters are:

∂2`

∂2βj

=
n∑

i=1

1

f 2
σ(xi,θ)

[
(yi − fµ(xi; β))

∂2fµ(xi; β)

∂2βj

−
(

∂fµ(xi; β)

∂βj

)2
]

; ∀j (A4)

∂2`

∂βj∂βl

=
n∑

i=1

1

f 2
σ(xi,θ)

[
(yi − fµ(xi; β))

∂2fµ(xi; β)

∂βj∂βl

− ∂fµ(xi; β)

∂βj

∂fµ(xi; β)

∂βl

]

; ∀(j,l)
(A5)

∂2`

∂2θj

= −
n∑

i=1

fσ(xi; θ)∂2fσ(xi;θ)
∂2θj

−
(

∂fσ(xi;θ)
∂θj

)2

f 2
σ(xi,θ)

+
n∑

i=1

(yi − fµ(xi; β))2

f 3
σ(xi,θ)

[
∂2fσ(xi; θ)

∂2θj

− 3

fσ(xi; θ)

(
∂fσ(xi; θ)

∂θj

)2
]

; ∀j (A6)

∂2`

∂θj∂θl

= −
n∑

i=1

fσ(xi; θ)∂2fσ(xi;θ)
∂θj∂θl

− ∂fσ(xi;θ)
∂θj

∂fσ(xi;θ)
∂θl

f 2
σ(xi,θ)

+
n∑

i=1

(yi − fµ(xi; β))2

f 3
σ(xi, θ)

[
∂2fσ(xi; θ)

∂θj∂θl

− 3

fσ(xi; θ)

∂fσ(xi; θ)

∂θj

∂fσ(xi; θ)

∂θj

]

;∀(j,l)
(A7)

∂2`

∂βj∂θl

= −2
n∑

i=1

(yi − fµ(xi; β))

f 3
σ(xi,θ)

∂fµ(xi; β)

∂βj

∂fσ(xi; θ)

∂θl

; ∀(j, l), (A8)

where the second derivatives of the functions fµ and fσ proposed in (41)-(42) are:

∂2fµ(xi; β)

∂2β0

= 0;
∂2fµ(xi; β)

∂2β1

= β0x
β1

i log2(xi);
∂2fµ(xi; β)

∂β0∂β1

= xβ1

i log(xi); i = 1

∂2fσ(xi; θ)

∂2θ0

= 0;
∂2fσ(xi; θ)

∂2θ1

= θ0x
θ1
i log2(xi);

∂2fσ(xi; θ)

∂θ0∂θ1

= xθ1
i log(xi); i.

(A9)

In addition, the evaluation of the second order derivatives of the log-likelihood function

with respect to parameters to be estimated and data Hηy is required. These are as follows:

∂2`

∂βj∂yi

=
1

f 2
σ(xi, θ)

∂fµ(xi; β)

∂βj

; j = 1, . . . , k; i = 1, . . . , n, (A10)

∂2`

∂θj∂yi

=
2 (yi − fµ(xi; β))

f 3
σ(xi, θ)

∂fσ(xi; θ)

∂θj

; j = 1, . . . , s; i = 1, . . . , n. (A11)
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Table 1. General characteristics of the 43 buoys from the National Data Buoy Center’s
(NDBC) used for the outlier detection analysis.

Region Name ID. lon(0-360) lat Depth (m) T0 Tf Spectral?

F
lo

ri
d
a

E
a
st

er
n

G
u
lf

M
ex

ic
o

Grays Reef 41008 -80.871 31.402 18 1988 2008 from 1996
−− 41003 -80.1 30.4 −− 1977 1982 no

St. Augustine 41012 -80.533 30.041 37.2 2002 2008 yes
East Cape Canaveral 41009 -80.166 28.519 44.2 1988 2008 from 1996

−− 41006 -77.4 29.3 −− 1982 1996 from 1996
East Cape Canaveral 41010 -78.471 28.906 872.6 1988 2008 from 1996

−− 42025 -80.4 24.9 −− 1991 1995 no
East Southeast Pensacola 42039 -86.008 28.791 307 1995 2008 from 1996

−− 42009 -87.5 29.3 −− 1980 1987 no
South of Dauphin Island 42040 -88.205 29.205 274.3 1995 2008 from 1996

N
o
rt

h
ea

st
U

S
A

Mantucket 44007 -69.247 40.503 59.1 1982 2008 from 1996
Gulf of Maine 44005 -69.14 43.189 201.2 1978 2008 from 1996

Boston 44013 -70.651 42.346 60 1984 2008 from 1996
SE Cape Cod 44018 -69.305 41.255 63.7 2002 2008 yes
Georges Bank 44011 -66.58 41.111 88.4 1984 2008 from 1996

Nantucket 44008 -69.247 40.503 59.1 1982 2008 from 1996
−− 44001 -73.6 38.7 −− 1975 1979 1990 1991 no
−− 44012 -74.6 38.8 −− 1984 1992 no

Delaware Bay 44009 -74.702 38.464 28 1984 2008 from 1996
Virgina Beach 44014 -74.836 36.611 47.5 1990 2008 from 1996

S
o
u
th

ea
st

U
S
A

−− 44006 -75.4 36.3 −− 1980 1988 19941996 no
East Cape Hatteras 41001 -72.734 34.704 4425.7 1976 2008 from 1996

Onslow Bay 41036 -76.953 34.211 30.8 2006 2008 yes
East of Charleston 41002 -75.415 32.382 3546 1973 2008 from 1996

Southeast of Charleston 41004 -79.099 32.501 33.5 1978 2008 from 1996
Bermuda 41048 -69.649 30.978 5261 2007 2008 yes

W. A.
Bahamas 41047 -71.491 27.469 5231 2007 2008 yes
Bahamas 41046 -70.87 23.867 5498.6 2007 2008 yes

W
es

te
rn

G
u
lf

M
ex

ic
o −− 10000 -88 27.5 −− 1972 1976 no

South of Southwest Pass 42001 -89.667 25.9 3246 1975 2008 from 1996
South of Grand Isle 42041 -90.462 27.504 −− 1999 2005 from 1999

North Mid Gulf of Mexico 42038 -92.555 27.421 −− 2004 2006 yes
East of Bronsville 42002 -93.666 25.79 3566.16 1973 2008 from 1996

Freeport 42019 -95.36 27.913 83.2 1990 2008 from 1996
Corpus Christi 42020 -96.695 26.966 88.1 1990 2008 from 1996

C
a
ri

b
b
ea

n Middle Atlantic 41041 -46.008 14.357 3502 2005 2008 yes
West Atlantic 41040 -53.008 14.477 5267.2 2005 2008 yes

Eastern Caribbean 42059 -67.496 15.006 4900 2007 2008 yes
−− 41018 -75 15 −− 1994 1996 no

W
es

te
rn

C
a
ri

b
b
ea

n Bay of Campeche 42055 -94.046 22.017 3380.5 2005 2008 yes
Yucatan Basin 42056 -85.059 19.874 4446 2005 2008 yes

Western Caribbean 42057 -81.501 16.834 293 2005 2008 yes
Central Caribbean 42058 -75.064 15.093 4042 2005 2008 yes
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Table 2. Number of detected outliers from applying different outlier detection techniques
on buoy 42059 (Eastern Caribbean).

Method α = 0.1 α = 0.05 α = 0.01 α = 0.001 α = 10−4 CPU time (s)
WLS 1048 551 182 70 42 ≈ 0.15
NWLS 965 523 181 70 45 ≈ 0.5

0.8 < w ≤ 0.9 0.5 < w ≤ 0.8 0.2 < w ≤ 0.5 w ≤ 0.2 CPU time (s)
RWLS 1645 819 79 41 −− ≈ 0.19

Classical Robust CPU time (s)
MCD 569 741 ≈ 1
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Table 3. Summarizing results from applying WLS and NWLS outlier detection techniques
on the 43 buoys from the National Data Buoy Center’s (NDBC).

WLS NWLS WLS NWLS WLS NWLS WLS NWLS WLS NWLS WLS NWLS
ID. n nα1 nα2 nα1 nα2 |z̄| |z̄| σ|z| σ|z| |z|max |z|max |z|min |z|min time time

41008 137122 442 111 774 362 4.2757 4.7235 0.3421 0.7477 5.4274 7.3709 3.8945 3.8932 0.3438 10.2188
41003 15037 79 21 113 58 4.2153 4.6897 0.2933 0.7558 4.8156 6.6724 3.9014 3.8907 0.1250 1.0781
41012 48665 109 17 379 169 4.5718 4.5959 0.7011 0.9658 6.1662 10.9116 3.8985 3.8911 0.2188 3.5313
41009 273795 1058 341 2057 1054 4.3736 4.7649 0.4484 0.8143 6.2315 8.5761 3.8907 3.8912 0.5938 18.6719
41006 98052 389 99 693 316 4.3094 4.6585 0.3565 0.7724 5.2834 7.9569 3.8987 3.8944 0.2813 8.4688
41010 290837 1048 292 2558 1372 4.4027 4.8687 0.4321 1.0359 6.0154 10.9560 3.8915 3.8909 0.7344 23.5938
42025 24107 47 0 168 69 0 4.6992 0 0.7854 0 7.6880 0 3.9206 0.0938 1.7500
42039 109759 539 209 829 474 4.3279 5.0119 0.3526 0.9298 5.4317 8.7355 3.8927 3.8922 0.2500 11.2656
42009 16509 88 17 160 101 4.3553 4.9739 0.4329 0.9035 5.3190 7.8597 3.8908 3.8925 0.1250 2.0625
42040 108092 598 235 902 523 4.6673 5.1866 0.8600 1.3959 8.6480 12.5488 3.8937 3.8912 0.3438 11.3594
44007 219280 737 289 2194 1106 4.4072 4.8247 0.3573 0.9785 5.5247 12.5047 3.8906 3.8965 0.5625 17.9688
44005 203184 309 60 1184 455 4.3134 4.5796 0.3847 0.7489 6.1976 9.7382 3.9137 3.8910 0.4375 20.6563
44013 191121 363 131 1961 882 4.1446 4.9813 0.1878 1.3401 4.8251 13.4606 3.8971 3.8909 0.4375 17
44018 50955 104 12 239 77 4.0787 4.3682 0.1351 0.5781 4.3345 7.6285 3.8945 3.9062 0.2031 4.4531
44011 182806 355 72 789 344 4.1847 4.7747 0.5386 0.9145 8.2330 9.5811 3.8997 3.8995 0.4375 18.0781
44008 205335 547 142 977 424 4.8552 4.8312 2.1657 1.0678 12.8360 12.3123 3.8929 3.8949 0.5781 16.6250
44001 9015 21 8 50 22 4.7839 4.7903 0.7567 1.4153 5.6723 10.3077 3.9115 3.9076 0.0313 1.0313
44012 35014 179 51 337 204 4.2983 4.7619 0.2815 0.7615 5.4204 6.9618 3.9074 3.8920 0.1563 2.8125
44009 180367 693 136 1606 824 4.2184 4.7491 0.2922 0.8653 5.4091 11.6203 3.8916 3.8911 0.4531 14.7344
44014 141588 768 283 948 425 4.8632 4.7238 0.9744 0.9211 9.6952 12.3205 3.8922 3.8921 0.4219 10.8438
44006 9198 40 18 42 29 4.5780 5.1854 0.4624 1.0739 5.4003 7.6501 3.9254 3.9403 0.0625 1.0625
41001 187253 564 199 1264 614 4.7033 4.8276 1.1646 1.1173 9.9324 16.7261 3.8906 3.8911 0.5000 17.8438
41036 45367 108 33 317 141 4.2977 4.9978 0.3128 1.2102 5.0835 9.1222 3.9295 3.9023 0.1250 3.2813
41002 193022 882 310 1507 765 5.4547 5.0393 1.9334 1.3083 10.7551 12.6517 3.8913 3.8913 0.5156 16.1406
41004 136731 465 138 1083 570 4.7424 5.1960 0.9099 1.9037 7.9380 18.3539 3.8936 3.8916 0.3438 11.2031
41048 13264 44 12 90 53 4.2602 5.0406 0.3263 0.9646 4.9236 7.8573 3.9011 3.9001 0.1250 1.8125
41047 9250 46 13 92 43 4.0779 4.4495 0.1490 0.4962 4.4024 5.6516 3.8907 3.8952 0.1250 1.1250
41046 9928 64 20 124 76 4.5710 5.3070 0.3987 1.4910 5.2096 9.3842 4.0068 3.8919 0.0313 1.2813
10000 955 10 5 16 10 4.4737 4.9588 0.2860 0.7059 4.9356 6.4495 4.2241 4.0774 0 0.2813
42001 236281 975 339 1867 1002 4.6371 5.0152 0.8528 1.2876 9.0892 14.6672 3.8908 3.8924 0.5781 15.4531
42041 33562 153 48 246 136 4.5476 5.0405 0.7737 1.3249 7.2164 10.6177 3.9025 3.8978 0.1094 2.7656
42038 16537 105 19 92 54 4.3114 4.8445 0.3693 0.6728 5.3217 6.7321 3.8965 3.8995 0.1094 1.5625
42002 236760 886 255 1500 777 4.5308 5.0328 0.6117 1.3841 6.9903 11.9223 3.8913 3.8936 0.5313 15.4688
42019 139808 626 224 1038 540 4.5715 4.9334 0.7347 1.4301 7.7769 14.4643 3.8924 3.8914 0.3125 12.2188
42020 136294 597 244 915 493 4.8074 5.2244 1.1559 1.8425 8.7640 15.3183 3.8913 3.8967 0.3906 11.9375
41041 31298 146 68 192 90 5.5995 6.9746 1.9807 4.3726 10.4220 19.9469 3.9235 3.8970 0.0781 4.1875
41040 24191 135 74 181 121 5.4958 5.4673 2.0014 2.4022 11.8317 19.2277 3.8994 3.8924 0.0938 3.0313
42059 14135 70 42 70 45 6.9869 7.4736 2.8397 3.2642 14.3411 15.0454 3.9078 3.9323 0.0625 1.2344
41018 8669 11 1 17 1 3.9272 4.0830 0 0 3.9272 4.0830 3.9272 4.0830 0.0625 0.7813
42055 22964 95 40 122 69 4.7890 5.1393 0.8298 1.1693 7.0481 8.8778 3.9155 3.9128 0.1250 2.2500
42056 30195 172 120 315 202 6.9233 5.9229 2.3239 2.0479 11.7877 12.4083 3.9208 3.8909 0.1250 2.7188
42057 9602 131 101 148 116 4.9631 6.1350 0.5244 1.2292 6.4778 9.6274 3.9382 3.8964 0.0625 0.7813
42058 16216 58 13 40 16 5.1281 5.6985 1.5274 2.1645 8.5397 11.0783 3.8929 3.9295 0.1250 1.9219
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Table 4. Comparative results from applying RWLS and NWLS outlier detection techniques
on the 43 buoys from the National Data Buoy Center’s (NDBC).

RWLS NWLS RWLS NWLS
ID. n nw1 nw2 nα1 nα2 w̄ σw wmax wmin iter time time

41008 137122 514 29 774 362 0.1238 0.0502 0.1900 0.0207 5 2.2344 10.5469
41003 15037 147 12 113 58 0.1151 0.0499 0.1886 0.0420 6 0.2969 1.2500
41012 48665 154 10 379 169 0.1048 0.0794 0.1991 0 5 0.7656 3.4063
41009 273795 1272 157 2057 1054 0.1166 0.0629 0.2000 0 6 3.5781 18.7188
41006 98052 704 62 693 316 0.1166 0.0558 0.1991 0.0058 6 1.7188 8.4531
41010 290837 1344 148 2558 1372 0.1148 0.0582 0.2000 0 6 3.9688 23.7656
42025 24107 71 0 168 69 0 0 0 0 5 0.3594 1.6094
42039 109759 565 91 829 474 0.1286 0.0495 0.1993 0.0134 6 1.5781 11.6719
42009 16509 136 12 160 101 0.1150 0.0686 0.1936 0.0029 5 0.2031 2
42040 108092 772 166 902 523 0.0933 0.0653 0.1993 0 5 1.1719 11.1563
44007 219280 992 199 2194 1106 0.1160 0.0526 0.1973 0.0007 6 3.7656 18.2344
44005 203184 304 15 1184 455 0.1445 0.0530 0.1985 0 5 2.8438 20.1719
44013 191121 673 50 1961 882 0.1632 0.0296 0.1986 0.0677 7 3.2656 18.3125
44018 50955 175 2 239 77 0.1889 0.0022 0.1905 0.1873 6 0.7969 4.2031
44011 182806 418 7 789 344 0.1200 0.0717 0.1997 0 6 2.7969 18.0625
44008 205335 755 53 977 424 0.1083 0.0751 0.2000 0 6 3.0469 17.1406
44001 9015 37 5 50 22 0.0346 0.0610 0.1429 0 5 0.1406 0.9219
44012 35014 318 42 337 204 0.1293 0.0460 0.1962 0 6 0.6719 3.0625
44009 180367 1061 56 1606 824 0.1449 0.0486 0.1998 0.0095 6 3.0938 14.4063
44014 141588 1007 221 948 425 0.0664 0.0667 0.1986 0 6 2.1719 10.3125
44006 9198 31 9 42 29 0.1136 0.0387 0.1768 0.0483 5 0.1250 0.7969
41001 187253 669 94 1264 614 0.0891 0.0711 0.1982 0 5 2.1719 17.7031
41036 45367 104 12 317 141 0.1587 0.0359 0.1982 0.0773 5 0.6563 3.2344
41002 193022 1309 230 1507 765 0.0708 0.0737 0.1995 0 6 3.2031 16.3438
41004 136731 562 84 1083 570 0.0887 0.0726 0.1990 0 6 2.3750 10.9219
41048 13264 39 2 90 53 0.1477 0.0280 0.1675 0.1279 6 0.2344 1.5781
41047 9250 78 5 92 43 0.1722 0.0240 0.1958 0.1329 5 0.1875 1.0938
41046 9928 157 26 124 76 0.0769 0.0719 0.1967 0 6 0.1875 1.2813
10000 955 20 11 16 10 0.0630 0.0745 0.1954 0 7 0.0625 0.1406
42001 236281 1406 227 1867 1002 0.0870 0.0711 0.1974 0 6 3.0938 15.3281
42041 33562 185 27 246 136 0.0985 0.0701 0.1974 0 5 0.4688 2.4688
42038 16537 165 15 92 54 0.1092 0.0568 0.1950 0 5 0.2500 1.3438
42002 236760 1083 136 1500 777 0.0966 0.0690 0.1983 0 6 3.8125 14.6094
42019 139808 965 158 1038 540 0.0920 0.0669 0.1981 0 6 2.5000 12.0781
42020 136294 737 163 915 493 0.0901 0.0714 0.1999 0 5 1.6875 12.2188
41041 31298 202 59 192 90 0.0681 0.0711 0.1992 0 6 0.5000 4.0781
41040 24191 160 70 181 121 0.0711 0.0661 0.1986 0 6 0.4063 3.3750
42059 14135 79 41 70 45 0.0351 0.0605 0.1799 0 6 0.1875 1.6094
41018 8669 9 0 17 1 0 0 0 0 4 0.1250 1.0938
42055 22964 109 33 122 69 0.0782 0.0704 0.1995 0 5 0.3906 2.2344
42056 30195 206 137 315 202 0.0331 0.0570 0.1967 0 6 0.5625 2.6719
42057 9602 149 144 148 116 0.0366 0.0607 0.1975 0 7 0.1875 1.0469
42058 16216 94 7 40 16 0.0545 0.0908 0.1904 0 5 0.2188 1.6563
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tracks of hurricanes passing within a 2 degrees distance from the buoy location.
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Fig. 3. Outlier detection performance at buoy 42059 (Eastern Caribbean): (a) weighted
least squares (WLS), (b) nonlinear weighted least squares (NWLS), (c) reweighted least
squares (RWLS), and (d) minimum covariance determinant (MCD).
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Fig. 4. Outlier detection performance at buoys 41040, 41046 and 41047 using weighted least
squares (WLS) and nonlinear weighted least squares (NWLS) methods.
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Fig. 5. Outlier detection performance at buoys 41040, 41046 and 41047 using reweighted
least squares (RWLS) method.
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