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[1] The electromagnetic (EM) bias is the largest source of error in TOPEX/Poseidon and
Jason-1 satellite altimeter sea surface height (SSH) estimates. Current operational EM
bias models are based on empirical relationships between the bias, wind speed, and
significant wave height. These models are limited in their accuracy because wind speed
and wave height do not capture enough information about the sea state to uniquely
specify the bias. In order to improve EM bias estimation, we have studied the correlation
between the EM bias and RMS long wave slope using data from tower-based experiments
in the Gulf of Mexico and Bass Straight, Australia. Models based on significant wave
height and RMS slope are more accurate than models based on wave height and wind
speed by at least 50% in RMS error between predicted and ground truth bias values.
Furthermore, models which incorporate wave slope exhibit reduced regional variation
between the two widely separated experiment locations. INDEX TERMS: 4275 Oceanography:
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1. Introduction

[2] The dependence of nadir incidence backscattering
coefficients for small surface facets on long wave surface
displacement leads to an electromagnetic (EM) bias of up
to tens of centimeters in altimeter measurements of sea
surface height. Over time, the importance of this source of
error has increased, as improvements in instrumentation
and precise orbit determination have reduced other error
contributions. Early satellite missions had altimetric and
satellite positioning errors on the order of tens of centi-
meters. For the Jason-1 GDR data product, altimeter noise,
orbit range, and propagation delay error budget contribu-
tions are respectively 1.7 cm, 2.5 cm, and 1.2–1.7 cm,
whereas the total sea state surface height error budget
contributes 4.2 cm, of which 3 cm is allotted to EM bias.
As a result, EM bias estimation has continued to attract
interest in recent years.
[3] Numerous studies on the EM bias have been conducted

since its discovery by Yaplee et al. [1971]. Efforts to explain
the theoretical mechanisms and physics that cause the EM
bias have included laboratory experiments [Branger et al.,
1993;Gommenginger et al., 2003], numerical analysis [Glaz-
man et al., 1996], and nonlinear sea surface models
[Elfouhaily et al., 2000, 2001]. Theoretical models have been
of limited usefulness due to the difficulties inherent in

modeling nonlinear ocean surface hydrodynamics and im-
proving on approximate electromagnetic scattering models
such as physical and geometrical optics. Because of this,
operational EM bias estimation relies on empirical models.
Current empirical models are based on significant wave
height and wind speed measurements from the TOPEX/
Poseidon satellite mission [Gaspar et al., 1994; Gaspar and
Florens, 1998; Gaspar et al., 2002; Chelton, 1994]. Other
models created from satellite data have accounted for wave
development by including a wave age or pseudo-wave age
parameter to improve the bias estimates [Fu and Glazman,
1991; Rodriguez et al., 1992]. Empirical models have also
been obtained from aircraft [Hevizi et al., 1993] and tower
experiments [Arnold et al., 1995; W.K. Melville et al., Wave
slope and wave age effects in measurements of EM bias,
submitted to Journal of Geophysical Research, 2002 (here-
inafter referred to as Melville et al., submitted manuscript,
2002)].
[4] The large amount of data collected from the TOPEX/

Poseidon satellite have allowed very accurate models of the
mean value of the EM bias to be created using crossover
differences [Gaspar et al., 2002]. Mean-bias models are
limited by large variability of EM bias as a function of
significant wave height and wind speed. The ultimate goal
of current research efforts is to reduce this variability by
including additional measurable or predictable parameters
in bias models.
[5] The importance of hydrodynamic modulation in

determining EM bias has been the subject of much study,
especially in recent years [Rodriguez et al., 1992; Rozen-
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berg et al., 1999; Elfouhaily et al., 1999, 2001]. These
theoretical studies indicate a relationship between EM bias
and a higher order moment of the surface height power
spectral density, such as RMS long wave slope, or a
quantity that is closely related to a higher order moment,
such as orbital velocity. In this paper, we study the
correlation between the RMS long wave slope and the
EM bias. We show that the wave slope is more strongly
correlated to the EM bias than either wind speed or
significant wave height. Due to the stronger correlation
between the EM bias and the wave slope, the errors
between measured and estimated values are significantly
reduced relative to traditional wind speed and wave height
models. The wave slope is also shown to create accurate
estimates of the EM bias over different sea states, wind
speed ranges, and locations.

2. Data Sets

[6] One of the difficulties in creating EM bias measure-
ments using remote sensing instruments is the lack of
measured truth values. Previous EM bias studies have used
a variety of methods to obtain accurate estimates. Gaspar et
al. [1994] and Chelton [1994] used cross-track or colinear
estimation techniques, respectively, to create EM bias
estimates from satellite data. Hevizi et al. [1993] used laser
measurements in their airplane experiments to collect the
data necessary for EM bias estimation.
[7] The tower experiments of Arnold et al. [1995] in the

Gulf of Mexico (GME) and Melville et al. (submitted
manuscript, 2002) in the Bass Strait, Australia (BSE) [Mel-
ville and Felizardo, 1998; Melville and Matusov, 1999]
created direct measurements of the EM bias. Each experi-
ment used a Ku-band altimeter to measure the apparent sea
surface height. Concurrent measurements of the ocean sur-
face were made using wave gauges. The EM bias was then
calculated as the difference between the measured and
apparent sea surface heights. Simultaneous measurements
of the wind speed were also made.
[8] In agreement with past experiments, the GME and

BSE data sets show a roughly linear relationship between
the significant wave height H and the EM bias, as shown in

Figure 1. As is commonly done, we remove the leading
linear dependence on H and study the normalized EM bias,

b ¼ �

H
: ð1Þ

Thus, the models studied in this paper are of the form

� ¼ a U ;Hð ÞH ; ð2Þ

where a(U, H ) is a normalized bias model and U is wind
speed referred to a 10 m height. Since values for the
significant wave height typically range from 0.5–3 m for
these data sets, a value of 1% of the significant wave height
for the normalized bias ranges from 0.5–3 cm. After this
point, we will refer to the normalized EM bias as EM bias,
for brevity.
[9] It will be seen that GME and BSE data sets show

similarities that can be attributed to general traits in the
oceans of the world as well as specific regional character-
istics. The data sets are combined to form a third data set,
referred to as TOT. The relationships between the models
created from the three data sets are used to identify region-
ally applicable characteristics as well as the general features
that are applicable to global EM bias estimates.

3. RMS Long Wave Slope and Hydrodynamic
Modulation

[10] Studies of the relationship between scattering from
the ocean surface and hydrodynamic modulation have been
an active area of research in recent years. A number of results
have provided strong empirical and theoretical support for
the importance of hydrodynamic modulation as a determi-
nant of the EM bias [Rodriguez et al., 1992; Rozenberg et al.,
1999; Elfouhaily et al., 1999, 2001]. Because of the diffi-
culty of solving the nonlinear equations which govern sea-air
interactions, a number of approaches to parameterizing
hydrodynamic modulation have been suggested. Most treat-
ments involve higher order moments of the surface height
power spectral density. Surface slope variance has long been
suggested as a candidate for including the effects of hydro-
dynamic modulations in EM bias models, on both empirical

Figure 1. EM bias versus significant wave height. A strong linear correlation between the significant
wave height and EM bias is evident.
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and theoretical grounds [Rodriguez et al., 1992]. Later
studies lend further support to the importance of surface
slope [Gommenginger et al., 2003]. Indeed, a simple com-
putation based on a two-scale surface model and nonlinear
hydrodynamic theory shows that to first order, the change in
amplitude with displacement of small waves riding on long
waves is in direct proportion to RMS long wave slope S
(W.K. Melville, personal communication, 1999),

a hð Þ
a 0ð Þ ’ 1þ

ffiffiffi
2

p
Sh=al; ð3Þ

where h is surface displacement due to a long wave of
amplitude al. These considerations motivate the use of RMS
slope in this paper.
[11] Instead of slope variance or RMS surface slope,

which can be obtained from the second moment of the
surface height power spectral density, EM bias dependence
on orbital velocity has also been studied theoretically
[Elfouhaily et al., 2001]. Orbital velocity can be related to
the first moment of the surface height power spectral density
(PSD). The dependence of EM bias on orbital velocity has
also been studied using the tower data reported in this paper.
In fact, Figure 2 shows that the correlation between normal-
ized EM bias and RMS wave slope is similar to that of
orbital velocity. A more detailed comparison shows that
models based on wave slope performed slightly better than
models using orbital velocity. As the difference between
both sets of models was slight, however, the results cannot
be considered to support RMS slope over orbital velocity,
but rather demonstrate that inclusion of some parameter
related to a higher moment of the surface height PSD leads
to models that perform significantly better than those based
only on significant wave height and wind speed.
[12] There is good reason for the similar correlation of EM

bias with RMS slope and orbital velocity. To improve bias
models depending only on significant wave height and wind
speed, additional model parameters must include information
not available from these two parameters. Significant wave
height is dominated by the longest surface wave components
at wavenumbers much lower than the EM wavenumber.
Instantaneous wind speed determines the amplitude of capil-

lary wave components with very high wavenumber, on the
order of the EM wavenumber. Higher order moments of the
surface height PSD tend to emphasize surface components
near a cutoff frequency which is generally chosen to be less
than the EMwavenumber and larger than the wavenumber of
the longest waves. Thus, RMS slope and orbital velocity
contain information about midrange surface waves, smaller
in wavelength than those represented in the significant wave
height and longer in wavelength than Bragg-scale capillary
waves driven by local winds.
[13] Because surface height measurements in the BSE

and GME experiments were performed in time but at the
same spatial point, the surface height wavenumber PSD is
not directly available. Well-known and commonly used
techniques allow the RMS surface slope to be obtained
from the time frequency PSD, W(w), instead. Cox and Munk
[1956] obtain the result

S ¼
Z

k2W wð Þdw
� �1=2

; ð4Þ

where k is given by the surface wave dispersion relation

w2 ¼ gk þ gk4: ð5Þ

Here, g is the ratio of surface tension to density and g is the
acceleration due to gravity. Since we are interested in
medium to long wave surface components with wavelength
on the order of 1 m or longer, we neglect the second term of
equation (5), since it is significant only for capillary waves
of centimeter-scale and smaller. Discretizing the integral in
equation (4) using an N-point Euler quadrature rule and
making use of the dispersion relation leads to

S ¼ �w
XNc

n¼1

w4
n

g2
W wnð Þ

" #1=2

; ð6Þ

where�w = wmax/NFFT, wmax is the maximum time frequency
at which the NFFT PSD is computed, and Nc corresponds to
the upper cutoff frequency, wc. For the GME experiment, the
sampling rate of surface height measurements is 8.2 Hz.

Figure 2. Normalized bias versus RMS wave slope and normalized bias versus orbital velocity. The
RMS wave slope and orbital velocity are similar in their correlation with the normalized bias.
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[14] One of the chief difficulties in determining a mean-
ingful RMS long wave slope is an appropriate choice of a
cutoff frequency for the surface height displacement spec-
trum. For both the GME and BSE tower experiments, the
radar footprint was small enough that each instantaneous
backscatter measurement can be considered to be due to a
single facet consisting of small, Bragg-scale waves tilted
and modulated by longer waves. Thus, the long wave
surface components could be considered to consist of
wavelengths longer than the radar footprint. Using the
gravity wave dispersion relation, this leads to a long wave
cutoff frequency of roughly 1 Hz. Figure 3 shows that the
typical time frequency surface spectrum deviates from the
expected power law trend near 1 Hz. To avoid this region,
the cutoff frequency for both experimental data sets was
chosen to be fc = 0.8 Hz.
[15] The mean RMS slope values for the GME and BSE

experiments differed by a small factor. Because the raw data
for the BSE experiment was not available, the RMS slope
values could not be recomputed using identical processing,

so the GME slope values are multiplied by a factor of 0.67
to coregister the two data sets.

4. Qualitative Analysis

[16] After the removal of the linear relationship between
the EM bias and the significant wave height, it can be seen
in Figure 4 that the normalized bias is only weakly
correlated with the significant wave height in either experi-
ment. The second-order polynomial, least squares estimates
in the plots also show that the fit to significant wave height
is not consistent across the two experiments. The form and
the zero significant wave height intercept of the estimates
show large discrepancies.
[17] Figure 5 shows a more strongly correlated relation-

ship between the wind speed, U, and the normalized bias.
The plots show more regional correlation between the GME
and BSE experiments, but as with the second order fit to H,
the zero wind speed intercepts are significantly different for
the two data sets.
[18] Of the three parameters studied, the normalized EM

bias is the most strongly correlated to RMS long wave slope,
as seen in Figure 6. Although the improvement is less
pronounced for the GME experiment, there is less scatter
associated with the wave slope than with either wind speed
or significant wave height for both data sets. The shape of the
estimates is more consistent from one data set to the other,
indicating that wave slope may explain regional variability
in the EM bias. As with the significant wave height and wind
speed second-order fits, the intercepts for fits to slope are
also different for the two models. It is clear from inspection
of the data sets, however, that the trend for low slope values
for both experiments is towards a very small or zero intercept
value that is nearly identical in both cases.

5. Methodology

[19] The general form of the EM bias models considered
in this paper is

b ¼ a0 þ
XN
i¼1

aiPI ; ð7Þ

Figure 3. Typical 1-hour averages of the surface height
power spectrum, W( f ), and slope spectrum S( f ).

Figure 4. Normalized bias, b, versus significant wave height, H, showing a second-order least-squares
fit to the data.
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where b is the normalized bias, N is the number of terms in
the model, and Pi is a linear or second-order term in the
Taylor series expansion of a(U, H, S ), so that Pi is chosen
from the set U, H, S, U2, H2, S2, UH, US, or HS. Writing the
coefficients ai in equation (7) in vector form ~a and
minimizing the RMS error of the model over a data set
leads to the least squares solution

~a ¼ ~PT~P
� 	�1~PT~b; ð8Þ

where ~P = [1, P1,. . ., PN]
T and ~b is a vector of measured

normalized bias values.
[20] By subtracting estimated values from measured

values over a data set, a vector of error values is created.
These are referred to as residual errors. The metric used in
determining the most effective models is the RMS value
of the residual errors. This approach to determine the
optimal combination of parameters is similar to that of
Gaspar et al. [1994]. Models are created for each of the
three data sets: GME, BSE, and TOT. These models are
used to estimate each of the data sets. Residual errors are
calculated and the models ranked according to the RMS
residual error. Best-case models are also created for

each of the data sets, with and without the wave slope
parameter.

6. Results

6.1. One-Term Models

[21] One-term models are defined to be of the form

b ¼ a0 þ a1P1; ð9Þ

where P1 is one of the parameters U, H, S, U2, H2, S2, UH,
US, and HS.
[22] The plots in Figure 7 show RMS error values for the

differences between the measured normalized bias values
and the one-term models indicated. Each of the plots shows
the models for a given data set: GME, BSE, or TOT. The
parameters on which the models are based are ordered for
monotonically increasing RMS error values for the TOT
data set.
[23] The best one-term models of the normalized bias for

each data set are created using the wave slope data. The
BSE normalized bias values are seen to be especially well
correlated with the S. Other terms which have contributions
from the wave slope are also seen to be more highly

Figure 5. Normalized bias, b, versus wind speed, U, showing a second-order least-squares fit to the
data.

Figure 6. Normalized bias, b, versus wave slope, S, showing a second-order least-squares fit to the data.
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correlated to the normalized bias. To calculate the normal-
ized bias, the linear dependence on H is removed. The one-
term models show that there is much less bias information
remaining in H than that contained in U and S. This is seen
in Figure 7 by models containing contributions from H
having the largest error values. Models containing wind
speed information are more strongly correlated to the
normalized bias than models based on H, but generally
have larger RMS error values than models using S.

6.2. Two-Term Models

[24] Two-term models provide significant improvement
over the one-term models. For every combination of model

and data set, the top two-term models significantly outper-
form the best one-term model. There is also a shift in the
importance of the various parameters when two terms are
used. The one-term models identified the wave slope and
the wind speed as the parameters which contain the most
information individually.
[25] The two-term models identify the combination of

parameters which contain complementary information. Fig-
ure 8 shows that the models with lowest error values are
derived from terms containing S and H. Though U contains

Figure 7. One-term model performance. The wave slope,
S, generally provides the best models, while the significant
wave height, H, carries the least amount of information on
the normalized EM bias.

Figure 8. Two-term model performance. The best models
show the complementary information that the wave slope, S,
and significant wave height, H, parameters use to create
more accurate models.
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more information on the normalized bias than H, the two-
term models indicate that it is redundant information to that
contained in S. Conversely, the information contained in the
H and S terms is complementary. Combinations of terms
derived from S and H constitute the best five models in

every case. The best two-term models for each data set are
shown in Figure 9.

6.3. Three-Term Models

[26] The 20 three-term models with the lowest RMS
errors from each of data set is shown in Figure 10. The
addition of a third term to the normalized bias models
results in improvement over the two-term models on the
order of 0.1% of the significant wave height. In addition,
the differences in the RMS error values among the top
three-term models is very small. Much of this is due to the

Figure 9. Best two-term models for each data set. When
estimating the TOT data set, the terms in the best models are
composed solely of the wave slope and significant wave
height. Shaded areas indicate regions with no data.

Figure 10. Best three-term model performance. The best
models are predominantly derived from the wave slope, S,
and significant wave height, H, parameters.
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most accurate models relying on the same terms. It can be
seen that the wave slope S is included in the best 10 models
regardless of the data set from which the models are
created.

6.4. Best-Case Models

[27] Models created with more than four terms resulted in
very slight improvements in some cases, and in many cases
the RMS error values increased. For all cases the RMS error
values for the four-term models were within 0.012%H
of the best model for that combination of model and data
set. The best four-term models were consistently those
including the terms S, H, H2, and HS.
[28] For comparison purposes, the best models for each of

the combinations of models and data sets were created
without using the S parameter. The Taylor series expansion
for these models yields five terms: U, H, U2, H2, UH. Figure
11 shows the results of these models and the best-case
models using S.
[29] The models including the wave slope parameter have

RMS error values that are better by over 50% in every case
but one, and every case shows improvements of at least
0.23%H. For the more general TOT model, the improve-
ment is over 0.5%H regardless of the data set to which it is
applied.

7. Residual errors

[30] Figure 12 shows the residual errors for the best one-
term, two-term, three-term and best-case models for the

TOT data set. The vertical line on the graph indicates the
break between the GME and the BSE data. The x-axis is a
chronological ordering of values, with each point represent-
ing a 10-min average. Due to spurious data points in the two
experiments, there are jumps in the data sequence, so that
the horizontal axis is a pseudo-time representation of the
data.
[31] It can be seen from these figures that the residual

plots show some remaining correlation in time. As the
number of terms increases, not only do the errors decrease,
but the correlation can be seen to decrease as well. How-
ever, even for the best-case model with slope, there are
indications that the errors are correlated and show some
time-dependent physical property of the wave field. Future
research should investigate the cause of this correlation.

8. Conclusion

[32] This study investigated the improvements in EM bias
estimation using the RMS wave slope parameter. Measure-
ments from the Gulf of Mexico Experiment (GME) and the
Bass Strait, Australia Experiment (BSE) show regional
differences in the wind speed and significant wave height
parameters. The correlation of the EM bias with these
parameters exhibits significant variability. Due to these
characteristics, models based on the wind speed and sig-
nificant wave height result in large residual errors when
compared with truth data. Including RMS long wave slope
as a model parameter reduces estimation error across a wide
range of wind and sea conditions. The improvement in

Figure 11. Residual errors for best-case models. The models derived using the wave slope show error
values that are significantly smaller than those models that use only wind speed and significant wave
height.
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model correlation was evident over a variety of models
based on various combinations of wind speed and signifi-
cant wave height. Models based on wave slope also reduced
the regional variability of the models when the two exper-
imental data sets from widely separated locations were
combined. Slope-based models also improved cross-estima-
tion of one data set using a model based on the other set.
Typical improvements over wind speed and significant
wave height-based models were on the order of 50% as
measured by RMS error between predicted and truth EM
bias values.
[33] The information provided by the wave slope was

also shown to be complementary to the significant wave
height. Models based on combinations of the wave slope

and significant wave height consistently resulted in the
smallest error values between the measured and estimated
bias values relative to models which included wind speed.
RMS residual bias errors for these models were on the order
of 0.34%H.
[34] As satellite altimetry instrumentation improves, the

gains to be realized by improving EM bias estimates
become increasingly important. Future satellite missions
may have EM bias error budget contributions on the sub-
centimeter level. Models based on the RMS long wave
slope improve estimation errors to essentially this level.
These results will obtain operational value if a means can be
found to obtain remotely the wave slope or another sea-state
parameter such as orbital velocity containing similar infor-
mation on hydrodynamic modulation. Various means have
been suggested for accomplishing this, including detailed
studies of altimeter return signal waveforms and predictive
wave models based on wind history, but conclusive results
along these lines await further work.

[35] Acknowledgments. We would like to express appreciation to
Ken Melville for helpful conversations as this work has progressed and for
generously allowing us to use the Bass Straight Experiment data set.
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