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On the partition of energy between elastic waves 
in a semi-infinite solid 

BY G. F. MILLER AND H. PURSEY 

The National Physical Laboratory, Teddington, Middlesex 

(Communicated by Sir Edward Bullard, F.R.S.-Received 27 April 1955) 

Expressions are derived for the power radiated in the compressional, shear and surface 
waves set up by a circular disk vibrating normally to the free surface of a semi-infinite 
isotropic solid. The total radiated power is also calculated independently by integrating the 
displacement velocity over the area of the source. 

The theory is extended to a general type of multi-element radiator in the form of an 
array of elements on the circumference of a circle. The calculation of the total power here 
involves a 'mutual admittance' function, a table of which is given for the case when the 
Poisson's ratio of the medium is equal to j. The theory is applied to a three-element radiator 
of a type used in a recent geophysical investigation, and it is shown that the efficiency of 
radiation in the compressional mode can be varied between wide limits by varying the 
distance between the elements. 

Finally, an approach is suggested for problems in which the most suitable idealized 
boundary condition is one of known displacement under the radiator, the stress being zero 
elsewhere on the free surface. It is shown that the stress under the radiator satisfies an 
integral equation whose kernel is derived from the mutual admittance function. 

1. INTRODUCTION AND SUMMARY 

In a recent paper (Miller & Pursey I954; subsequently referred to as 'paper I'), the 
writers investigated the field generated by a circular disk of finite radius vibrating 
normally to the free surface of a semi-infinite isotropic solid medium. Explicit 
expressions were derived for the field at infinity at points within and on the surface 
of the solid, and methods were given for the numerical evaluation of integrals 
representing the radiation impedance, defined as the ratio of stress to mean dis- 
placement velocity under the disk. 

The field in this problem may be regarded as comprising three parts, a com- 
pressional (or irrotational) wave, a shear (or rotational) wave and a surface wave. 
The purpose of the present paper is to determine the partition of energy between 
the three types of wave, both for this problem and in the case of a general type of 
multi-element radiator. 

The paper is arranged as follows. In ? 2 the power in each of the three waves 

issuing from a single source is evaluated by integrating the time average of the 

intensity of the wave over the corresponding wave surface at infinity, and in ? 3 the 
sum of the power components so obtained is shown to correspond with the total 

power radiated by the source. 
In ?? 4 and 5 the theory is extended to the case of a multiple radiator in the form 

of an array of radiating elements situated on the circumference of a circle. Evalua- 
tion of the double integrals representing the power components is now complicated 
by the variation of intensity with azimuth; the integration of the intensity with 

respect to the azimuth angle can, however, be performed analytically, with the 
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result that numerical integration is necessary only with respect to the polar angle. 
In order to determine the power radiated by a multi-element source it is necessary 
to take account of the effect of the interaction between pairs of elements. Constant 
stress is assumed over the region of the surface beneath each radiating element, and 
the corresponding displacements are found by summation of contributions from 
all elements of the array. For this purpose it is convenient to work in terms of 

admittance, rather than impedance, since the self- and mutual admittances may 
then be summed directly to obtain the effective admittance of the array and hence 
the radiated power for a given stress. For small radiators the mutual admittance 

may be expressed, to a first approximation, as the product of a simple function of 
the source size and an integral expression which depends only on the distance 
between pairs of elements and the Poisson's ratio of the medium. The value of this 

integral has been calculated for a wide range of spacings for the case in which 
Poisson's ratio is equal to $, and the results are presented in table 1. An asymptotic 
formula, valid when the distance between the pair of elements is large, is derived 
in ?6. 

The general theory of multiple radiators is applied in ? 7 to the particular case 
of a three-element source of a type used in a recent geophysical experiment (Evison 
195 ), in which the elements are situated at the vertices of an equilateral triangle. 
In order to illustrate the application of the theory to the efficient design of radiators, 
results are obtained both in the case when the distance between the elements is 

approximately as in the experiment and when the spacing is chosen so as to minimize 
the power radiated in the surface wave. 

In ? 8 an approach is suggested for the solution of problems in which the dis- 

placement under the radiator is constant or, more generally, an arbitrary function 
of the distance from the centre of the radiator. In the simple case of a single circular 
radiator it is shown that the resulting stress distribution satisfies an integral 
equation whose kernel is derived from the mutual admittance function introduced 
in ? 5. 

In the analysis of paper I it was often convenient to measure distances in units of 
the compressional or shear wavelengths; this practice has not been followed in the 

present paper, and formulae quoted from the earlier paper have accordingly been 
converted to unnormalized form. It should also be observed that symbols denoting 
displacements and stress components represent peak values of these quantities. 

So far as is practicable, results are obtained for general values of the Poisson's 
ratio cr or, equivalently, of the parameter Iu defined by equation (7). For purposes 
of numerical illustration we take C = 4 and, correspondingly, Ia = V3. 

2. SINGLE-ELEMENT SOURCES: INTEGRATION OF THE INTENSITY AT INFINITY 

Compressional and shear waves 

We consider first the case of a single circular disk of radius a vibrating normally 
on the surface of a semi-infinite isotropic solid, the stress beneath the disk at time t 

being given by Poelo, where Po and co are positive constants. In order to derive 

expressions for the intensity of the compressional and shear waves, whose wave 
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Partition of energy between elastic waves 

surfaces are spherical in form, we shall use a system of spherical polar co-ordinates 
(R, 0, 0q) with the centre of the disk at time t = 0 as origin and such that the polar 
angle 0 is zero at points within the solid on the axis of the disk. 

Denoting the radial and transverse components of the displacement u by uR and uo 
respectively we have from equations (116) and (117) of paper I 

a2p ei(ot-kl R) 
R 

~2C44 R 1(0). (1) 

ia2#3 Po ei(k)-k? R) 
0zc,i@ R - 20(4) B(2) 

for large R and small a, where 
cos 0(t2 -2 sin2 0) - 

Fo(sin) ' (3) 

sin 20 V(2 sin2 0- 1) 
%(0)= F s ) (4) 

Fo() = (22 _t2)2 - 42V/(g2 -2)j(2-_ 1), (5) 

k, = -J(p/c1), k2 = wo(p/c44), (6) 

and /= (C11(c44)= k2/kl = V(2(1 - cr)/(1 - 2r)}, (7) 

c, and c44 being the compressional and shear elastic constants, o the Poisson's 
ratio and p the density of the medium. 

The mean intensities of the compressional and shear waves, defined in each case 
as the time average of the power radiated per unit area of the appropriate wave 
surface, are given by (8) 

?c = -?unIR RR*, (8) 

^Tsh-1-ffOR0t, (9) 

respectively, the asterisks denoting complex conjugates. 
The radial and transverse stress components across the wave surface, RR and 

RO, are related to the displacement components by the formulae 

RR= c2V.u+2c4 u , (10) 

Ba^4Mi)I' (11) 

where, in the usual notation, c12 = c]- 2044, and it follows from (1) and (2) that 

RR iao 
k i/P () 

ei(wt-~l~) (12) 
2R (12) 

R~~ -a2k,4Po?2(0)ei(et-kR). (13) 2R 

If we denote the frequency of vibration by v and the velocity of compressional 
waves in the medium by Vo, so that 

v = 0/27r, Vc = (/lk, 
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we find that 7T2V2a4t4P2V ( )}2 
?c~rrav2a4p4Poa{? (O)}a (14) 

2pVc3 R2 (14) 

T2v^2a9P2 0)2(0) 0'(0) 
Tsh 2p/2 (15) 

since the function 01(0) is purely real. 

Finally, let WC and Wsh denote the quantities of power radiated in the com- 

pressional and shear waves, respectively. Then, integrating the intensities over a 

hemisphere of large radius R, we obtain 

We = o {i (0)}2 sin d0, (16) 

Wsh= V02(0) *(O) sin 0 dO. (17) 

These integrals have been evaluated numerically for the case L = /3, corre- 

sponding to a Poisson's ratio of i, and the results are as follows: 

W 33373v2a4P (18) 
pV . 

Wsh 1' 246 rv (19) 
pV' 

Surface wave 

To determine the intensity of the surface wave we employ a cylindrical system 
(r, 0, z) in which the positive z axis coincides with the line 0 = 0 in the above 

spherical co-ordinate system. The mean intensity is then given by 

Yrs = - -zr l2r-irr. (20) 

General expressionst for the surface wave displacement components may be 
obtained from the definite integrals representing the overall displacement com- 

ponents (formulae (72) and (73) of paper I) by determining in each case the con- 
tribution to the value of the integral arising from a pole of the integrand. The pole 
is situated at a point - =-p on the negative real axis, where p, defined as the 

positive root of the equation F0(0) = 0, is a function of the Poisson's ratio of the 
medium. The field components are given asymptotically by 

a2 e- P0 /Tkp(p 1))) ei(wt-kLr) {2p2 e-"- (2p2 )e1 (21) Z c44i(p) 2 2r 

e~'( i?) V(t2rk)~ e1(t-kiPr) {2 1(p2 -1) )(p2 ) e-(2p2- )e}, (22) 

where e, = exp {-k k (V(p2 -t2)}, e, = exp {-k z4(p2 - 1)}. 

t In paper I (formulae (119) to (122)) expressions involving numerical coefficients were 
given for the displacement components of the surface wave in the particular cases /, = 2 and 
p = V3. 
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The relevant stress components are given in terms of the displacement components 
u, and ur by 

zr = C44 
- ar + axz/ ' rr= ' *V.u+2c44 

Substituting in the left-hand members of these equations the asymptotic expressions 
obtained for the derivatives by differentiation of (21) and (22) and using the re- 
lation Fo(p) = 0, we find that 

a -P (rkl3(p - 1)) } -^ ^ -. a2P o /j7r1ep3(p2 1) 2(2p2 -2) {_e - el}ei(ot_kipr+4), 
F(p)\ 2r 

arr 2P 1/17 rP (2p2 P 2) {(2p2 a2) e,- (2p2 +jt2 -2) el} ei(-kipr-1) 

We thus have for the mean intensity of the surface wave 

Tsu 2c r OX(k z) = 2v X(kl ), (23) 
2c44r pV r 

where 
X(klZ) =- L(2) 

X(hkz) = (2p{F )} [42(p2- 1) {2p2,- (2p2 -/2) e} (e, - el) 

+ (2p2 - #2) {(2p2 -- #2) e - 2p2 e1} {(2p2 - /2) e) - (2p2 +2 - 2) e1}], (24) 

and, integrating over a cylinder of large radius r, we find for the power radiated in 
the surface wave 4X2p2 (25) 

^= P V'c XX( k, z)d[k^z). (25) 

The integrand in (25) is readily expressed as a sum of multiples of the exponential 
functions e2, e,e1 and e2, and once numerical values have been assigned to the 
coefficients and exponents there is no difficulty in evaluating the integral. When p 
has been determined, the value of Fo(p) is most easily obtained from the formula 

FO(p) = 8p {(2p2 -/)-(2p 2) 2p4(2p2- -1)} (26) 4_v2 (2p2 - /t)- 

In the case A = V3 we have 

p = 3 (1 + 11/3 839 ) 18839 F(p) = - 26*104; 

hence X(klz) = 1-5383 e, - 31192 e, ei + 1-8131 es, 

where e = exp(-0*7410klz), e= exp(- l5966klz), 

and substituting this expression in (25) we obtain 

7T3v2a4Po2 W = 3.257 .3p (27) 

Finally, the total power W radiated by the source is found by addition of equa- 
tions (18), (19) and (27) to be 

32+W +W4 p28) W =WT + + Wh + t Ws u = 4.836 --. - . (28) pv3 
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3. SINGLE-ELEMENT SOURCES: TOTAL RADIATED ENERGY 

BY THE ADMITTANCE METHOD 

An alternative method of calculating the total power radiated by the source is 
based upon the formula 

W -i(PoA)2 GR (29) 

where A is the area of the source and GR is the real part of its radiation admittance 
YR, definedt as the (complex) ratio of mean displacement velocity over the portion 
of the free surface under the source to the applied force. From equation (129) of 

paper I we have for the radiation admittance 

2io,/2 F (o2- 1){J1(klca)}2d ( 
nc,, Jo W Wle,a2E~ 9(30) 

the contour of integration being indented so as to pass above the branch-points and 
pole of the integrand on the positive real axis. 

The radiation conductance GR evidently derives from the imaginary part of this 

integral, to which only the range 0 < < t and the indentation above the pole at 
= p make any contribution. We may therefore write 

CR_ 2jt2 [( 12 -1) {J1(k1a)}2 dC 
OR = 

o 

l 

Rrc44 J Skla-o20(~) 

where A is an arbitrary positive number exceeding p. 
Hence OR can be expressed as a power series in a2, and for small values of a 

GR = MU fk 1 ( I 
+0(a2) 

Numerical integration gives, in the case it = /3, 

KfxA d(" 2_ 1) d = 0.5374 

(cf. the entry against x = 0 in table 1), whence 

= 4836 r3v2a4P (31) 
pin 

in agreement with (28) above. 

4. MULTI-ELEMENT SOURCES: INTEGRATION OF THE INTENSITY AT INFINITY 

Let us now consider an array of n identical point sources, spaced at equal intervals 
on the circumference of a circle of radius b. The distance from a general point P, 

t The radiation admittance defined in this way differs from the reciprocal of the radiation 
impedance defined in paper I in that 'applied force' is here substituted for 'stress'. The 
change has been made in order that the corresponding definition of mutual admittance 
introduced in ? 5 may have the required symmetry. 
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whose spherical polar co-ordinates are (R, 0, 0), to a point M = (b, 27T, a) on the 
circle (cf. figure 1) is given by 

PM _R 1- sin0cos(- +()+ ] 

= R 1 [ sin 0 cos ( ) - c+) 0 2] 

R 

when R> b. 

0p 

FIGURE 1 

If the mth radiating element is situated at the point (b, ?Tr, 27rm/n), the radial 
displacement uJ at P due to this element is 

a2PO ei((t-kl R) 27m( / 7A 
u 2~ -- --R )(0)'exp iklbsin cos 2-- (32) 

and the resultant displacement uR due to the n elements is given by 
n 

UR- E uR. (33) 
m=1 

Substituting (32) in (33) and differentiating, we obtain 

2 _ E_1( I ) m n2m 
1 a12wP0?( ) exp ik6sin 0 cos -, (34) 

2C44 R m=l n /) 

and from equations (10), (32) and (33) 

IRRI f 11ek1 (( 
E xp iklbsin cos - 2 

)) (35) 
244 I =1 n / 

The resultant intensity Tc is therefore given asymptotically by 

cjja40kjP2{E((0)}2 f / 27rm\) 2 
c-11a CP {r(2 exp {ikb sin 0 cos (5- } 

SC44 t =1 f \ 

7T2V2a4,a4P2 {E (0)1( f92 n n r(l + M) 
-r2paVa/P2{?(0)} E E cos h2kib sin si n 0 7(l+m sin- 

7 
m) (36) 

2p V3 R2 i-1 m=l )- ( 
3' 

Similarly, we find for the intensities of the shear and surface waves 

92V2a4'M9P2 O) 12 n n r . . + M(l+m T)\ . -r-M)l 
(Shr 1 Zv49 ]02(0) 2 cos 2,tkl bsinO sin {- (l+m) iT(-m) (37) 2s 2 V3 R2 =1 

c- 
=m 

, (7) 

27fr2V2a44C2PPk_lX(kjz) i 7(l+m) sin. (l-m) 38) Y ~u I 0 
C-^ 

OS [2 E E cos 2nl + 
mp b- 

sii?T (38) 
p V3 r n -- mn- n 
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By integrating the intensities over a hemisphere of radius R in the cases of the 

compressional and shear waves, and over a cylinder of radius r in the case of the 
surface wave, we derive expressions for the power radiated in each of the three 
waves. The integrations with respect to 0 may be performed analytically and the 
results are 

73v2a4i a4PYtPTn 
n 

(T 
r - m) 

WC = 3 {1Q(0)}2) E JO 2klbsin sin- sin d0, (39) 
PV JO1 l=1 m=l n 

WSh = pV pf I 2(0) |2 1 { Jo 21k1b sinin 0 sin-( )}sin d0, (40) 
PO JO il=1 m=l n 

47w3u2a4 2P X(klc)d(klz) E E J (2pklbsinr( (41) 
PVc Jo -1 m=l 

We observe that as b -- 0 the Bessel functions Jo tend to unity, and in this case 
the total power radiated is therefore equal to n2 times the power from a single 
element acting independently (cf. equations (16), (17) and (25)). This is consistent 
with the fact that the power from a single element varies as a4, that is, as the square 
of the radiating area. 

As b -> , the only terms which do not vanish are those for which I = m, and 
the results correspond, as we should expect, with the case in which n radiating 
elements act independently. 

Variation of the parameter b alters the relative amounts of power in the three 

waves, and this may be put to practical advantage if it is desired to increase or 
reduce the proportion of power radiated in a particular wave (cf. ? 7). 

5. MULTI-ELEMENT SOURCES: TOTAL RADIATED POWER BY 

THE ADMITTANCE METHOD 

The direct calculation of the total power radiated by a multiple source proceeds 
from the formula 

W = -P Ai,A G, (42) 
i,j 

where Ai denotes the area of the ith element and Gij is the real part of the mutual 
admittance Y/j, defined as the ratio of mean displacement velocity over the jth 
element to applied force at the ith element. When i = j, Gij and Y/j are identical 
with the radiation conductance CR and radiation admittance YR respectively, 
introduced in ? 3. 

Let ai and aj denote the radii of the ith andjth elements respectively, and suppose 
aj to be so small that the mean value of the displacement velocity over the jth 
element may be approximated by its value at the centre. Then, from equation 
(125) of paper I, we have 

y ij _ V /(2 
_ 1) Jx(Ckai) Jo(~ksij) d 

r i7Ta cio -F() 
(43) 

where sij is the distance between the centres of the ith and jth elements. 
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If ai is also small we may make the approximation 

(ai ] - 22 rj 
=1 (22 - 1)Jo(kSij) d 

Yi~[i?a, (ai Y/j)] 2c- 
-ai=O 44 FO 

(44) 

provided sij > 0. Thus, for small values of ai and a, the mutual admittance depends 
only on the distance sij between the elements and on the elastic properties of the 
medium. 

TABLE 1 

x EI(x, 43) 82 JI(x, 43) 82 f{xI(x, 43)} 82 x lI(x, V3) 82 6I(x, 43) 62 

0.0 +0-5374 -81 oo - +0-2500 -113 2-5 -0-1125 +36 +0-1308 -55 
0'1 -5336 77 +2-1810 -- 2181 96 2-6 0958 27 -1348 53 
0-2 -5221 73 0-8831 - 1766 75 2.7 -0764 20 -1335 51 
0-3 -5033 69 -4253 - -1276 53 2-8 -0550 10 -1271 46 
0-4 -4776 62 -1834 - -0733 - 26 2-9 -0326 + 2 -1161 41 

0-5 +0-4457 -54 +0-0328 
0*6 -4084 47 - 00675 
0-7 -3664 35 -1353 
0'8 -3209 25 -1800 + 183 
0.9 -2729 14 -2064 146 

1-0 +0-2235 - 3 - 0-2182 +122 
1.1 -1738 + 8 -2178 100 
1-2 .1249 20 -2074 81 
1-3 -0780 29 '1889 63 
1 4 +0-0340 37 -1641 47 

1-5 -0-0063 +45 -0-1346 + 33 
1-6 -0421 52 -1018 17 
1-7 -0727 56 -0673 + 4 
1-8 -0977 59 - 0-0324 - 10 
1.9 -1168 60 + 00015 22 

2-0 -0-1299 +59 +0-0332 - 31 
2-1 -1371 58 -0618 40 
2-2 -1385 54 -0864 46 
2-3 -1345 49 1064 51 
2*4 -1256 42 -1213 54 

2-5 -0-1125 +36 +0-1308 - 55 

If we now write 

+0-0164 0 3-0 -0-0100 - 6 +0-1010 - 34 
-0-0405 + 26 3-1 +0-0120 13 -0825 25 

-0948 51 3.2 -0327 21 -0615 17 
-1440 74 3-3 -0513 26 -0388 - 8 
-1858 94 3-4 -0673 31 +0'0153 0 

-0-2182 +110 3-5 +0-0802 -35 -0-0082 + 9 
-- 3-6 -0896 36 -0308 17 

-- 3-7 -0954 38 -0517 24 
- -- 3-8 -0974 37 -0702 30 

- 39 0957 35 -0857 36 

-- 4-0 +0-0905 -32 - 00976 +38 
-- 4.1 -0821 28 -1057 41 
- - 4-2 -0709 23 -1097 41 

-- 4-3 -0574 18 -1096 40 
- - 4. 4 4 0421 12 -1055 38 

~- - 4-5 +0-0256 - 5 -0-0976 +34 
- -- 4-6 +0-0086 + 1 -0863 30 
- -- 4-7 -0-0083 7 -0720 24 
-~- 448 -0245 13 '0553 18 

- 49 0394 16 -0368 + 9 

- 50 - 0-0527 +20 - 0-0174 0 

(45) 

and denote the function WI(x, ,) by f(x), we obtain 

Oij = "gYij = 
-r f (lc, sij) Oi i P VV3c 

(46) 

I(x, tu) -ij J ' 
- 1) Jo(wX) dSc 

63 

27Tniv24 r o 
4(2__ -) Jo(I kjlsj) dg 

= _ - Jo .( pV J o Fo(P) 

A , //I 0, - y /"I 1 clIC 
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Hence the total radiated power is given by 

g=7V2#4P2 

Tr3v20#4P2 
=W a4ajf2(ksi8j). (47) 

0aC afi? 

Table 1 gives values of ?I(x, /3) to four decimal places, together with its second 
differences, for the range x = 0.0(0-1)5.0. For completeness, and because of their 
use in the calculation of energy supplied to a radiator by a driving system, values of 

.I(x, /3) have also been given. An auxiliary table of f{xIJ(x, 43)} for x = 0.0 (0-1) 1'0 
is included to assist interpolation when x is small. Tabular values are accurate to 
within two units of the last figure given. 

The asymptotic evaluation of I(x, ,) for large values of x is considered in ? 6. 

Numerical evaluation of the integral 
The method used to evaluate the integral I(x) was essentially that applied to 

integrals of a similar type in paper I (? 7), to which the reader is referred for further 
details. 

For the 'tail' of the integral an expansion of the form 

4(1~- ~ ) Jo(~x) ~ dd ( 
F2- 

1)J()Cd - 

Jo(x)d+ 
CJ )d+... (48) 

JA o(f 
c 

2+ . 

was obtained by expanding /(2 - 1)/IFo() in inverse powers of ~2 and integrating 
term by term. The integrals which appear on the right-hand side of equation (48) 
are readily evaluated with the aid of recurrence formulae, using tables of Bessel 
functions and the integral of Jo(x). 

The behaviour of the function I(x, Au) as x - 0 can be determined with the aid of 
the expansion (48). It is easily seen that, for any fixed positive A, 

lim Ilx { 1)o((x) F()})dd = Co 
x-+O0 

and lim Ix {(X2 
_ 
1) Jo() /IO} d - 0, 

xwhence lim{ox(x,f^)} = -iCo = (49) whence lim {xI(x, )} iC =-ic = 2( 1) (49) 
x- ->0 

6. ASYMPTOTIC EVALUATION OF THE MUTUAL IMPEDANCE INTEGRAL 

The integral I( io )=i( (1) J(x) d 
I(x, ) = 

-1 
i o(- )J?x 

is among those discussed by Lamb (I904) in determining the field at infinity on 
the free surface of a semi-infinite isotropic solid due to a point source vibrating 
normally to the surface. Lamb evaluated a term representing the contribution to 
the integral from the surface wave, which is of order x-4, and indicated the order of 
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Partition of energy between elastic waves 65 

magnitude of the contributions from the other waves, without, however, giving the 
dominant terms explicitly. 

In order to determine the behaviour of I(x, ,) for large x, we adapt the methods 

applied in paper I to integrals of a more general type. The integral may be written 

I u 4'(,2_ 1) {H(')(~x) + H(2)(~x)} C d', Il(x,~2)- - 0 0 

where H(l)(~x) and H()(Yx) are the Hankel functions. 

Using the relation H(2)(~x) = - Hl)(ei ~x) 

(see, for example, Watson 1922, p. 75), we obtain 

I(x,,u) = f ~2- ) )(x) d, (50) 
,J--o 0()) 

where the new contour is indented to pass below the singularities of the integrand 
on the negative real axis and above those at the origin and on the positive real axis 

(cf. figure 1 of paper I). 

rC r 

-P -4 -1 

FIGURE 2. Modified contour of integration. 

An equivalent contour consists of a small circle enclosing the pole of 1/F0(F) at 
= -p and two loops r, and F2 encircling the points C = -1 and = -,u re- 

spectively, as shown in figure 2. The value of the integral taken round the circle, 
which corresponds to the surface wave displacement and will be denoted by JSu, 
is a multiple of the residue of the integrand at the pole C = -p, and is given by 

1Tp (p2 - 1) H(eig px) 7Trp (p2 - 1) H2(px) 
Xsu- F(p) Fo(p) (51) 

In the case u = V3, p = 1-8839 and we have 

I,s =0- 3620Ho2)(1.8839x). (52) 
For the purpose of evaluating the integrals along Pr and Fr, it is convenient to 

write 2(2_ 1 

Fo() ol(g) + $2(1) 

(22 _- lt2)2 V(2 - 1 ) where l(^ ) -= 
^_(252 -_lC2)- 164(6 2- 1) (-2 _t2)' 

4_2(2 _ 1) /(2 - /2) 
() =- 

(2-2_ 2)4 -16_4(2 
- 

1) (2(- _U2)' 
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thus separating the integrand into two terms each of which possesses only one 

branch-point in the half-plane W5 < 0. The loop integrals, which represent surface 

displacements corresponding to compressional and shear waves respectively, then 
become 

1c =-2 I ) h l() hd{, s )(-) D2() 2 d, 

and if the Hankel function is replaced by its asymptotic expansion 

H(01)(x) 
2 

t-l7)(1-8g +..) 

the problem reduces to the evaluation of integrals of the form 

ei rf a e1~e f eir x 
ei(i) {dg and (D* dCc 

(27r)iJ rF (x)m+l (2)J) r, (Xd)m+ 

where m is zero or a positive integer. 
To evaluate integrals of the first type, we deform r1 in such a way that both its 

branches coincide with the line RS = -1 and make the substitution I = - + iqj. 
For small values of yh we obtain 

e-ii" 
l _ (211) (2_ + 0(1)}, (53) 

(2 t2)2{1 

where the positive sign is to be taken on the left-hand side of the loop rI and the 

negative sign on the right-hand side, to correspond with the assignment of principal 
values to the radicals V(2 - 1) and V(g2 -/2) on the real c-axis (see ? 3 of paper I). 

Hence for the dominant term in the asymptotic expansion of Ic we obtain 

/IC - V(2_/2e)2j e-- d1 = - (2-2)2- (54) 

The same method can be used to evaluate Ish and the corresponding results are 

4(//2 - l) e-hin 
'aD2 + V(2/t2) 4 {1 +( )} (55) 

where i'2g = +1a, and 

8(lt2 I~~?B- 1) e-11jx 00 o ~4(]%2-- 1) e-ietx 

nh^5 (J e- x( ix) d- (56) 

Summarizing, we have shown that 

I(x, u) = S + IC + Sh, (57) 

where the terms on the right-hand side are given asymptotically by formulae (51), 
(54) and (56). 

It should be noted that, owing to the smallness of the radii of convergence of the 

ascending series (53) and (55) for qI and 0, the constants implicit in the error 
terms in (54) and (56) are rather large. The application of these formulae is therefore 
restricted to cases when x is very large. 
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7. APPLICATION TO A THREE-ELEMENT RADIATOR 

To illustrate the application of the theory presented in ?? 4 and 5, we consider 
the case of a radiator consisting of three elements situated at the vertices of an 
equilateral triangle, with /u = /3 and klsij = (so that klb = IV3) This arrange- 
ment corresponds closely to that in a recent geophysical experiment described by 
Evison (I95I). In this instance, expressions (39), (40) and (41) become 

73S2 a4/4P2 [~ We =- va ?J4Pf {?t(0)}2 {3 + 6J0o( sin 0)} sin 0 dO, (58) 
WCc Jo 2 

Wsh = | ?(0) 12{3 + 6Jo( sin 0)} sin 0 dO, (59) 
pV Jo 

3 257,r3v2a4P( 
W 32573 + va4{36J(09419)}. (60) 

The integrals have been evaluated by numerical quadrature, and we find that 

7rav2a4 47 
2 7T32a4P2 

Wc = 2945 , Wsh = 10.415 P 0, Wsu = 25.21 .v (61) 
pV e pcVa pV 

The total radiated power is therefore given by 

W = W + Wsh+Wsu = 38.57 V3 (62) 

To calculate the total radiated power by the admittance method we use the 

expression (47) above. Thus 
7r3r2aa/t4P2 W = {^v4/P3f(0)+ 6f(05)}, 

and with the aid of table 1 we find that 

W = 38583va4P (63) 
W-^^Q. (63) pV' 

which is in close agreement with (62) above. 
In the geophysical experiment referred to above the only useful power was that 

radiated by the compressional wave. Since the surface wave is responsible for 
most of the wastage of power, it is interesting to compare the result (61) with the 
corresponding result when the distance between elements is chosen so as to minimize 
the power in the surface wave. 

The terms for which 1-m = + 1 in (41) are minimized by choosing 

2pk b sin T- = 38317, 

so that k,b = 1-1743. In this case we obtain 

7T3v2a4P2 W32a4P2 7T3v2a4p2 
W = 2.254 - Wsh = 3173 ? W 1.899 (64) 

a- PV3C PV3 
V3 

V3 

7T3v2a4P2 
and, for the total power, W = 7-326 (65) 

5-2 
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Calculating the total power also by the admittance method we have 

73v2a4pat4P2 7 3v2a4P2 W 7v {3f(0)+ 6f(2-0339)} = 7-328 Va 
PV Gp cv 

(66) 

in close agreement with (65). 
Table 2 shows the percentages of power in the three waves for the various cases 

considered. 
TABLE 2 

single-element radiator 
three-element radiator (k1 b = 1-/3) 
three-element radiator (k1b = 1.1743) 

compressional shear wave 
wave (%) (%) 

6-9 25-8 
7.7 27-0 

30-8 43*3 

8. APPLICATION TO RADIATORS WITH CONSTANT DISPLACEMENT 

We conclude by giving a further example of the application of the mutual 
admittance function defined in ? 5. 

FIGURE 3 

The difficulty of a rigorous treatment of a given physical problem, taking com- 

plete account of the elastic behaviour of both the semi-infinite medium and the 

source, compels us to make some assumption concerning the distribution of either 

stress or displacement over the area of the free surface beneath each radiating 
element. For simplicity we have assumed that the stress is constant, but elementary 
considerations may sometimes indicate the form of the displacement rather than 
the stress. We therefore consider the problem in which the displacement over a 
circular radiator is constant or, more generally, an arbitrary function of the radial 
distance. We shall show that the resulting stress distribution over the radiator can 
be represented as the solution of an integral equation. 

With the notation of figure 3, the normal displacement at an arbitrary point Q 
due to the stress on an elementary area dA at a second point T is equal to 

surface wave 
(%) 
67-4 
65-4 
25-9 
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where P(r) is the stress at T (a function of r alone because of the symmetry of the 
problem) and YTQ is the mutual admittance for the points T and Q. Since we are 
here concerned with a relationship between two points, we use the limiting form 
(44) of the mutual admittance function. 

From (44) and (45) we have 
27iTV2 

YTQ == p2 /I(k 4 x, I /), T Q = V3 

and by integration of (67) it follows that 

i27- V J2 dO I(kl,xi)P(r)rdr = D(s), (68) 

where D(s) = (uz)Q is the given resultant displacement at Q and a is the radius of 
the element. 

Some simplification results if we put 

27TV2aL4 r27 47f22l4 v 0c /(2_ 1) JO(kl, r) JO(k,l C ) _ d 

iwpVJ I(k lt)dO = - J 0() = S(r, s;t), 

whereupon equation (68) becomes 

(r, s; ,) P(r) r dr = D(s). (69) 

The problem is thus reduced to the solution of a Fredholm integral equation of 
the first kind for the stress P(r). 

The numerical solution of integral equations of this kind presents difficulties of 
a fundamental character (see Fox & Goodwin i953), and the subject is beyond the 
scope of this paper. The result (69) is, however, of some intrinsic interest, and it is 
hoped that the approach followed in this section may suggest a possible line of 
development for future work in this field. 

The authors wish to acknowledge the contribution of Mrs 0. E. Taylor who 
performed the bulk of the computing associated with the preparation of this paper. 

The work described above has been carried out as part of the research programme 
of the National Physical Laboratory, and this paper is published by permission of 
the Director of the Laboratory. 
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