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Effect of a surface shear layer on gravity and 
gravity-capillary waves of permanent form 
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(Received 30 August 1989) 

Calculations are carried out of the shape of gravity and gravity-capillary waves on 
deep water in the presence of a thin sheet of uniform vorticity which models the effect 
of a wind drift layer. The dependence of the fluid speed a t  the wave crest is determined 
and compared for gravity waves with the theory of Banner & Phillips (1974). It is 
found that this theory underestimates the retardation due to drift and tendency to 
break. The retardation disappears when capillary forces are significant, but in this 
case it is found that there can be a significant alteration of the wave shape. 

1. Introduction 
We consider in this work the properties of two-dimensional, periodic water waves 

of permanent form on deep water when a thin shear layer is supposed to be present, 
caused for example by wind stress. The layer is supposed to have an average depth 
A ,  and contain a constant uniform vorticity -52. The approximation of constant 
vorticity is made in order to simplify the analysis. I n  principle, an arbitrary vorticity 
distribution can be employed, but the calculations are then much harder (cf. Moore 
& Saffman 1982). Below the shear layer, the flow is assumed to  be irrotational. 
Effects on the waves of viscosity and the air motion after the shear layer has been 
set up are supposed negligible. 

To formulate the problem mathematically, we move to a coordinate system 
moving with the wave in which the flow is steady. The problem is to find surfaces 
with spatial wavelength A,  y = H,(z), y = H,(z) ,  with 8, = 0, H ,  = - A ,  and stream 
functions q ( x ,  y), H ,  < y < H,, and K(z, y), - 00 < y < H,, where 

VZU, = 52;  V2Y2 = 0;  (1.1)  

V q  = V K ,  y = H,;  (1.3) 

p+T/R = const., y = H,;  (1.4) 

Y2--cy as y + w ;  (1.5) 

Yl = const., y = H,;  Y, = const., y=H,;  Y, = const., y = H , ;  (1.2) 

where c is the wave speed, p is the pressure, T is the surface tension and R is the 
radius of curvature of the surface. See figure 1. 

For the case when surface tension is neglected, Simmen & Saffman (1985) 
considered the case of an infinitely deep shear layer, i.e. A = co. Teles da Silva & 
Peregrine (1988) found solutions for finite depth, where the bottom surface is a rigid 

t Permanent address : Royal Roads Military College, Victoria, BC, Canada. 
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FIGURE 1. Sketch of the geometry. 

plane, i.e. H ,  = - A .  We are not aware of any computed or analytic solutions for the 
mathematical problem just formulated, especially for the case A 4 A.  Banner & 
Phillips (1974, herein referred to as BP) examined this case by ingeniously applying 
conservation of vorticity to a one-dimensional description of the shear layer together 
with the Levi-Civita result (see paragraph below containing equation (2.10)) to 
obtain the relation 

(%)crest = -"c-  ~ 0 ) " ~ 0 ( 2 c - ~ O ) l ~ ~  (1.6) 

where us is the speed of the fluid a t  the surface in the wave-fixed coordinate system 
and the value a t  the crest is i3Yl/i3yly-maxH,, Uo is the maximum forward orbital 
velocity in the irrotational part of the wave, i.e. c+i3!RJi3yly=maxH,, and qo( x Q A )  is 
the surface drift a t  the mean level of the surface. There is some ambiguity in the 
definition of qo, and we shall follow the BP definition, which is qo = i31u,/anl,,o+c. 

BP argue that the limiting wave is attained, and incipient breaking occurs, when 
a stagnation point occurs on the surface. According to their analysis of the shear 
layer, this occurs first a t  the crest and the condition for incipient breaking follows 
from (1.6); 

They also deduce from Bernoulli's equation that 

(1.7) 

Thus drift can reduce significantly the maximum elevation for breaking. Note that 
the theory does not give the limiting value for h, where h = max H,-min H, is the 
vertical distance between crest and trough on the surface and will be called the wave 
height, as this requires knowledge of the speed in the wave troughs. Also their 
comment that in a rotational flow a stagnation point a t  the crest need not be 
associated with a discontinuity in surface slope is not correct. The angle in the cusp 
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may, however, look more like 90" than 120" if 52, @ g / A  and the resolution is not fine 
(Broadbent & Moore 1985). 

One purpose of the present study is to investigate the range of A for the R P  
argument to hold, i.e. to consider how thin the shear layer should be given qo or 524, 
and obtain information about the limiting wave height (and not just the elevation). 
A further purpose is to incorporate surface tension and determine its effect on the 
conditions for a stagnation point to occur on the surface and the shape of the waves. 
We have been unable to extend the BP argument to include surface tension effects 
because the Levi-Civita result does not then hold. Their comment about a stagnation 
point not necessarily being associated with a singularity is, however, correct in the 
presence of surface tension. 

Also, we wish to establish formulations of the steady waves that will enable a 
stability investigation to be carried out. (For finite depth, a stability calculation to 
both two- and three-dimensional disturbances has been performed by Okamura & 
Oikawa 1989,) We plan to report on a study of the stability of waves with a thin shear 
layer in subsequent work. 

2. Fourier series formulation 
Solutions for steep waves are not currently obtainable by analytic methods, and 

numerical approaches are necessary. I n  this work we use truncated Fourier series 
(Dalrymple 1974) to represent the stream functions and the fluid surfaces. This 
approach gives accurate solutions quickly with little work if the wave height h is not 
too large and allows us to establish the number of independent parameters for the 
problem. Unfortunately if the waves are too steep, the method fails and then other 
formulations such as boundary integral representations or spectral solutions of the 
partial differential equations are more appropriate. These will be described in 
subsequent work. 

We take, restricting attention to waves symmetrical about crests and troughs,t 
and putting A = 27c, N 

H ,  = C c, cos nx ,  
1 
N 

= fQy2 - 6y + Q + C cos nx(a ,  eng + 6, eCg),  
1 

N 

H ,  = -A++d,cosnx, 

= - c y + Q + ~ f , e n Y c o s n x .  

1 

N 

1 

The boundary conditions are 

Yl=O on y = H , ,  

t There is considerable interest in the existence of non-symmetrical waves of permanent form. 
Zufiria (1987) demonstrated their existence in the absence of a shear layer for sufficiently steep 
gravity waves. It is hoped to study in future work the possibility of symmetry breaking in the 
presence of a shear layer. 



96 F .  A .  Milinazzo and P. G .  Saffman 

We suppose that A and SZ are given. Note that in (2.6) we take the pressure in the 
air above the upper surface to be zero. 

The unknowns are 13, Q, c,  Q ,  B,, K ,  plus 5N Fourier coefficients, giving 5N+6 in 
all. Equating to zero the coefficients of cosnx (n = 0, 1 ,  ..., N )  in the boundary 
conditions gives 5N+ 5 equations. The last equation comes from imposing the wave 
height 

N 

h = & g l - ( - - l ) n ) .  (2.9) 
1 

This approach fails owing to divergence of the series for Yl and/or Y2, even when 
the flow is completely free of singularities and the series for H ,  and H ,  are convergent. 
This occurs (Saffman & Yuen 1982) because the analytic continuation of Y2 into the 
shear layer develops singularities below y = max H,, and when the analytic 
continuation of 'Ii: develops singularities below y = max H I  or above y = min H,, in 
which case expansions of the forms (2.2) and (2.4) are inappropriate.? It also fails if 
the surfaces become multivalued, i.e. overhanging waves develop. 

The accuracy of the calculations was checked by comparing solutions obtained 
using 25 Fourier modes to those obtained using 50 Fourier modes. For the results 
presented here the first 25 Fourier modes agreed to a t  least 4 decimal places. It 
should be emphasized that this amounts to a check on the truncation error of the 
method of solution. The wave steepness at which the series start to diverge can be 
determined by monitoring the decay of the coefficients of the stream function. In  
some cases, this was done to determine the validity of a solution. I n  most cases, H ,  
and H ,  were plotted and irregularities depending upon truncation in these curves 
were taken as an indication that the corresponding solution was suspect. We did not 
attempt to find accurately the critical values of h a t  which the expansions diverged 
as this is not a physically significant quantity. The plotted results are conservative ; 
the solutions might converge for values of h/A larger than those shown. 

Unfortunately, a check on the accuracy of the solutions for gravity waves is not 
provided by the Levi-Civitii result that the velocity on the lower interface where 
H ,  = - A  is equal to the wave speed, i.e. aYl,,/anl,,-A = -c .  B P  claim that the 
argument for the irrotational flow still holds in the presence of the shear layer, but 
this is not obvious. The result that we obtain (see the Appendix for details) is 

(2.10) 

where B, is the Bernoulli constant on the interface y = H,. The Levi-Civit& result, 
l V q  = c a t  the mean level y = - A  holds only if p-gd  = 0 a t  the mean level, or 

J H ,  = A l v q i - - A >  

and we see no reason why this is satisfied exactly. It may, however, be small, since 
the derivative of p+gy normal to the streamlines is zero at a point of inflexion, and 
points on the mean level of a streamline can be expected to be not too far from points 
of inflexion. In  fact, our computations suggest that c-IVy1,,-, is of order d2h2. The 
error in the BP theory due to use of the Levi-Civit& relation should therefore not 
matter until the wave is steep. 

t Compare the failure of the Taylor series for (1  +z2)-' to converge for z > 1 owing to the 
existence of a non-real singularity. 
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3. Results 
In  figure 2 we show plots of (us),,,,, vs. h/h for values of 524 from 0 to 0.5, for four 

values of A and T = 0, and compare them with the BP prediction of equation (1.6) 
evaluated using the calculated values of the variables. We have taken g = 1,  h = 2n, 
and normalized the velocities on C,* = (g*h*/2n)i. The relation between dimensional 
quantities, denoted by an asterisk, and the dimensionless variables is as follows. 
A* = Ah*/2n, h* = h h * / 2 ~ ,  C* = ~ ( g * h * / 2 7 ~ ) $ ,  u,* = ~ ~ ( g * h * / 2 7 ~ ) : ,  T* = Tg*h*2/4~2, 
SZ* = 52(2~g*/h*);, O*A* = SZA(g*h*/27c)~. 

The vorticity SZ can be either positive or negative, but since the equations are 
invariant under the transformation c + - c ,  52 + - SZ, it is sufficient to restrict 
attention to positive SZ provided one allows for negative wave speeds c. There are 
three classes of waves depending upon the value of c as h and SZA + 0. The three 
values are C,, -Co,  0. The BP case corresponds to the limit c = Go, and this is the 
case we concentrate on, although the others are of interest. The results show that the 
drift layer significantly reduces the speed of the fluid a t  the crest and increases the 
tendency to breaking but the effect is greater than that predicted by BP, especially 
if d is large. The BP hypotheses are likely to be more accurate, the smaller the value 
of A .  

The dependence of (us)crest on A ,  for h/h = 0.05, T = 0 and values of SZA is shown 
in figure 3. It can be seen that the dependence on A is weak, and that the main 
dependence is upon the drift velocity. We found from our computations that the 
value of qo as defined in $ 1  was very close to SZA, so that SZA is a good measure of the 
surface drift velocity. The calculation breaks down when h/h becomes too large, for 
the reasons explained in $ 2 .  The stronger the shear layer, the smaller the wave height 
at which the method fails. 

Figure 4 shows the effect of shear on the profile of a gravity wave. A gravity wave 
of wave height h/h  = 0.062 and a wave of the same height with drift 524 = 0.456, 
A = 0.4 are plotted. The steepening of the wave with shear is quite noticeable. 

The result of a calculation for non-zero surface tension is shown in figure 5. We plot 
the free surface and the interface for a case with SZ = 1.0, A = 0.05, T = 0.2, and 
h/h = 0.026. Also shown for comparison is the surface of the capillary-gravity wave 
when the shear layer is absent. The oscillations of the surface are related to the 
existence of multiple solutions and bifurcations (Chen & Saffman 1980). It can be 
seen that the oscillations are enhanced by the shear layer and local maxima and 
minima are created. Similar results were obtained ford = 0.2. The surface oscillations 
are not found for T < 0.1 or T > 0.5. 

The dependence of (u,),,,,~ on T was investigated for f2 ranging from 1.0 to 4.0 and 
h/h between 0.026 and 0.04 for A = 0.05. In  all cases (us)crest decreased monotonically 
with T away from zero, going from values of around -0.8 for T = 0 to - 1.4 for 
T = 2.0 so that the tendency to break was reduced. There were some mild oscillations 
of (us)crest for T in the range 0.1 to 0.3, again associated with the existence of 
bifurcations in this range. 

In conclusion, we wish to comment that preliminary studies of waves propagating 
against the drift, i.e. with negative phase speeds, indicated the non-existence of real 
solutions for ranges of the parameters. This could be traced to a coalescence of the 
two smaller wave speeds, and the appearance of complex wave speeds. A similar 
phenomenon was shown to occur in the dynamics of interfacial waves in the presence 
of a current (Saffman & Yuen 19821, and it was pointed out that the non-existence 
can be identified with a hydrodynamic instability of the flow ; in that case it is the 
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FIGURE 2. For caption see facing page. 
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FIGURE 2. Variation of (us),,,,, vs. hjh for various drift speeds and layer thicknesses, with 
T = 0. (a )  A = 0.05, (b )  0.1, ( c )  0.2, ( d )  0.4. Present computations, solid line. BP, dashed line. 
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FIGURE 3. Dependence of (us)crest on A for hjh = 0.05 and various f2 A .  Present computations, 
solid line. BP, dashed line. 

Kelvin-Helmholtz instability. There is likewise an instability of the drift layer for a 
range of the parameters. A study of this instability and its relevance to the 
generation of waves by wind will be described in subsequent work (Caponi, Yuen, 
Milinazzo & Saffman, in preparation). 

This work was supported by the Office of Naval Research (Grant N00014-89-J- 
1164). We wish to thank Dr H. C. Yuen for valuable comments. We also wish to  
thank Dr L. Moorland for checking the results for capillary-gravity waves and 
assistance with figure 5 .  
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FIGURE 4. Shape of a gravity wave and the interface with and without drift layer for h / A  = 0.062, 
d = 0.4,QA = 0.456. (a )  No shear layer, (6) shear layer. Upper curves are the free surface; lower 
curve ( b )  is the bottom of the shear layer and lower curve ( a )  is a streamline. 

t 
FIGURE 5 .  Heavy lines show shape of a capillary-gravity wave and the bottom of the shear layer 
for T = 0.2, Q = 1.0, A = 0.05 and h/A = 0.026. Light line is surface when shear layer is absent. 

Appendix. The Levi-Civita relation 
Consider the irrotational fluid in the region ABCD (see figure 1) between y = H ,  

and y = -hm, where h, is so large that the flow can be considered uniform at this 
depth and is moving with speed c in a wave-fixed reference frame. Applying 
conservation of momentum to this region, we obtain 

P m  = Shm, (A 1) 

were we have taken the pressure in the air to be zero. Note that (A 1) holds if surface 
tension is present. 

From Bernoulli’s equation in the irrotational flow, 

p + pll.lz + gy = B,, (A 2) 

we obtain using (A 1) B, = $cZ,  (A 3) 
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Applying momentum balance to the irrotational fluid in A’B’CID’ between the 
lower surface y = H ,  and y = -hm, we obtain 

gAA = J pHtdx. 
H2 

The average of (A 2) along the interface y = H ,  gives 

Let u denote the speed of the fluid on the lower interface a t  the mean depth where 
y = - A .  From (A 2) and (A 3), 

c2-u2 = 2(p+gy)y--d. (A 6) 

The Levi-Civitii relation requires the vanishing of the right-hand side of (A 6), or 
equivalently from (A 5 )  that  the average speed on the lower interface is the speed a t  
its mean level. There is no obvious reason why these conditions should be satisfied 
exactly, although they may, depending upon circumstances, be a good approxi- 
mation. 
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