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PHYSICA 

Long wave interaction over varying topography 

P. M i l e w s k i  1 
Department of Mathematics, University of Wisconsin, Madison, W153719, USA 

Abstract 

The propagation of long waves on the surface of a three-dimensional fluid domain bounded below by slowly varying 
topography is considered. There are two important limits: If the initial data can be written in terms of a discrete set of 
one-dimensional wavefronts, the resulting wave field is described by a set of variable coefficient Korteweg-de Vries (KdV) 
equations for each wave along its characteristic curve. Waves along different characteristics interact with each other yielding 
phase shifts that depend on the wave amplitudes, the angle between the rays and the local depth. If the initial data is modulated 
slowly in the direction parallel to the wavefronts, the wave field is described by variable coefficient Kadomtsev-Petviashvili 
(KP) equations along rays. For topography varying only in one direction, we calculate explicit results for the interaction 
between two sets of periodic or solitary waves and show the equivalence of a single nearly normally incident KdV wave and 
a normally incident KP wave. Copyright © 1998 Elsevier Science B.V. 
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1. Introduction 

In this paper we consider the propagation and interaction of  weakly nonlinear three-dimensional waves on the 

surface of  a shallow fluid domain with slowly varying bottom topography. The problem of surface gravity waves on 

varying topography has been the subject of  considerable mathematical and experimental research. The asymptotics 

of  the diffraction of locally sinusoid waves was studied systematically in [13,19]. The diffraction of  long nonlinear 

solitary water waves was first studied in [7,8]. There has also been considerable interest in the related study of  slowly 

modulated solutions to integrable wave equations, and various methods have been developed for this purpose (see, 
for example, [ 1,5,14,21 ]. The interaction of  solitary waves in a fluid domain of  constant depth has been considered 

by many authors (see, for example, [2,6,15], and are divided into weak and strong, depending on the angle between 
wave fronts. Here, Section 2 and 3 are concerned with the weak interaction limit, whereas Section 4 is concerned 
with strong interaction. 

We start from a general isotropic Boussinesq-like equation for weakly nonlinear water waves, and show, using 
asymptotic analysis: (1) The waves follow the characteristics of  the linear problem (Section 2 and [7]). (2) Along these 
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characteristics, the waves satisfy either a variable coefficient Korteweg-de Vries (Section 2 and [ 12]) or Kadomtsev-  

Petviashvili (Section 4) equation. These can be transformed to perturbed, constant coefficient equations. (3) Where 
waves from different ray families intersect, the waves interact yielding a nonlocal phase shifts dependent on the 

wave amplitudes, the angles between the rays and the local depth (Section 2). (4) For topography varying in only 
one direction (such as a simple beach), there is a correspondence between nearly normally incident KdV waves 
and normally incident KP waves (Section 5). In addition, the interaction of solitary and cnoidal waves is calculated 
explicitly for beach-like topography (Section 3). The solitary wave case results in a mach stem-like solution, and 

the cnoidal wave case results in a modulated hexagonal pattern. 

2. Formulation 

Waves propagating over topography are characterized by several dimensionless parameters: Nonlinearity is pro- 

portional to E, the ratio of the amplitude of the wave to the characteristic depth of the fluid. Dispersion is proportional 
to the ratio of the depth of the fluid to the length of the waves, and is assumed, in the usual KdV scaling, to be of 

order E I/2. The topographic forces are proportional to the characteristic slope of the topography, which we denote 
8. Lastly, focusing and nonlinear interaction also depends on the curvature of the wavefronts• Implicitly in the for- 
mulation below, we assume that the curvature is not larger than 8 in Section 2 and not larger than E t/2 in Section 4. 

In all cases, the topography is varying slowly with respect to the waves, thus 6 << ~. 
Given these scalings, the isotropic Boussinesq equation for waves propagating in an irrotational, inviscid fluid 

over slowly varying topography is [16] 

-8 [v{h. v~] + o(E 2) + o(E~) + o(~ 2) = o. (l) 

Here, ~b(x, y, t) is the velocity potential at the undisturbed free surface level z = 0, and h is the local depth of 

the fluid. The free-surface elevation ~ is given by -~bt + O(E), and the topography depends on the long scale 
{ = (~, 7) = 8x  = 6 ( x ,  y)  with E >> S >> E 2. We define ~ = & - I  << 1, then E is a measure of dispersion and 
nonlinearity (which are balanced in the usual KdV limit) and/z is a measure of  the local influence of the topography. 
We seek a solution to (1) consisting of N waves of the form 

N 
q~(x, t, U, E) = ~ f j ( O  i, X,/z)  + Eq~{')(x, t, #)  + O(E2), (2) 

.i= I 

Oi _ @ i ( { )  _ t + {7zj(x) + O(E2), X = {x, { = / * X  = 6x,  (3) 
6 

where the various derivatives of f j  are assumed to be O(1) quantities. In order to rewrite the phase shift ~j  (x) as a 

function of 0 = (01, ON), it is useful to define 0{°) = 8-1 (O) ({) - t, and write 

010) = 0/ -- {1~](0)  q - 0 ( 6 2 ) .  (4) 

For simplicity, we take N = 2, but the results are straightforward to generalize• Substituting (2) into (1), yields, 
at leading order, the eikonal equation 

~-/ + \  a~ ] ~2g{), {5) 
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where c 2 (~) = h (~). Denoting the direction of the wave by the unit vector k and defining c~j (~), fii (~) by 

1 
-k j (~)  = V~Oj = (~j(~), flj(~)), (6) ¢ 

Eq. (5) can be solved by introducing characteristics (or rays) parametrized by their arclength ~j = (~i (A j), Oj (Ai)) 
satisfying 

d~j doj 
dAj = caj, dAj = cflj. (7) 

Along these characteristics, the wave vectors satisfy 

dAj = c ~ ' dAj = c ~ " (8) 

The phase then satisfies 

dOj 1 
- -  ( 9 )  dAj 

It is assumed here that the rays do not form caustics, although their treatment, if nonlinear effects are not too strong, 
would be similar to the limit described subsequently in Section 4 (see also [19] for sinusoidal waves). Recall that 
the curves Oj = constant are the waveffonts, and are everywhere perpendicular to the rays, and that, as in [7], the 
waves will follow the characteristics of the linear problem. 

At O(~), we obtain 

( 0 2 -  c2A)~(l) = F 0) 

with the forcing term given by 

F 0) = 2(kl • k2 - 1) [((002 ~rl ) (001 f l  ))0, "Jr- ((00, ~2)  (002 f2))02 ] 

+ 2c2[V~O1 • Vxaol f l  + V¢02.  VxO02 f2] 

3 
c2 r,~4 ~- 042 f2] _+. 7[(00, f l )(a2 f l )  q_ (ao, f2)(O22f2)] + -~tootJl + 

-t- c-e(1 + 2kl • k2)](001 fl)(O22fe) + (Oo2f2)(O~t fl)] 

+ #[ce(z~Ol)00j fl + ce(A~02)Oo2 f2 

-q-(V~h" V{OI)OO, f l  + (V~h. V¢O2)Oo2f21. 

Note that F 0) and thus 3~ depend on/~ << 1, and that by the choice a = E/z, F (0 is linear in/z. 
Assuming ~b 0) can be written as a function of 0, (10) becomes 

2(1 - kl • kz)00j02~ (1) = F (I). 

The solvability condition that 4~ (1) remain bounded in 0 dictates that 

2c2[g~OJ' VXOOjfj] + 3 ojfJ + 3c-2(OojfJ)(O~fJ) 

= --Id[C2(/k~l~gj)aej fj  q- (V~h. V{Oj)Ooj fj]. 

(lo) 

(11) 

(12) 

(13) 
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Introducing the fast variable Xj along the characteristic with the scaling Aj = /zZj, the first term in (13) is the 

derivative along the ray. Thus (13) becomes 

-~ "~ 1 4 '()./;,/ f j  + ~c " (Oo/ fi)(O~/fi) + -6cSo/fi = -U~Oo/ f j ,  (14) 

where 

1 c - '  1 I k ] "]-((A = ~cA~(O + V ~ c . k j  = ~ V ~ . k  +-c " V~c . (15) 

Defining Ui = 0~j J), each wave satisfies a forced, slowly varying coefficient, KdV equation along the rays: 

3 c 3 
az, u i + ~ uj O~/uj + ~ 3hi uj = - I z ~ u j .  (16) 

Note that uj is proportional to the horizontal velocity component of the fluid in the direction of the ray, and to the 

the free surface displacement. One can transform (16) into a constant coefficient equation by 

A 
A d)~ i 

ltj = c Z u / ( 0 / ,  Z j ) .  " ----- c, (17) 
dZj 

whence, 

i~.~oj+~l).jOOil).j+~OOivj-----],z 7-( + 4--~ • V~c vj. (18) 
C" 

We now calculate the phase shifts ~j due to interactions between these waves. Eq. (10) now reads 

2( 1 - kt • ke)O0t0_~4, (I) = 2(kl • k2 - 1)[((O02~t)(O0~ fl))o~ + ((Oot 7t2)(8o~_f2))o~_] 

+ c-2(1 + 2kl • k2)[(Oo, fl)(O~_f2) 4- (Oo~f2)(O2o, f l  )]- (19) 

Assuming all the coefficients are O(1) and integrating this equation one obtains 

1 + 2kl • k2 
4,1 I) _--. -[~'100. fl  + ~t2a02 f2] + 2c2( 1 _ kl • k2) [fl  Om_f2 + f2Ool fl  ]- (20) 

The homogeneous solution has been neglected since it is the sum of functions of  one phase, and thus can be 

incorporated into ~. by a redefinition of the leading order solution. Although one could take 1//I = ~02 = 0 

consistently at this order (see [2]), this choice would lead to secular terms at the next order in most cases, including 

solitary and periodic waves. We use the method of  [6,20] to extract the phase shifts at this order of  the perturbation. 

Fixing 02 in (20) with ~Pl = ~P2 = 0, we note that 4,(I) does not tend to zero at infinity and it is easy to see that this 
leads to secular terms at the next order in 4, (2) . Anticipating this, we remove these terms at this order by imposing 

the stricter solvability condition that 4,(1) __+ 0 as 0 -+ ~ yielding 

1 + 2kl • k2 
~bl = 2c2( 1 _ kl • k2)f2,  (21) 

1 + 2kl - k2 
~ 2  = 2c2( 1 _ k t  - k 2 )  f t .  (22) 

These phase shifts are nonlocal in the sense that they depend on the integral of the free surface displacement of the 

other wave. If  the waves are solitary, then the phase shift in 01 of  ul is felt where u2 is largest. The nature of  this 

interaction is discussed in more detail in Section 3. 



40 P. Milewski/Physica D 123 (1998) 36-47 

3. Interaction of waves on a gentle beach 

We now specialize the results of Section 2 for the case where h = h (~) and periodic and solitary wave solutions 
to (18) are sought. This case can be explicitly computed by the methods introduced by [9,12,14] for perturbations 
of the KdV equation. Eqs. (7)-(9) read 

d~j-~.colj,  drlJ =cfl j ,  dotj d ( 1 )  dflj dOj 1 
d A j  d A j  dA j  --- c ~  . 2 , d A j  = 0 '  dA j  -= c" 

(23) 

It is preferable here to write the solution as a function of ~ instead of A: 

= (24) 

/ 0 f ,  ~J ~j---gd~, (25) 
~o ~0 

where superscripts indicate the value at A j  = 0 (or ~ = ~0). With this solution, (18) becomes 

1 3 . 1 t O~jVj --[- 3 UjOOj Vj -+- -~30jV j = --l,t[~). -~ 5C-I c' otj]Vj. (26) 

We seek a solution to (26) of the form 

Vj = U) 0) + /ZU) 1), (27) 

where 

1 of w) w) (28) v) °) = a j ( A j ) s e c h  2 w j ( a j )  Oj - ~ y j ( s ) d s  , Vj = --~-, aj --- ~ - .  

The analysis here is very similar to [9] and the solvability condition for vl |) yields the adiabatic variation of the 
solitary wave amplitude. We do not repeat that calculation here, although it is equivalent to conservation of energy 
for (26). The result, regarding aj as a function of ~ is 

1 doj 4 c'] 
aj d~ - - - 3  L2otj + 5 c  ' a ° . . (29) 

Returning to the physical quantity, with uj = c4vj, we have 

1 Vj(s) ds yj --- -~-, Aj  - , (30) Uj = Aj(~) sech 2 o)j(~) Oj - -~o  ogj(s--~ ' 3 

where 

aj(~) 
-- c-8/3ce; ~ c -2 as c --~ 0. (31) 0 Aj J 

In addition, by solving for v) ~), one finds that there is a small amplitude trailing "tail" behind the solitary wave (see 
[9,12,14]). We shall only be interested in the leading order calculation here. 
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Fig. 1. Solitary waves interacting on a sloping beach h(x) = -(0.1)x.  The waves propagate from left to right, and the solution is shown 
at two different times. Initially, k I ~ (0.9, 0.45), k 2 ~ (0.9, -0.45)  (the fronts are at 45 ° to each other) and the amplitude of each wave 
is 0.1725. At the later time the interaction is clear at the intersection of the two waves. (a) Grayscale plot. (b) Surface plot. Note: The 
solutions shown are a local approximation around the interaction point of the solutions of Section 3. In this approximation, the wavefronts 
are straight, whereas those of Section 3 are curved. 

The  p h a s e  shif t  due  to the  in te rac t ion  o f  two waves  is g iven  by  

1 + 2k l  - k2 [ 
7q = 2c2(  1 _ k l  ~k2)  J u2 d02, (32) 

wi th  a s imi la r  expres s ion  for  7z2. T h e  shif t  is m o s t  p r o n o u n c e d  at the  in te rsec t ion  o f  the  two wavef ron ts ,  and  the  

total  phase  shif t  is g iven  by  
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~paax I-q- 2k I .k2 (2A2(~)  "] ,-~ 2~/3A2 0 c -  2 
2 c 2 ~ - ~ k i : k 2 )  \ k--~-~/ (/3?--/30) 2 asc - -+0 .  (33) 

This, together with (30) and (31) describes the leading order wave field. The sign of Ol corresponds to a retardation 
of wave 1 as it intersects wave 2. Similarly wave 2 is retarded when it intersects wave 1. Thus, the wavefronts forms 
a "roach-stern", where both waves superpose for a finite distance. Figs. l(a) and (b) show, locally, such a solution 
at two different times. At the later time the "roach-stem" with a large amplitude is clearly visible. 

For periodic waves, we similarly can construct the wave field using (23) and (25) and seeking solutions to (26) 
as in (27) with v (°1 having mean zero, of the form J 

A 

I ((  ; v~o) 4 __ (.02 = 5 ). ~cfcn ' Oj--~ yj(s) 
7"( Y 0 

. ]  
(34) 

where cn(z, x) is the elliptic function of modulus x and E(x), K(x) are the complete elliptic integrals of the first 
and second kinds, respectively. K is the quarter-period of cn and thus, (34) has period 2;r/w in 0. The solution has 
the dispersion relation 

2 _ °92 E ×J=-3 Jr ~ + 3 ~ - 2  . (35) 

If we consider waves at a given frequency co o generated at some position ~0, then, by conservation of waves, we 

must fix coj = coy. At ~0 the waves have wavelength 2;rc°/co °. Then yj and the modulus ~cj, which parametrizes the 
A A 

amplitude, depend on Aj = tz) V, and thus on ~. Their dependence is obtained by a solvability condition as follows: 

The problem for v~ ~) is 

33: ' (v(1), (0)~ 03. (1) l : 5c-lc:otj]@o) (0) --VJOOJ@ l)-ff  2 W" j ~j : q- ~ OjUj = --[~Otj if- -- 3~jjVj . (36) 

3 (0) .  !33 The linear operator on the left-hand side of (36) has, as its adjoint, the operator -gOoj + 7vj o0: + 6 0j- This 

operator has the linearly independent homogeneous periodic solutions (see [ 10]) 1, v j(. °). The right-hand side of (36) 

is orthogonal to the constant function since v~ °) has mean zero, but imposing orthogonality with respect to vl °) 
yields the solvability condition 

2./wy [~Ot( 
f 1 (0,.2 Y (@0,)2 dO. O~ ~tvj ) d 0 = -  - - + 5  (37) 

o0 
0 0 

1 t.2;r/~oj, (0),2d,~ Again, (37) is the statement of conservation of energy for (26) to this order. Thus, defining gj ~- ~ dO tvj ) v, 
we have, in terms of xj, 

87rK K 4 
£'J-- KJ w0 ( ~ ) 2  ( ~ _ )  (co0)4[~ ( ( 2 - 3 4 ) ( 1 - - K 2 ) q  - ( 2 4 4 - 1 ) ~ - ) -  ( 1 - - K  2 -  E ) 2 ] .  

The solution to (37) is then 

E j ( ~ )  _ o ~ f l c _ l O  ' co 

(38) 

(39) 
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Fig. 2. Figure indicating the crests of periodic waves interacting on a sloping beach h(x) = -(0.1)x. The waves propagate from left 
to right, and at each intersection of the crests there is a phase shift. This figure was obtained by considering a periodic train of solitons 
instead of cnoidal waves. The near shore pattern is hexagonal. 

and the phase shifts are given by (32). The phase shift has mean zero, but, since the waves have sharp crests and 

flat troughs, the interaction is most pronounced at the intersection of  the crests. Near the beach since, as before, 

~ i  ~ c-2-  The solutions here appear like periodic tilings of the wavefronts shown in Fig. 1, as shown in Fig. 2. 

The result is a modulated array of hexagons whose aspect ratio and wave segments parallel to the beach grow as 

the waves approach the beach. Similar patterns have been observed in the Ocean [17]. 

4. Strong interaction and the KP equation 

In the previous sections we assumed that the waves were locally one-dimensional.  I f  the waves are slowly 

modulated in the direction parallel to the wavefronts on a length scale shorter than the topographic scales, they may 

be described by a modified KP equation. To illustrate the introduction of another scale, consider the initial value 

problem for one wave in (1). Suppose ~b(x, 0, ~) = g(x,  E). Then, taking the gradient of  (2) 

V g = (V~fg)(Oo f )  + O(E). (40) 

This means that the form (2) of  the solution implies that the initial conditions can have O(1) variations only along 

rays. All  other variation must be O(E). Another distinguished limit of  the asymptotic expansion of  the solution of  

( l )  is the case when the initial data is allowed to vary on a length scale of O(E 1/2) perpendicular to the rays (i.e. a 

modulation along the wavefronts). 

Alternatively, when two waves interact strongly, the free surface evolution is also described by a modified KP 

equation. From (22) one can see that if  1 - kl  • k2 becomes small then the original asymptotic expansion is no 

longer valid. If  v(~) is the angle between the waves, 1 - cos v = 1 - kl  • k2. Thus, when 1 - cos v(~) = O(~), 

(i.e. the waves are almost parallel since v (~) = O(¢~/2)), one must introduce a new expansion. The two waves are 
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combined into one wave with O(e 1/2) modulation along the wavefront. We note that in the case of Section 3, this 
procedure is more involved since not only 1 - cos v(~) = O(e), but A = O(e -1 ) and thus the waves are no longer 
in the weakly nonlinear regime. 

With this as motivation, the appropriate expansion in this case is 

N 

¢(x, t, #, e) = Z fj(Oj, 07, X,/z) + e¢O)(x, t,/z) + O(e2), (41) 
j=l  

where 

Oj(~) t q_ (?~j (X)_k_ O052) ' 0 ?  =_. ~ 1/2 O ? ( ~ )  Oj -- ~ 6 + O(~3/2). (42) 

For such an asymptotic expansion to be valid, the constraint on 3 is that ~ >> 6 >> E 3/2. Imposing that the 0 ± 
variation is perpendicular to the rays with V~Oj • V~O~ = 0, the dependence of the solution on 0 ± introduces into 
(11) the additional term 

= .1_2 2 F 0)± c2[ (a seO?)  2 + (GOd) laolfj. (43) 
d 

Here, we may choose, by an appropriate parametrization of the wavefronts 

(3~O~) 2 + (O,O~) 2 = 1. (44) 

Thus, Eq. (14) becomes 

OOj)~jfj -'1- 3 c - 3 ( a o j f j ) ( a ~ f j )  + 1 4 I 2 -6C3oi fj + ~Caoj - fj = -izT-[(Aj)Oos fj. (45) 
J 

With the introduction of the free surface displacement uj = 3oj y~ and differentiating (45) one obtains the KP 

equation 

1C~2 U OOj[OxjUj "-I- 3C--3Uj(OOjUj) -t- I C33jUj] "~- ~ VO: L j = --[,ZT'[(Aj)OOjUj. (46) 
d 

A transformation similar to (17) (with the 0j ± dependence unchanged) gives 

3 O 30~vj ~O~f_ [ ! ~ +  k J ' v , c ]  (47, OOj[&'2jvj+~vj(ojvj)+ 2 ] +  v j = - I z  4-~_ OOjVj. 

5. K P  w a v e s  o n  n o r m a l l y  i n c i d e n t  r a y s  

We now study more carefully the case of a single family of normally incident rays in the KP regime, that is, taking 
h (~), and/3 = 0. We emphasize that this does not correspond to normally incident waves, since the KP equation has 
two spatial dimensions and, in particular, allows for oblique KdV-like solutions. The goal is to show that oblique 
traveling wave solutions to KP are, to the order considered here, equivalent to almost-normally incident traveling 
KdV waves. 

For normally incident rays, from (23), and (25) we have )~ = X. Defining ~" according by d~ ' /dX = c,~" = #.~, 
and Y" = 0 ± = El/2y, 46 for v(O, X, Y) = c-4u(O, X, Y) becomes 

[ 9dc Oo O~xV + ~vOov + 03v + ~O~yv = -#~c~-~Oov. (48) 
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The KP equation and similarly (48) has a rotation-like symmetry since it is invariant under the transformation 

(49) 

For small angles (a small) the transformation 49 approaches a rotation. Also, Y" independent, zero mean solutions 

of KP are solutions of the KdV equation. Thus, we may generate an oblique traveling solution of 48 by seeking a 
solution to KP of the form 

v =  F 0 - 7 1  y d s  , 

0 

t 

1 ( 0  - 0 o )  = f 1 0 = ~ cd~ ,  

to 

(50) 

(51) 

where F(O, X)  is a solution of KdV, and rotating it with (49). 

We wish to compare (50) to solutions of (26), with/~ = O(e 1/2), of the form 

/ :): 1 Y ds v F 0 ~ 

t 

0 = (0  -- 0o)  = -c d~e + 2fl c ds e + 0 ( ~ 4 ) ,  

t o to 

t 

u f Zdds = 1 f y c d s  + o(f12), 

~lt to 

(52) 

(53) 

(54) 

where the ray is at 

t 

1 f y = ~ (0 - ,7o) = ~ cd~ + O(~3). 

t 0 

(55) 

Choosing a = --~5-1/2# in (49) and substituting into (50) yields 

1 2 1  1 
v = F O + f l 3 , -  -~fi ~ cd~ - -- y c d s  . (56) 

# 
~o ~o 

Upon inserting (53) and (54) into (52) and inserting (55) and (51) into (56), the equivalence of the two to 0(/32) 
is shown. We note that this is shown with cr = -E- l /2 f l  fixed (not a function of ~). This result indicates that for 
almost normally incident waves, one should study the simpler case of KP waves on normally incident rays. A further 
application of this result is in the modulation of multi-phase solutions of KP (see Section 6). In that case, if the 
original waves are nearly normally incident, one should study the normally incident problem. 
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The diffraction and interaction of  weakly nonlinear waves on variable topography has been studied, and there 

are some questions that warrant further research. One would like to extend the modulation results of  Section 3 to 

multi-phase solutions of  the KP equations. In the simplest case, one can study the adiabatic variation of normally 

incident two phase solutions of  KP. Two phase solutions of  KP are usually written in terms of  0 functions and 

correspond, in most cases, to two-dimensional periodic traveling waves [4,17]. These solutions have compared well 

with experimental measurements of  waves in water of  constant depth [11 ], and comparisons have been attempted 

locally in water of  non-constant depth [3]. 

For (48) wi th/z  = 0, two phase solutions have the form v = f(~bl, ~b2) where f is periodic with period 2re 

in both phases and qbj = wj  (0 + crj Y - y j X )  There are three relations between the nine dynamically significant 

parameters: w j, co2, ~rl, crz, Yl, )'2 and three "amplitude" parameters (related to the three elements of  the symmetric 

Riemann matrix in [18]). For the problem where waves of given frequencies are generated offshore we should fix 

wl, w2, while Section 5 indicates that ~rl, ~r2 should be fixed. This leaves five free parameters, with three equAations 

relating them. Thus, for the problem (48), with # 7~ 0 and v = f(~bt, ~b2, ~), where q~j : a)j(O q- f f j Y  - fe )/jds) 

one needs two solvability conditions to completely constrain the evolution of  the waves. Similarly to the periodic 

problem in Section 3 one can easily obtain the condition 

2rr 2rr 2:r 2re 
9C ~ 

0 0 0 0 

At present the method to obtain the second solvability condition is unclear (using, for example, [1]), although 

physically it seems that there should be a statement of  conservation of  energy for each phase. 

An interesting observation of  ([3]) is that even though the data was gathered for waves that had broken far 

offshore, their evolution seemed remarkably similar to multi-phase KP solutions. Obviously, the various asymptotic 

equations discussed here do not admit breaking waves, although some other criteria may be applied to the waves to 

model breaking. Nevertheless, it seems that the qualitative results may apply past breaking. 
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