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ABSTRACT

The one-dimensional reflection of a gravity wave at a discontinuity in bottom slope is calculated from a
Green-Liouville (WKB) solution of the mild-slope equation.

1. Introduction

We consider here the one-dimensional reflection of
the gravity wave

§(x, 1) = Re{Z(x)e ™'} (1)

of complex amplitude Z( x) and frequency w in water
of gradually varying depth 4(x) on the assumptions
that 4 is continuous, 4’ = dh/dx may be discontinuous,
and

kliZ| <1, e=max|h'/kh| <1, (2ab)

where k(x) is the wavenumber determined by the dis-
persion relation

k tanhkh = w?/g = «. (3)

We also assume that % is constant in x < xand x> x;,
that the wave is incident with the assigned amplitude
Ag from x < xp, and that there is no reflection from x
> X, and posit

Z = Apfe™ o0 4 Roe ko] (x < x) (4a)
and

Z = A e (x> x), (4b)

where k¢ = k(Xo,1), and the reflection coefficient R,
and the amplitude A4, are to be determined. A com-
plementary solution for a wave incident from x > x;,
may be constructed by analogy with, and superimposed
on, (4). Moreover, X, ¥ —o0 or x; 4 o or both are
admissible.

Our model is, to be sure, idealized, but it serves to
illustrate that the reflection induced by discontinuities
in slope is quite small, and hence that the geometrical-
optics approximation (Keller 1958) for wave propa-
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gation over bottom topography has a wider range of
validity than otherwise might have been expected.

2. Mild-siope equation

The assumptions (1) and (2), together with the ne-
glect of dissipation, lead to the mild-slope equation
(Mei 1983, section 3.5), which we cast in the form

d dz
%(Cgo—)+CZ—O, (5)
where
x do lw 2kh
b= L, Kode, C=20=3% (‘ * sinh2kh)
(6a,b)

is the group velocity, & is determined by (3), and an
error factor of 1 + O(€?) is implicit. The Green-Liou-
ville (or WKB) solution of (5), subject to (4), yields
[cf. Mei’s (1983, section 4.5) treatment of the corre-
sponding shallow-water problem]

Z = Ao(Co/ C)*[e” + R(x)e™™ + O(H)],

LT e €8
R=31,¢"" ¢ % (7a,b)
Ay = Ao(Co/C1) %™, Ry = R(xp). (8ab)

Note that R = O(e¢), R=Ryin x < xp, and R = 0 in
x> x; (by virtue of ¢’ = 0 in x < xp or x > x;). It
remains true, as in the geometrical-optics approxi-
mation (Keller 1958), that the mean energy flux is
constant within 1 + O(e?):

9 (L 21rCEcz’0 =0 E=l [Z]%. (9a,b)
ax \2x Jo o EEEAl

Oblique incidence may be accommodated by adding
ik, y to the exponent in (1) and replacing k by k, = (k?
— kf,)”2 in (6a); C by C, = k,C/k in (5), (7), and
(8); and ko,1 by (kx)o.1 in (4).
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3. Discontinuous bottom slope

We now suppose that 4’ is discontinuous at the end
points xp and x;, integrate (7b) by parts, and neglect
O( €?) to obtain

e2i0 Xy~ ) 2i )
Ro == ke e WEGRe e,
| inh2
Flxh) = ( «h) sinh2kh (10ab)

(2kh + sinh2kh)?’

F(xh), as determined from (3) and (10b), is plotted
in Fig. 1. It has a minimum of —0.06 at x4 = 2.0 and
vanishes exponentially as xh 4 oco. It follows that re-
flection is quite small for k4 > 1 and is likely to be
significant only in the shallow water domain, in which

Fa l(xh)—lﬂ(l—*l'di) ,

Ozf (x/h)‘/2<1 —éxh)dx (kh<1). (llab)
X0

The particular case of constant slope, 2’ = ¢ in (X,
X1), for which (10a) reduces to

1
Ry = ia[F(Kho) — F(xhy) exp(ij; kdx)] ,
hl - ho

! g (12a,b)
has been solved by Booij (1983) through numerical
integration of (S) for xay = 0.2 and «h; = 0.6. Our
approximation to | Ry|, which is plotted in Fig. 2,
agrees with his result within the resolution of his nu-
merical plot for ¢ < 0.4 and is closer to the result cal-

xh

F1G. 1. Plot of F(«h), as determined from (3) and (10b):
F~ §(xh)"?as«kh | 0, and —0.06 < F < 0 in xh > 1.
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FiG. 2. Plot of |Ry| for a ramp with uniform slope ¢ = tana
between an upstream depth 4, = 0.2/« and a downstream depth of
hy = 0.6/x. Note that | Ry|? is oscillatory with a frequency inversely
proportional to ¢, but this oscillation is distorted by the logarithmic
scale.

culated from a numerical integration of the full (linear)
equations of motion for 0.4 < ¢ < 1. But, as is evident
from (12a), our result diverges for o 4 co, whereas
Green’s approximation for shallow-water reflection at
a discontinuity in depth implies the asymptote | Ro|
~(V3-1)/(V3+1)=027.

We remark that Z'(x), as well as Z( x), is continuous
in the present approximation even though A’ is dis-
continuous. But if the O(¢) reflected wave is neglected,
(7) reduces to the geometrical-optics approximation,
and Z’ then exhibits O(¢) discontinuities at the cor-
responding discontinuities in 4’ (cf. Lighthill 1948). If
h' is continuous at xo and x,, Ry = O(€?) (cf. Mei
1983, p. 140), and the mild-slope equation is inade-
quate for its determination. However, the geometrical-
optics approximation then is adequate for typical ap-
plications.
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