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ABSTRACT

It is shown that the evolution equations for a triad of weakly damped, resonantly interacting waves are
isomorphic to the corresponding equations for undamped waves (and therefore may be integrated in terms
of elliptic functions) if the damping coefficient is the same for each member of the triad. This condition is
satisfied for topographic Rossby waves for which dissipation is through a turbulent Ekman layer and the
wavelengths are small compared with the Rossby radius of deformation

1. Introduction

The resonant interaction of a triad of waves of the
form

Vn = An(7) cos(wut — kp°x), n=1,2,3, (1)
is governed by the evolution equations
fin + andy + YpAp1An-y =0, n=1, 2,3, (2

where A, is a slowly (on the scale of 1/w,) varying
amplitude; 7 is a slow time; A, = dA,/dr; the indices
are cyclic, such that 44 = A4, and Ay = Aj;; the
frequencies and wave numbers satisfy the resonance
conditions

ki +ka+k3i=0, w +twy+w3=0 (3ab)
and the dispersion relation
wn = w(Kn); 4)
the interaction coefficients satisfy
Yi+tyv2+v3=0 (5)

for appropriately scaled A4,; a, is a measure of weak
(by hypothesis) damping. If 4, = O(e), slow and weak
are defined by 4, = O(ew,A4,) and a, = O(ew,) as
e— 0.

The o, are unequal in the general case, but there
is an important category of problems for which

A = K = 03 = Q.
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For example, a, = —2vlk,|* for capillary-gravity
waves on a clean, free surface (McGoldrick, 1965),
but (Pedlosky, 1982, after converting to dimensional
notation) a = (4f/2D%'? is independent of n for
quasi-geostrophic planetary (Rossby) waves in a fluid
layer of thickness D that rotates about the vertical
with the angular velocity 3/ and is subjected to
turbulent friction through an Ekman layer (at the
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bottom) in which the vertical eddy viscosity is Ay,
provided that laminar dissipation and turbulent dis-
sipation outside of the Ekman layer are negligible
and the wavelength is small compared with the
Rossby radius of deformation (|k,> > f*/gD, which
is equivalent to K,? » F in Pedlosky’s dimensionless
notation). I proceed to show that (2) are isomorphic
to the corresponding evolution equations for un-
damped waves if (6) holds.

2. Reduction

I first note that, for the scaling adopted here, an
appropriate measure of the energy in the triad is

E =3 (47 + 4% + 45). )

Multiplying (2) through by 4,,, summing over n, and
invoking (5)-(7), we obtain

E + 2aE =0, 8)

from which it follows that E decays like exp(—2ar).
This suggests the change of variable

Ay =A™, F=a"'1~e), (9a,b)
which reduces (2) to
dA, ..
+ 'YnAn+lAn—l = 05 n= 1’ 2’ 3- (10)

dr

It follows from (10) that the evolution equations

(2), subject to (6), are isomorphic to the corresponding

equations for undamped waves. The latter may be

integrated in terms of elliptic functions (McGoldrick,
1965); accordingly, so also may (2).

3. Arbitrary phases
If (1) is generalized to

‘pn = An(T) cos[w,,t - kn ‘X + ¢n(7)], (1 1)
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where ¢, is, by hypothesis, a slowly varying phase
angle, (2) are generalized to

Ap+ apdy + YyApe Ay cosp =0,  (12a)
n¢n YnAps1An-) sing = 0, (12b)
where
¢=¢,+ ¢+ ¢s. (13)
The simplest solution of (12b) is given by
¢, = constant, sing = 0, (14a,b)

which reduces (12a) to (2), either directly if ¢ = 0
or after changing the sign of any one of the A4, if
¢ =

. I have not proved that the solution (14) is stable
or that (12) does not admit other solutions; however,
independently of the solution for ¢, but subject to
(6), the transformation (9) reduces (12) to
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d’?n . S cos¢ = 0, (15a)
~ d
W Yududy i sing =0, (15b)

thereby generalizing the preceding isomorphism.
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