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ABSTRACT

The scalar flux due to small amplitude waves that exhibit a preferred sense of rotation or polarization is
shown to consist of a component, Fg, that is skewed, being everywhere orthogonal to the mean scalar gradient,
VQ. The skew flux is parameterized by Fs = —D X VQ where D, a vector diffusivity, is a measure of particle
mean angular momentum. The skew flux may affect the evolution of mean scalar since its divergence, V+Fg
= Us* V@, may be nonzero if the velocity Us = —V X D is up or down the mean gradient. For statistically
steady waves, Ug corresponds to the Stokes velocity of particle drift. Integral theorems for new skew transport
and the interpretation of fixed-point measurements are discussed, and the skew flux illustrated through several

examples.

1. Introduction

The determination of the horizontal fluxes of heat,
carbon dioxide, nutrients and other scalar properties
in the ocean is one of the primary problems in physical
oceanography. It is well recognized that there are con-
tributions to these fluxes from both the mean circu-
lation and the time-varying current field, the latter in
the form of “eddy fluxes,” but it does not appear to be
widely recognized in the oceanographic community
that the eddy flux calculated from Eulerian measure-
ments may have a component perpendicular to the
mean scalar gradient. This component is the so-called
“skew flux”, discussed in the context of turbulence and
magnetohydrodynamic theory by Moffatt (1983), and
occurs in wave or eddy fields with a preferred sense of
rotation or polarization. In fact this skew flux is in part
the Eulerian signature of the scalar transport by the
Stokes velocity, which if up or down gradient may affect
the mean scalar concentration (Plumb 1979).

The concept of the skew flux is thus not new, al-
though its appearance in the literature is rather recent.
In the atmospheric context, Wallace (1978), Clark and
Rogers (1978) and Matsuno (1980) have discussed the
skew flux of chemical scalars by stratospheric planetary
waves and the mean Lagrangian transport due to both
the Stokes velocity and wave-induced mean Eulerian
flow. As pointed out by Matsuno (1980), this mean
Lagrangian transport vanishes for statistically steady,
conservative (no sinks or sources) quasi-geostrophic
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waves on a zonal flow so that the mean scalar and
zonal flow fields do not evolve in time. This connection
between mean-field evolution and the Stokes drift
component of the skew flux is a statement of the Char-
ney-Drazin wave mean-flow nonacceleration theorem
(e.g., Pedlosky 1979, pp. 371-378). Plumb (1979) has
also pointed out this connection although with refer-
ence to the more general nonacceleration theorem of
Andrews and Mclntyre (1978).

Skew fluxes may also arise in the presence of tur-
bulence that exhibits a preferred sense of rotation, Mof-
fatt (1983) has presented a general discussion with ref-
erence to helicity and magnetohydrodynamics, al-
though he makes no reference to the atmospheric
literature.

In the oceanographic context, Haidvogel and Rhines
(1983) have discussed the skew flux as a diagnostic for
eddy mean-flow interaction and the transport of po-
tential vorticity. Middleton and Garrett (1986) have
presented a detailed analysis of polarized eddy motions
on the Labrador shelf, although for the statistically ho-
mogeneous velocity fields they considered, the skew
flux was nondivergent and hence unable to affect the
evolution of the mean scalar field. More recently, Loder
and Horne (1988 ) show that an understanding of skew
fluxes is important in the interpretation of fixed moor-
ing measurements in the presence of tidally rectified
currents.

The purpose of this note is then to draw together
some of the disparate formalism and examples in the
literature so as to illustrate the nature and importance
of skew fluxes in the ocean. For simplicity, we shall
restrict our attention to small amplitude waves only
and in section 2 derive a general flux formalism for the
transport of a conservative scalar (no sources or sinks).
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The adoption of these assumptions will permit the sca-
lar flux to be explicitly related to the wave velocity and
mean scalar fields. The analysis here, while in part a
repeat of that given by Plumb (1979), will allow the
skew flux to be developed in the general context of the
total scalar flux that may arise in the presence of both
polarized and unsteady (growing or decaying) waves.
In addition, the vector notation due to Moffatt (1983)
is adopted so as to simplify and extend the formalism,
The nature of the skew flux is then illustrated in section
3 through discussion of several simple cases involving
surface gravity waves, tidal rectification and the effect
of quasi-geostrophic waves on a mean zonal flow.

2. Scalar fluxes due to small amplitude waves

We consider the evolution of a conservative (no
sources or sinks) scalar, §(x, t), in a nondivergent ve-
locity field ti(x, ) so that

g/t +a-Vg=0. 2.1)

The velocity field responsible for scalar evolution is
expanded in terms of a small parameter ¢ such that @
= U + ¢*U; + eu(x, t). Here, U denotes a constant
mean velocity obtained by phase averaging over a pe-
riod of the small amplitude wave field eu(x, ¢), and
U; a correction to U included so as to explicitly allow
for possible wave-induced changes to the mean flow.
The parameter ¢ might typically correspond to the ratio
of wave-induced particle displacement to wavelength.
The scalar field is chosen as § = Q(x, 1) + eq(x, ¢)
+ €2¢'(x, t) where Q the phase-averaged mean is a
function of the slow time scale, 7 = €%, with ¢, being
the (fast) wave time scale. In general, the phase aver-
ages, denoted by an overbar, might be obtained by spa-
tial averaging in the direction of wave propagation.
Where waves are steady, in that amplitudes neither
grow nor decay in time, a simple time average may be
assumed.

With the above, (2.1) may be transformed to the
frame moving with the mean flow U and expanded in
powers of ¢ so that

O(e)dg/dt +u-VQ =0 2.2)
O(e?)dQ/or + V+(ug) + U,-VQ =0 (2.3)

where (2.3) is obtained using the further transforma-
tion 9/t = 8/0t + €28/d7 and by averaging over the
fast scale ¢. Equation (2.3) shows that the mean scalar
may evolve due to advection by the wave-induced
mean velocity and through divergence of the flux

(2.4)

The flux may also affect the growth in scalar variance,
q*, or streakiness, since from (2.2) we have

0(e2)a(% F)/az +F.-VQ=0.

F = ugq.

2.5)
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To determine the nature of the flux, F, we define X
= [ udt to be the wave-induced particle displacement
(correct to order ¢), so that (2.2) may be integrated to
yield ¢ = =X+ VQ and the ith Cartesian component
of (2.4) written as

Fi = —u,X;8Q/9x; (2.6

with implied summation over j. The product u;X;
clearly plays the role of a diffusivity and following
Plumb (1979), we define the symmetric and skew
symmetric tensor components

K; = %(747, + X)) = %a(x,-x,-)/az Q.7

Sy= 1 @% - w%) e8)

with flux contributions
FK,- = —K,,éQ/&x, (2.9)
Fg, = —S;00Q/dx; (2.10)

so that F = Fx + Fg.

The above relations for the total flux F depend on
the assumption that § is a conservative scalar. For ex-
ample, replacing the right hand side of (2.2) by the
source term ds/d¢ results in ¢ = s — X« VQ so that the
total flux now contains an additional term: F = us
+ Fx + Fs. Consideration of nonconservative terms
such as us has been given by Plumb (1979). Here how-
ever, we will focus on the nature of the symmetric and
skew flux components that are most directly related to
the particle displacement field.

From (2.7), the symmetric diffusivity Kj; is clearly
associated with nonsteady waves and gives rise to a
flux component Fx that may be up or down the mean
gradient VQ. The symmetric flux Fx may thus affect
the scalar streakiness through (2.5) and if also diver-
gent, the mean scalar concentration through (2.3). It
should also be noted that the symmetric flux will in
general have a component that is orthogonal to VQ
since the product Fx X VO need not vanish. This skew
component of Fy is in fact related to the anisotropic
nature of the wave field. For example, if the off-diagonal
terms of Kj; are zero, then components such as (F
X VO = [(K33 — K3,)00Q/0x,13Q/ dx 3 will only van-
ish if particle displacements grow equally in all direc-
tions.

a. The skew flux

The flux of most interest here however is the com-
ponent Fg that is associated with the skew diffusivity
which will be shown below to be a measure of the
preferred sense of particle rotation. The skew flux
is everywhere orthogonal to VQ since Fg,dQ/dx;
= —8,;0Q/0x;8Q/ dx; = S;;00Q/dx; 3Q/ dx; must vanish,
and therefore cannot affect the streakiness of the scalar
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field (to order €?), although it may still affect the evo-
lution of Q if divergent.

Wave fields that give rise to the skew flux are char-
acterized by a preferred sense of rotation or polarization
since S; can only be nonzero when the velocity com-
ponent u; is correlated with the orthogonal displace-
ment X;. An example illustrating the origin of the skew
flux is presented in Fig. 1 for the case of a spatially
uniform, anticlockwise rotating wave field. The wave
field is assumed steady, so that K;; = 0, and att =0
we take the velocity field to be directed up the mean
gradient, VQ, with a scalar value of @ at the origin.
One quarter period later, the velocity field has rotated
so as to displace the mean scalar field in the y direction.
The negative u velocities at this time are thus associated
with negative scalar perturbations, — AQ, indicating a
positive flux in the x-direction and perpendicular to
VQ. This flux is reinforced on the remainder of the
wave cycle, since the subsequent rotation leads to pos-
itive perturbations of both v and Q.

To proceed further we adopt the vector notation due
to Moffatt (1983), and note that since Fs- VQ = 0 we
may write :

Fs=-D X VQ,
where after some manipulation we obtain

(2.11)

X Xu, (2.12)

1
2 .
so that D = (.53, Si3, S21) includes all three indepen-
dent components of the diffusivity S;;. In the form
(2.11), the skew flux Fs is clearly orthogonal to VQ
and, from (2.12) is determined by a vector skew dif-
fusivity D that is perpendicular to the plane of polarized

Q) T v
vQ
t=0 bt
Q+aQ — — ———
T O AL
Q-2 —— ———
(b)
t=_m Q,"'AQ —————
26 Q- —— — —
Qe-AQ———O4-— — «—uc<o0 F, = u(-aQ)>0
—
(C) —_—
3 Qta0 ——% — — U0 F-us>o0
t 5w Q— s
)— — — — —
Q=-aQ —— — — —

FIG. 1. The origin of the skew flux for a spatially uniform anti-

clockwise rotating velocity field, with VQ in the y direction. Att=0"

the scalar value at the origin equals its mean value, Q,, so Fy s zero.
One quarter period later, (b) the scalar field is displaced such that
perturbation scalar at the origin is —AQ and Fs = (—u)(—AQ) is
positive. The positive flux is reinforced over the remainder of the
cycle, (c).
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FIG. 2. A vector schematic of the skew flux Fg, its advective, QUs5,
and nondivergent Fy,, constituents and the relation to the skew dif-
fusivity D and mean gradient VQ. For clarity motion is assumed to
be confined to the plane of mean polarized motion, the dashed circle,
so that Uy is perpendicular to D. Note, that in general Us may contain
a component that is up or down the mean gradient VQ, and that Fs
is perpendicular to VQ. Where waves are steady, the total scalar flux
is given by Fs and the nondivergent velocity is equal to the Stokes
velocity Ugr.

motions (see Fig. 2). The diffusivity D is also a measure
of the mean angular velocity of particle motion with
a sense given by the right-hand rule: for the example
shown in Fig. 1, D = (0, 0, u,.X;) is directed out of the
page. Note that D is in fact a pseudovector in that its
product with some vector changes sign under a trans-
formation from a left to right handed coordinate,sys-
tem. For waves with no preferred sense of rotation D
is thus zero.

The formalism may be extended by noting that as
an identity, the skew flux may be written as

Fs=—QV XD + V X (QD)

(2.13)

where the second term, denoted Fyp = V X (QD), is
nondivergent and hence cannot affect the evolution of
Q. The first term is of an advective nature with

Us=-V XD (2.14)
playing the role of a nondivergent velocity and related
to the Stokes velocity of particle drift, Usr, = X+ Vu;
= 8(Sy + K;;)/9x;, through

UST = Us + UK (215)

since (V X D), = —3S);/dx; and where Uk, = 3K;/dx;.
The component U, =4 %X, X; /dx;t, is divergent and
arises only in the presence of nonsteady waves and
where wave_amplitudes, and thus mean square dis-
placements X,.X;, might grow or decay in space. The
nondivergent velocity Ug arises due to the orbital mo-
tion of fluid particles and thus their preferred sampling
of velocity crests (rather than troughs) as they are ad-
vected in the direction of increasing wave phase. This
is of course the conventional explanation for the Stokes
drift.
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With the above definitions, the skew flux may be
written as

Fs = UsQ@ + Fnp,

so that with V. Fg = Ug- V@, the evolution equation
for Qis

8Q/dr + (Us+ Up)-VQ
= Ux-VQ + K;0°Q/dx;9x; (2.16)

where the right hand side results from the divergence
of the symmetric flux. Note, that the symmetric con-
tribution is in part advective and in part diffusive. The
skew flux on the other hand is purely advective since
it can only affect the evolution of Q if there exists a
component of Ug that is up or down the mean gradient,
V Q. The relations between Ky, F, and Ug are sketched
in Fig. 2 where for clarity we have assumed that particle
motions are always confined to the plane of mean po-
larized motion so that Us-D = 0.

For steady, polarized wave fields, the symmetric flux
and diffusivity vanish so that the nondivergent and
Stokes velocities become equal

Usr= -V XD (2.17)

and D = (13X, u1 X3, 4 X;). The total scalar flux is
then equal to the skew component alone

F= USTQ + FND (218)

and Q evolves through the mean Lagrangian advection
of scalar:

4Q/dr + (Usr+ Up)-VQ = 0. (2.19)
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The Stokes component of Lagrangian velocity is a
kinematic quantity obtainable from the specified wave
field. The wave-induced change to the mean flow U,
on the other hand is determined by the dynamics of
the wave field through Reynolds stress divergence (e.g.,
Andrews 1980). While a detailed discussion of wave
induced mean Eulerian flow is beyond the scope of this
paper, several simple examples are given in the next
section.

b. Interpretation of point observations. steady waves

Many regions of the ocean are characterized by
steady waves, tides, or waves which may be regarded
as steady over several wave periods (e.g., internal
waves). A condition for wave steadiness is derived in
the following section for the case of growing surface
gravity waves. However, where waves are steady, con-
servative scalar transport is characterized by the skew
flux alone and F = UsrQ + Fyp. The problem then
arises of how point estimates of scalar transport may
be correctly interpreted since the nondivergent com-
ponent Fyp may be relatively large and estimates of F
in no way indicative of the Stokes flux component
Usr@, the true scalar transport.

To elucidate the differences between point and spa-
tially integrated estimates of F and Us7Q we shall con-
sider the net flux through the cross-shelf vertical plane
depicted in Fig. 3. In addition we assume for simplicity
that both U and U; are zero. In this case, Stokes theo-
rem implies that the net Stokes or Lagrangian flux may
be written as

FI1G. 3. The plane of integration for (2.20) through which the net Stokes and skew
fluxes are evaluated for steady waves. The area A is bounded by a fixed contour C,
the dashed curve and the wave-induced particle displacements are indicated by Z(z)
and Y (1).
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.”A QUST'dA=“; F'dA—fCQD-dr (2.20)

where the contour C bounds the fixed area 4 under
consideration. Evaluation of the contour integral,
which arises from the nondivergent flux, is simplified
since the plane of polarized motions must always be
parallel to rigid boundaries, at such boundaries, so that
Ddr = 0. For the example in Fig. 3, the net Stokes flux
may then be written as

fj; QUsrdA = IL FdA
(a)

L 0
+ [ toD:ldy - [ 10DsLdz
®) (©)

where D; = —uY and D, = uZ are evaluated along the
fixed domain boundary, and which in general will not
vanish. Thus, even in a net sense, the Stokes flux may
not be equal to the net (skew) flux that might be directly
estimated from fixed-point observations. The origin of
this difference lies in the nondivergent terms (b) and
(c) in (2.21). These terms while evaluated along the
fixed domain boundary, in fact arise from the fluid
parcel displacements across the boundary as suggested
by the schematic, Fig. 3.

To show that this is so, (2.21) can be rederived by
time averaging the net instantaneous flux due to all
particles

2.21)

Y pZ
I= f f gidzdy (2.22)
0 V-H(y)

over the time-varying domain shown in Fig. 3, where
Y=L+ Y (t)and Z = eZ(t). Working to O(e?), the

expression (2.22) for the Lagrangian or Stokes scalar

flux may be approximated by

I=c¢ J;L [e f_OH qudz + J;é Qudz}dy
(@ (b)

0 Y
+ef_HL L Qudydz 223
(c)

since the intervals, (L, Y¥) and (0, Z) are of order e.
The integrals (b) and (c) take account of the time
varying extent of the fluid domain and may be fur-
ther approximated by eQuZ, at z = 0, and eQuY at y
= L, since again Z and Y — L are small.

Now since F = gu, term (a) in (2.23) simply rep-
resents the skew flux in (2.21) integrated over the fixed
domain. With the identification, D, = uZ and D;
= —uY, terms (b) and (c¢) in (2.23) are thus also iden-
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tical to their counterparts in (2.21) and arise from the
time-varying extent of the fluid domain. These terms,
and hence Fyp, represent a Stokes correction to the net
skew flux, which is Eulerian in character as it is ob-
tained by first time averaging §# at a point. An analogy
with the Stokes correction to Eulerian mass transport
may be immediately drawn by putting § equal to unity
in (2.20). Since U = 0, the net mean Lagrangian trans-
port is simply given by the Stokes correction:

fL UsrodA=—-LD~dr.

Returning to (2.21) it may now be seen that the net
Stokes component of the skew flux may, in principle,
be determined from fixed-point observations if allow-
ance is made for the nondivergent flux terms (b) and
(c). In principal these terms and the net skew flux could
be estimated directly from fixed-point observations al-
though the required density of such measurements
might be prohibitively large. Measurements elucidating
the kinematics of the wave field responsible for scalar
transport would be of great help in this regard since
the skew diffusivity {X X u and Stokes velocity
X« Vu might then be directly determined.

3. Ilustration of the skew flux

To illustrate the skew flux formalism we consider
the scalar transport that may arise in the presence of
surface gravity, tidal and quasi-geostrophic waves. For
steady surface gravity waves, it will be shown that scalar
transport is due solely to advection by the Stokes drift.
The case of unsteady, evanescent gravity waves is also
examined so as to illustrate the relative importance of
skew and symmetric contributions to scalar transport.
The wave-induced Eulerian mean transport will not
be determined since the example is rather contrived
and the analysis lengthy. However, in the cases of tidal
and quasi-geostrophic wave propagation, stress diver-
gence will be simply shown to lead to an additional
drift of scalar through the induction of Eulerian mean
velocities. For quasi-geostrophic waves, the possibility
of evolution of the mean flow arises since it is assumed
to be in thermal wind balance with the mean scalar
field.

a. Steady surface graviiy waves

We consider first the example of a shallow water,
surface gravity wave propagating in the x-direction. A
flat bottom at depth z = —H is assumed, and the ve-
locity field is prescribed by the real parts of

u = A exp(if) a3.1n
w = —idm(z + H) exp(if) (3.2)

where A is a real constant, § = mx — wtand w? = m?gH.
With the small amplitude assumption the vertical
component of particle displacement is equal to
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Z = Aw™'m(z + H) exp(if)

and zero at the sea floor, z = —H.

The wave field given by (3.1)-(3.3) implies that fluid
parcels rotate in a clockwise sense, in the x-z plane,
since u and Z are positively correlated. The polarized
nature of the wave field is simply represented by the
skew diffusivity (2.12) where here

(3.3)

D = (0, uZ,0) = (O,%Azw“m(z + H), 0) (3.4)

is everywhere normal to the x-z plane of polarization,
and increases in magnitude as distance, z + H, from
the sea floor increases. The Stokes velocity associated
with the wave field is from (2.17) given by

Usr = Usz(1, 0, 0) (3.5)

where Usr = $4%m/w, and is both spatially uniform
and in the direction of wave propagation.

In the presence of a vertically stratified scalar Q = Q,
+ 4(z + H), the wave motion results in fluctuations
in scalar concentration that from (2.2) are equal to

q = —Am(z + H)yw™" exp(ib).
The resultant skew flux
Fs = —Usr{v(z + H), 0, 0] (3.6)

that would be measured at a point, is along isolines of
Q(z) but opposite in direction to the actual (Stokes)
flux

QUsr = Usr{Qo + v(z + H),0,0]  (3.7)

due to the nonzero contribution from the nondivergent
flux

Fap = —Usr[Qo + 2y(z + H), 0,0].  (3.8)

Thus, if the nondivergent flux is not properly accounted
for, Eulerian observations of Fs would yield a com-
pletely misleading picture of scalar transport. We note
that the skew flux (3.6) is nondivergent, so that the
mean scalar field will remain unchanged. Alternatively,
there does not exist a component of Ugy that lies up
or down VQ so that Ugr+VQ = V-Fg = 0. In this
regard note that the Eulerian velocity Uy, is identically
zero since it may be shown that the only divergent
Reynolds stress term dw?/4z is balanced by an O(¢?)
mean vertical pressure gradient.

The net Stokes flux, integrated from z = —H to z
= (), is readily calculated from (3.7) as

0
[, eusrdz = o~/ UH  (39)
and differs from that based solely on the skew flux

0
[, Fsdz=10(-1) - 0(~H/2UseH  (3.10)

due to the net contribution from Fy,. The net non-
divergent contribution, which arises from fluid particle
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displacements across z = 0, may be determined from
the integral theorem (2.20) through evaluation of the
skew diffusivity along the surface z = 0. For the ex-
ample in hand the net nondivergent contribution is
equal to

0
I, Faodz = —00)D:(0) = ~@O)Usrt - .11

which may be verified to be the difference between the
net skew and Stokes fluxes, (3.10) and (3.9) above.
The example also illustrates the analogous origins of
the net nondivergent flux Fyp and Stokes mass trans-
port: setting Q equal to unity in (3.9)-(3.11), the net
Stokes transport (3.9) is recovered as a correction (3.11)
to the mean Eulerian transport (3.10) (here zero), and
thus due also to the time varying extent of the fluid
domain.

b. Unsteady surface gravity waves

A simple model for unsteady gravity waves may be
obtained by allowing frequency and wavenumber in
(3.1)-(3.2) to assume the complex values w = o + iv
and m = k + il, where o/k = v/l = (gH)'/%. In this
case, the evanescent wave field and particle displace-
ments grow in time (and space), leading to the sym-
metric diffusivities:

1 0
K“—'ZA va

K = -;—Azul(z + H)a (3.12)

Ky = -;—szlml 2z + H)’a

where a = exp(2[ vt — Ix])/ |w] % The skew diffusivity
is given by

Sis =3 A%k(z + H)a (3.13)
and reduces to the steady analog (3.4) if v = [ = 0,
while those above, (3.12), vanish. Indeed, for slowly
growing waves where v/o is small, the skew diffu-
sivity is much greater than the symmetric compo-
nents, (3.12).

A more pertinent estimate of the relative importance
of the skew and symmetric fluxes may be obtained
from their contributions to (2.16), the evolution equa-
tion for mean scalar:

4Q/dr + (Us— Ug + U;)-VQ = K;0°Q/dx;9x;.
3.14)

While the wave-induced mean U; may be nonzero for

the unsteady waves considered, we focus rather on

those means which result from flux divergence and ob-
tain from (3.12)-(3.13)

UK= "llzl']s/o'2 (315)
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Wg=Ws (3.16)

where Us = 44%oa and W5 = A%k*(z + H)a. The
vertical velocity components that arise are equal al-
though each has an opposing sign in the evolution
equation and so cannot affect the mean scalar field. In
the x-direction the skew velocity Us will dominate the
velocity Uy due to the growth in particle displacements
provided the wave field grows slowly in time. Note also
that Us is also of order o/» larger than the vertical
components, (3.16).

Finally, we also estimate the ratio of skew advection
Us8Q/dx, to the three symmetric diffusion terms in
the right hand side of (3.14). Assuming Q to vary hor-
izontally and vertically with the scales L and H, the
ratios of skew advection to the diffusive terms involving
Ki,, Ki3 and K33 are of order, kLa/v, ¢%/v? and o/
(vkL). Typically we might expect the horizontal scalar
scale L to greatly exceed the wavelength so that kL is
large and only the vertical diffusive term may be im-
portant for slowly growing waves. Where o/(vkL) is of
order one however, both vertical diffusion and skew
advection will be of equal importance in determining
the local evolution of Q.

c. Topographic rectification of tidal currents

The third example we consider provides a model for
the flux of heat due to steady polarized tidal currents
on the side of a submarine bank. Specifically, we con-
sider barotropic tidal motion on the side of a long bank
(Fig. 4) under the assumptions of a rigid-lid sea surface,
uniformity in the along-isobath (x-) direction, weak
friction (parameterized by a linear bottom stress law
with a constant coefficient A), and weak nonlinearity
(tidal excursions < topographic length scale). With the
horizontal tidal current at a deep-water position y
= L specified to be (u, v) = (0, A, coswt) where sub-

Mz= -H

FIG. 4. Schematic for the example of tidal rectification on the edge

of a long bank that is uniform in the along-isobath (x-)direction.

" The along-isobath Stokes and wave-induced mean Eulerian velocities

are indicated. (Note: the directions of the skew diffusivity are in error
by 180°.)
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script L indicates evaluation at that position, the tidal
velocity at other cross-isobath ()-) positions is (see
Huthnance 1973 or Loder 1980)

u(y,t) = f:—A(l — H/H_) cos(wt + 8)

v(y, t) = A coswt
w(y, z,t) = AzH 'H, coswt

where A(y) = A; H; { H, the water depth H is a function
of y only, and 6 = tan™'(—wH/)). It can again be
easily shown that the skew diffusivity vector is

D = D,[0,—zH,/H, 1] (3.17)

where
Dy(y) = — 3 fw4%(1 — H/H,),
and the Stokes velocity is
Usr'= 3 foA°H'H,[~1,0,0].  (3.18)

Note in the final determination of (3.17) and (3.18),
and (3.19) below, the limit of weak friction wH /A > 1
or § = —90 deg is taken. In this limit, the plane of wave
rotation, normal to the diffusivity (3.17), varies with
both the cross-isobath and vertical position (Fig. 4)
and the Stokes velocity (3.18) is directed along isobaths.

In the present example there is also a nonzero mean
Eulerian velocity U; associated with the tidal current
interaction (Huthnance 1973; Loder 1980). Under the
assumption of negligible cross-isobath mean Eulerian
current, the O(e?) mean momentum equation in the
x-direction reduces to a balance between stress diver-
gence and bottom friction

(Hvu), = — AU,
and results in the mean velocity
U; = |Usr|(2 = H/H)I1, 0, 0].

Thus, over the side of the bank, the tidal velocity is
rectified resulting in an along-isobath mean Eulerian
current directed with shallow water to the right, and
an oppositely-directed Stokes velocity, Fig. 4, so that
the mean Lagrangian current, (Usy + U,), is signifi-
cantly less than the Eulerian.

For a background scalar gradient VQ = (a, 8, v),
the skew flux in this example is '

Fs= —D,[—(8 + vzH,/H), a, azH,/H)

with nonzero components in all three directions and
a significant contribution from Fyp, since the only
nonzero component of the Stokes flux QU is in the
x-direction. The skew flux may also affect the slow
evolution of Q since it is divergent in the y-z plane.
This divergence is simply an Eulerian signature of the
Stokes flux in the x-direction, since from V-Fs
= Usr- VQ it follows that

(3.19)
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aUsr = &(vq)/dy + 8(Wgq)/9z. (3.20)

The Stokes flux divergence (3.20) together with the
mean Eulerian contribution aU; determine the evo-
lution of Q through (2.19).

To illustrate the significance of this example we
choose a topographic profile, H = H, exp(by?) with
Hy=50m,L=20km, H, =200 m, 4, =0.2ms™’,
f=10"*s""and w = 1.4 X 107* 57! 50 as to crudely
model the semidiurnal tide on the northern side of
Georges Bank (Loder 1980). With these parameters,
the mean Lagrangian current, Ugsy + Uy, takes the form
of an along-isobath jet, with a maximum speed of 0.04
m s~ at y = 8 km (where Usr = —0.06 m s ™).

Taking the scalar to be temperature, with a mean
gradient of (2 X 1073, =3 X 1074, 0.15)°C m ™! and
representative of the northern side of Georges Bank,
the skew temperature flux at mid-depth in the jet max-
imum is (0.4, 0.01, 3 X 107°)°C m s~'. As discussed
by Loder and Horne (1988), the along-isobath com-
ponent of this flux is in reasonable agreement with that
observed at the semidiurnal period in a cross-spectral
analysis of current meter velocity and temperature data.
Indeed, the flux at this period was found to dominate
contributions from other frequency bands.

The cross-isobath skew fluxes predicted here for
barotropic tidal rectification are smaller than those ob-
served on Georges Bank. Loder and Horne (1988 ) show
however, that the inclusion of the influences of strat-
ification and internal friction on the tidal current in-
teraction results in predicted skew fluxes that are of
comparable magnitude to those observed. The pre-
dicted fluxes are the Eulerian signature of cross-bank
transport by Stokes velocities, suggesting that nonlinear
tidal current interactions play a major role in the cross-
bank exchange of nutrients and other scalars on
Georges Bank.

d. Quasi-geostrophic waves

Here we consider the effect of quasi-geostrophic
waves on a zonal mean flow, U = (U(z), 0, 0) that is
in thermal wind balance with the mean scalar (density)
field, Q = Q(y, z). Wave-induced vertical particle dis-
placements are assumed small compared with the shear
scale U/ U, so that, locally, U is effectively constant
and the formalism of section 2 again applies. In ad-
dition, the quasi-geostrophic waves are assumed to be

steady and to propagate in the zonal (x-) direction so -

that fluxes of density are of the skewed form Fgand D
is independent of x. .

As shown in section 2, the mean field Q and, through
thermal wind balance, U may only evolve if there exists
a component of the Stokes velocity directed up or down

the mean gradient, VQ. Here Q = Q(y, z) so that the
relevant components of Ugr are

VST = —6D,/¢9Z, WST = 3D1/<9,V (3'21)

where, from (2.11), we note that D, = 5G(8Q/dz)!
= —~wg(dQ/dy) ! since dQ/dx = 0. Quasi-geostrophic
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waves may also induce changes in the mean Eulerian
flow through the generation of divergent fluxes of mo-
mentum and density. For the steady, conservative
waves considered, Charney and Drazin (1961) have
shown that these wave-induced mean velocities are
given by

Vy=98x/8z, W;=~08x/dy (3.22)

where X = 9g(8Q/3z) " (see Pedlosky 1979, for a sim-
ple account.) However, since D, = X, the wave-induced
Eulerian mean and Stokes velocities cancel exactly so
that by (2.19), 8Q/dr = 0 and the mean scalar (and
velocity) field is unaffected by the wave motion. The
result is in essence the Charney-Drazin wave mean-
flow nonacceleration theorem although their derivation
showed that the induced mean velocities (3.22) were
cancelled by the divergence of the fluxes of momentum
and density in the equations of motion. That the Char-
ney-Drazin theorem represents a cancellation of wave-
induced mean and Stokes velocities is not new and was
given in the generalized Lagrangian mean theory de-
rived by Andrews and Mclntyre (1978). These authors
extended the theorem to cover finite amplitude wave
motions in a stratified, Boussinesq fluid. In addition,
Plumb (1979) and Matsuno (1980) have noted the
connection with the skew diffusivity, the latter in the
context of planetary wave propagation in the strato-
sphere.

What is established here, and by the above authors,
is that the skew diffusivity and the associated Stokes
velocities are of direct importance in understanding
wave-mean flow interactions. When waves are no
longer steady, or sources/sinks of momentum or den-
sity exist, the Stokes and wave-induced mean Eulerian
velocities may not cancel, so that the mean scalar field
may evolve in time.

4. Summary and discussion

Our purpose was to provide an introduction to the
concept of skew diffusion, and to illustrate its impor-
tance to scalar transport in the ocean. Drawing upon
the analysis of Plumb (1979) and Moffatt (1983), the
scalar flux ug, due to small amplitude waves, was
shown to decouple into a symmetric flux Fg, with a
component in the direction of the mean gradient VQ,
and a skew component Fg, perpendicular to VQ. The
symmetric flux is of the form Fy, = —K;0Q/dx; and
for a conservative scalar, arises only in the presence of
nonsteady (growing or decaying) waves.

In contrast, the skew flux Fg, was shown to result
from a preferred sense of rotation of the wave field,
and to be parameterized in terms of the mean scalar
concentration, @, and a vector skew diffusivity D,
through Fg = ~D X VQ: the skew diffusivity is a mea-
sure of mean angular velocity through D = 1X X u,
and perpendicular to the plane of polarized motions.
A second representation for the skew flux was given
by Fs = UsQ + Fyp, where Ug and Fyp are nondiver-
gent velocities and fluxes. This form emphasizes thé
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advective nature of the skew flux since its divergence
is simply, V- Fs = Us- VQ.

Indeed, to second order in wave amplitude, the evo-
lution of Q over a slow time scale  was shown to be
given by

8Q/or + (Us + U))-VQ
= Ux- VO + K;0°Q/0x:9%; (2.16)

where the right hand side results from the divergence
of Fx and Uy, = 9K;;/3x;. The velocity U; denotes a
second order wave-induced correction to the mean
Eulerian flow that will in general arise from Reynolds
stress divergence. No kinematic formalism for U, may
be given however since it must be determined from
the equations of motion in hand.

For steady waves the symmetric flux and right hand
side of (2.16) vanish and the total scalar flux ug is
given by Fs. The nondivergent velocity Uy in this case
is equal to the Stokes velocity of particle drift illus-
trating the scalar transport to be real and of a Lagran-
gian nature. Point or integral estimates of Fg obtained
from fixed mooring data may not however be indicative
of the true Stokes transport. The nondivergent com-
ponent Fyp at a point or integrated over a plane will
in general be nonzero and in fact represents a Stokes
correction to the net skew flux by allowing for the time
varying extent of the fluid domain. Estimates of the
nondivergent, Stokes and skew fluxes might be ob-
tained however from a knowledge of the wave-field
kinematics since these determine the skew diffusivity,

=1%¥xa
D 2X><u.

The analogous origins of the Stokes velocity and
nondivergent flux were illustrated in the example of
steady surface gravity wave propagation in the presence
of a vertically stratified scalar. The skew flux here was
also shown to be determined by horizontally directed
Stokes and nondivergent fluxes, so that Q is unaffected,
that are of similar magnitude but opposite sign, a result
illustrating the misleading nature of isolated measure-
ments of scalar flux. The relative importance of skew
and symmetric diffusion was also determined for the
case of unsteady, evanescent gravity waves and the ar-
bitrary mean scalar field, @(x, 7). For waves with a
growth rate v that is small compared with wave fre-
quency o, the horizontal component of skew advection
was shown to dominate the advective symmetric com-
ponents in (2.16). In addition, skew advection will be
as important as pure symmetric diffusion provided that
a/v is of order kL, where k denotes wavelength and L
the horizontal scale of mean scalar variability.

Further iilustration of the skew formalism was pro-
vided by the examples of steady tidal and quasi-geo-
strophic wave propagation where the transport, of scalar
is due both to Stokes and wave-induced mean Eulerian
velocities. In the barotropic tidal model for Georges
Bank, a simple balance between bottom friction and
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stress divergence results in a second order along-isobath
mean Eulerian velocity. With the Stokes velocity, the
resultant Lagrangian current takes the form of an along-
isobath jet that is up-gradient so that the mean scalar
may indeed evolve. However, while the predicted
along-isobath skew flux of heat is in agreement with
observations, a more elaborate model is required to
represent the cross-isobath skew and Stokes fluxes
(Loder and Horne 1988).

In the case of steady quasi-geostrophic waves, the
Stokes and wave-induced mean velocities were shown
to cancel exactly so that the skew flux of heat in this
case cannot affect the mean density field and through
thermal wind, the mean flow. This result is otherwise
known as the Charney-Drazin wave mean-flow non-
acceleration theorem. These examples are by no means
exhaustive. Indeed, simple calculations suggest that the
skew flux may be important in regions of internal Kel-
vin wave or short shelf wave activity, where Stokes
velocities may be comparable to advection by other
processes.
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