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Abstract

This paper is devoted to the construction of a class of stable, accurate and com-
pact schemes for the solution of unsteady compressible flows equations on triangular
unstructured meshes. We consider schemes of the Residual Distribution class. We
first present a systematic way of constructing second order linear schemes for un-
steady scalar advective problems. Then we consider the construction of non-linear
monotone second order schemes. The approach is then extended to the system of
the Euler equations. The approach is validated through well known scalar and Euler
unsteady problems.

The schemes presented in the first part of the paper are monotone under a
time-step restriction. In the last part of the paper we propose two approaches to
overcome this limitation. Accuracy and robustness of the technique are proved on
both scalar and Euler unsteady test-cases.
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1 Introduction

This paper is devoted to the construction of a class of stable, accurate and compact
schemes for the solution of unsteady compressible flows equations on triangular unstruc-
tured meshes.

In the past decades, many numerical methods have been applied to the simulation
of unsteady compressible flows with discontinuities. In most cases, these methods are
extensions of the so—called high order upwind schemes (see [1, 2] for a review), even
on unstructured meshes [3]. There are at least two important exceptions to this, the
finite element type schemes obtained with the stream-line diffusion method [4, 5] and the
Discontinuous Galerkin schemes [6].

On unstructured meshes, the performances of the schemes constructed following the
upwind high order philosophy are most of the times quite disappointing because of exces-
sive numerical diffusion. To overcome this problem, one has resort to the ENO/WENO
philosophy [7, 8]. Examples of such attempts are [9, 10, 8]. In these examples the price
paid for the reduced numerical diffusion is very high : the coding is rather complex and
moreover these schemes do not have a compact stencil, so their parallel implementation
can be quite difficult. Besides, the analysis of the accuracy of the solution is rather unclear
or at the least difficult to carry out.

In order to tackle these two problems — compactness of the stencil, effective analysis
of the accuracy of the solution—, at least two classes of methods have emerged in the
recent years: the Discontinuous Galerkin schemes (DG) and the Residual Distribution
schemes (RD) or Fluctuation Splitting schemes. Though different in spirit, they have
a common core at least in their “unstabilised” versions: the residual property. This
property, discussed below in the framework of RD schemes, allows us to show the formal
accuracy of the scheme on a very general mesh. The DG schemes use a discontinuous
polynomial representation of the unknowns which is a generalization of what is done
in finite volume schemes. The solution is updated via the evaluation of fluxes and the
stabilization mechanism is obtained by very similar techniques to those in classical finite
volumes. The net effect of this is to formally lose the residual property.

On the contrary, the RD schemes use a point-wise representation of the solution, as in
finite difference schemes. The unknowns are updated by evaluation of the amount of the
residual sent to the vertices and the stabilization mechanism can be similar to artificial
viscosity, as in the SUPG finite element method [11] or the stream-line diffusion method
[4], or inspired by the nonlinear techniques of the so—called high resolution schemes [12, 2].
One can also take into account the genuinely multidimensional nature of the problem [13].

In this paper, we consider schemes of the RD class, borrowing ideas from the upwind
high order philosophy, as well as ideas coming from the stream-line diffusion one. Our
goal is to propose a systematic construction of robust and high order schemes, on general
meshes. This problem has received a lot of interest recently : one may quote the pioneering
work of Roe, Sidilkover, Deconinck and their coworkers [14, 15, 13] and also more recently
in [16, 17, 18], but only for steady problems. Here we consider unsteady problems. The
present paper contains to a large extent the material published by Abgrall and Mezine
in the early draft that has been presented in the second AMIF conference, October 2000
[19]. However, here we will report a more general and detailed analysis of the approach
and more recent results as well. Independently, other schemes for unsteady systems have
also been recently constructed by different authors [20, 21, 22, 23] but these schemes are
either a priory computationally more demanding or they are not monotonicity preserving
in general.



The paper is organized as follows. First, we recall some basic facts about upwind
residual distribution schemes. Then we show how to construct, for scalar problems, a
class of upwind, monotonicity preserving and second order schemes. Several numerical
examples are considered to show the effectiveness of the approach. Then we extend this
method, following the ideas of [24], first to symmetrizable systems, then to the Euler
equations. The main drawback of this class of schemes is that monotonicity (but not
stability) is guaranteed under a time-step constraint, similar to the CFL condition. To
overcome this limitation, first, following an idea of Csik et al. [23]|, we construct an
unconditionally stable, monotonicity preserving and second order accurate scheme for
unsteady flow problems which works on three time levels. We then present an alternative
solution borrowing from the recent work of Abgrall and Roe on very high order schemes
[25] the idea of the use of an inconsistent low order scheme in the construction of a non-
linear positive high order one. Throughout the paper we show several numerical examples
to illustrate our technique. Some conclusions and remarks for future developments end
the paper.

2 Petrov-Galerkin formulation of Residual Distribu-
tion approach

We will consider for the moment the solution of the following scalar problem:

Y-Vu:<Y,Vu>:0inQ (1)

%
with A constant. On a given triangulation 75, of (2, the Residual Distribution schemes
can be viewed as a class of Petrov-Galerkin finite element schemes. In order to show it
we start by writing the RD discrete version of equation (1) for a generic node M; € 73:

dooaof= ) ple” =o.

T,M;eT T,M;eT
In last equation we have denoted with 37 = ®7/®T the distribution coefficients and with

®T the residual defined by
o7 :/<Y,Vuh> dx

T

Denoting by N; the linear finite elements shape function and with w; the Petrov-Galerkin
weighting function associated to node i defined by:

w; =N;+al onT

with o constant, one can choose o] such that the spatial discretization of the Petrov-
Galerkin formulation is the same as the Residual Distribution approach. Starting from
the finite element spatial discretization of (1)

Z /wi <X>, Vuh> dr = 0. (2)

TET T

%
Since < A, Vuh> is constant on T and equal to ®”/|T| one obtains
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Z /widx%:(). (3)

T,M;€T ',

Using the definition of w; in the second integral in equation (3) leads to

> (% +al)eT = 0. (4)

T,M;€T

Setting of = ®I'/®T — 1/3 = gI' — 1/3, the spatial discretization of the Petrov-Galerkin
formulation is the same as that of the Residual Distribution approach.

We remark that this is not the unique way of formulating Residual Distribution
schemes as Petrov-Galerkin schemes. An alternative way of doing it is to test equa-
tion (1) with a function belonging to the space of piecewise constant polynomials, namely
we could choose

Z XT&;TF, xr =1 ifx €T xr =0 otherwise
T, M; €T
Proceeding as before we obtain the finite element discretization
S [ (Xt do = Py / (X vty de= Y aTet =0 (5)
TET, I T, M; €T

T

The Residual Distribution discretization is obtained with the obvious choice & = 37

We now turn our attention to the unsteady counterpart of (1), namely

ou

= <>\ Vu>:0inQ><(0,T). (6)

A consistent Residual Distribution discretization is readily obtained through the Petrov-
Galerkin approach. If, for example, we choose to use the test function w; = N; + o, we

obtain: B
Z / wii dr + Z / wi(Y, vuy de = 0. (7)
r Ot T
TET TETy

Straightforward algebra leads to the final expression

DD DTN ST (®)

Ter, M;eT T,M;€T

where (m’

ij) is the consistent mass matrix defined by m f w;N; da:

pr+1/6 pr—1/12 pr—1/12
oy = BL) g a2 g age g1 | )

T —1/12 g —1/12 Br+1/6



If instead of w; we use the piecewise constant test function w;, we end up with the

expression ;
SO e Y9 (10)

Ter, M;eT T,M;€T

where (1n;) is defined by m,; fw N d:

5T AT B
T
oy =0 g ar ar | (1)
5 A

Remark 2.1. The first order N-scheme [26] cannot be obtained from a Petrov-Galerkin
approach since ®F /®T are unbounded for vanishing cell residuals.

Remark 2.2. Starting from (8) (or equivalently (10)) we can derive a certain number
of schemes, extensions of standard Residual Distribution schemes that have the property
®T /T bounded (see [20]).

For steady computations an accurate discretization of the time derivative is not re-
quired, so normally one reaches the steady solution through a pseudo-time formulation
obtained by lumping the mass matrix, i.e. by lumping the elements of each column to
the diagonal. This leads to the following inconsistent formulation

du;
1S+ S el =o. (12)

An explicit Euler scheme for the time derivative leads to

A
u"tt = t Z o (13)

)
TMET

For steady computations (12) is a good alternative in place of (8) or (10) which require
the solution of a system of non linear algebraic equations. With this approximation only
first order accuracy can be achieved for unsteady problems even if we use second or third
accurate schemes for time derivative. So a consistent formulation is needed to reach high
order accuracy. One of the aims of this paper is to show how to construct consistent mass
matrices without losing stability properties of the schemes for steady state.

The development of monotone high accurate schemes using (8) has been considered by
Ferrante [20] with a flux corrected transport formulation. He has shown that positivity
is lost with this formulation (the mass matrix is not guaranteed to be a L-matrix), and
to recover monotonicity he used the Flux Corrected Transport to damp the spurious
oscillations. This approach works reasonably well, but it is not a natural extension of
(13). We lose properties of the Residual Distribution methods like

(i) upwinding;



(ii) linearity preservation;

(iii) compactness of the stencil (due to the FCT limiting).

The aim of this paper is to show how one can recover properties (i), (ii) and (iii).

3 Residual Distribution Schemes for unsteady scalar
advection equations

We have shown, in the previous section, that the Residual Distribution scheme (13) is
not suitable for computing unsteady problems due to the inconsistent treatment of the
mass matrix. Schemes with a consistent mass matrix have been considered by Ferrante,
Hubbard, Caraeni, Csik et al., [20, 21, 22, 23], etc. Here we present and illustrate another
solution for reaching high order accuracy for unsteady scalar advection, and in the final
section, we extend it to the compressible Euler equations.

3.1 Principles

Let us consider equation (6) with constant advection speed. The idea is to see in (6) a
steady problem in R x R, x R, where § is an iteration parameter. We first need to define
the cell residual. For steady problems the ga}ll residual over a triangle 7" is defined as the
integral over this element of the operator ( A, V) with the piecewise linear approximation
of w on T. Here we solve the unsteady problem like a steady problem, so we define
the cell residual as the integral of the differential operator 9; + ( A, V) with a space-time
approximation of u on the prismatic element T X [t,,, t,1] (see figure 1). We want to define
a space-time approximation of u which allow us to get second order of accuracy. In [17]
is shown that a necessary condition for second order of accuracy if that ®T = O(A#, h3).
The most natural choice is

t—1
At

“u () + fnt1 — tu”(x) (14)

U,h(flf,t) = At

where u™ and u™*! are respectively the piecewise linear approximation of v at time ¢,, and
tns1. Hence we define the residual ®7 by

lnt1
" = / /8—“h + (A, Vuty dadt (15)
ot ’ '
tn T
After calculations, we get
T |T| n+1 n At n+1 n
d =3 Z(Uz _Uz)+72kz(uz +ug'), (16)
M;eT M;eT

with k; = ?-WZ-/Q, being 7 ; the vector normal to the edge of T facing node i, scaled by its
length. The residual (15)-(16) is the fluctuation computed over the prism K = T'X[t,,, t,41]
(see Figure 1). Our approach is a space-time interpretation of the classical Residual
Distribution methods with the linear space-time approximation of the solution (14).



K T tn+1

Figure 1: The prism K defined by the triangle T’

We need to distribute the fluctuation (16) to the vertices of the prism K. We denote
by ®;, and ®;,; the residuals sent to the nodes (M;,t,) and (M;,t,41). Upwinding in
time, i.e. a causality principle, leads us to distribute the time—space residual only to the
nodes located at time ¢,, so one has ®;, = 0.

The Residual Distribution scheme reads
VMl € Th, Z (I)i,n+1 = 0, (17)
T,M;cT

where ®;,,4, is the residual sent to node M; at time ¢,4;. From now on we replace
®; 1 by @, since there is no possible confusion. The residuals are assumed to fulfill the

conservation relation
> o =0 (18)
M;eT
where ®7 is given by (16).
Design principles

(i) The upwinding property No fraction of the element residual is sent to nodes for
time t = t,,. Equation (17) means that all the residual of K is sent to time ¢, 1.

(ii) The Linear Preserving condition (LP) The (LP) property consists in requiring
that if the solution is smooth then
o, = O(h*, At?).

In [17] is shown that this is equivalent to ask that 3; = ®;/®T is bounded if ®7T is
computed with enough accuracy. In particular, second order of accuracy is obtained
if @7 = O(h3, At?).

(iii) No spurious oscillations in the solution

3.2 Extension of classical schemes

In this section we present a space-time N scheme and LDA scheme that reduce to the
standard N and LDA scheme for steady state applications (see [17, 27] for the definition of
the schemes). These space-time schemes will allow us to construct non-linear space-time
blended and limited schemes.



3.2.1 The LDA scheme

This scheme directly follows from the consistent formulations (8) and (10) with Crank-
Nicholson discretization for the time derivative, using the standard LDA-scheme. Consider
first expression (8) with the standard LDA-scheme,

Z meddlz]_i_ Z BLDA(I)T ) 0

T,M;€T M;eT T,M;eT

where u" = 3" u;(t)N;, BEPA = —kF N and N is defined by

J
N = Z k5.
If we consider a Crank-Nicholson discretization of time derivative we get

Z Z mg;-(u?“ —uj) + % Z (—ki N) (@7 (u"t!) + " (u™)) =0

T,M;eT M;eT T,M;eT
At (19)
> S st -+ g 3 ke (Saegen) o
T,M;€T M;eT T,M;eT
After lengthy calculations, expression (19) can be written as
> aig
T,M;€T
with ®FP4 defined by
T 1
(I)iLDA | |( k,+N_|_ )( n+1 ’LL?)—F
3 6 (20)
|T| + 1 n+1 n At + n+1
S(kN—E)Z(uj —ul) - kNZk +ul)
Mj;ﬁMi M eT

We can rewrite the LDA-scheme as AU™' = BU™. The matrices A and B have no
apparent properties.

Remark 3.1. We recover the LDA scheme of Ferrante [20].
Consider now the formulation (10) with the standard LDA scheme:
du;
- AU + T
>, D migrt D RN W) =0
T,M;€T M;ET T,M; €T
After applying a Crank-Nicholson discretization of time derivative we obtain
n+1 n At + n+1
S ajoptoa eSS e (Shiten) o e
T,M;€T M;eT T,M;€T

Also last expression can be recast as

> ati=o,

T,M;€T



with

T At
QPN =—KIN Y Lk uf =)+ (RN (Z kj(ug+1+uy)> = BT (22)
J

M;eT

As before we can write the LDA-scheme as AU"! = BU". The matrices A and B
have no apparent properties.

Remark 3.2. We recover the LDA scheme of Caraeni combined with Crank-Nicholson
time-integration [22].

3.2.2 The N scheme

We set
At At

T ~
@) = Do gy + Sl -y + Sl
where 4" and 4" are computed to have the conservation relation (18). One gets easily

P =N Y N Y

MjGT M eT

(uj —u").

The residual for node 7 becomes

@N:m

n n At n n - n n
Nt )+ 5 Y [RENE (=) BENE (] = )] (23)

MjET

The schemes reads, for all M; € 7,

> ?(ui+1—ui)+7 > BT NE; (upt™ = w4 kS NE (uf —u)] | =0, (24)

T,M;eT M;eT

Remark 3.3.
1. For steady computations, we recover the standard N-scheme.

2. One of the reasons for splitting space and time like equation (23) is that the conser-
vation relation is met and positivity can be shown (see below). Another constraint
comes from the fact the scheme (24) is implicit in time : the linear system has to
be solvable. This last point was a motivation for the present splitting.

The scheme (24) is an implicit scheme, which can be written as A U™ = BU™ where
U™ and U™ are respectively the vectors of unknowns at time ¢,,; and ¢,. The entries
of the matrices A and B are given by

s A
= Y BBy a- > Bens @
T,M;eT T:(Mi7Mj)eT
7| At At L
- Y (0 - Y A 20)
T,M;€T T,(M;,M;)eT

We have the following lemma :

10



Lemma 3.4. The matriz A is non singular and is a L-matriz i.e. A;; > 0 Vi and A;; <0
for j #1i.
Proof. One has A;; > 0, and A;; <0 since N <0 — k:“Nk; > 0, hence A is a L-matrix.

To prove that A is non-singular we show that A is a diagonally strictly dominant

matrix i.e.
J#1
We have
|T| At _
A= Y gl = 2 A S - > > Shewy
Mj#Mi T,M;eT M; #*#M; T(M“M )ET
T At
- > <'3' - > Y SN
T,M;ET T,M;E€T M;#M;
T At
= > (F+ —k+) > Sk
T,M;E€T T,M;€T
- > 5
T,M;ET 3
This shows that A is diagonally strictly dominant. This achieves the proof. O

We remark that B;; > 0 for j # ¢, and under the condition At < IT\ one has B;; > 0.
The monotonicity property of the scheme is described in the followmg

Proposition 3.5. The extension of the N-scheme defined by (24) is monotone under the
CFL like condition

min —-. (27)

Remark 3.6.

1. This result states that the scheme is monotonicity preserving, at least under a CFL
like condition. This is a statement of stability in the L*° norm. This is not a
statement on the L? stability, in other words, we are not saying that this implicit
scheme is only stable under the condition (27). To anticipate a bit the results of this
paper, we show in appendiz A in a more complex case for which the scalar one is a
very particular example, that this scheme is unconditionally stable in L2.

2. The condition (27) seems to be a severe limit on the allowed time step but com-
putations with CFL great than one have shown that monotonicity is preserved. A
close look at the proof indicates that this condition is certainly not optimal. In sec-
tion (5), we show two different approaches allowing to avoid or improve this severe
constraint.

Proof. The scheme can be written as AU"™ = BU" with A a non singular L-matrix,
and B a matrix with positive elements. It is shown in [28] that if A is a regular L-matrix
the following assertions are equivalent

11



(i) A~!is positive,

(i) there exists a diagonal positive matrix D such that D 'AD is diagonally strictly
dominant.

We apply this results with D = Id so it implies that A~! is positive. B has positive
elements, thus the matrix A~'B is positive.

e Step 1 : Suppose there exists a € R such that u] > a for all M; € 7,. One wants
to show u*! > a for all M; € 7,.

One has
|T| n+1 n At + —( n+l n+1 n n
M;eT Mj#Mi
hence
[Euwrl + &8 Sk NE; (ultt - unﬂ)] =
Veer 3 Y 2 MM, i j A\t ]
(Bur-2 5 wVE -] =
s (B -y v ) 2
M;eT Mj#Mi
T _ T
[(?'—%k;“)a—i—% 3 ijkja] >y Mg
MeT M #M; M;eT

because the matrix B is positive. The inequalities (28) imply that

2
M;eT J#1

7, . At m n
> [?(ui“ —a)+ 5 Yk Nkj (™ —a) = (wf™ —a)) | >0,
which can be rewritten as

A" —a) > 0.

The matrix A~! is positive so one has u"*! —a > 0, ie ul*' > a for all M; € 7.

e Step 2 : Suppose that there exists a € R such that u] < a for all M; € 7,. One
wants to show u?“ < a for all M; € 1,. We do the same thing as before. This achieves
the proof. O
3.2.3 The PSI scheme

The extension of the PSI scheme is obtained in a straightforward way following the ap-
proach of [17]. The scheme is a result of a combination of the first order monotone
N-scheme (24) and the second order non-monotone LDA-scheme (20)

o =10)Y + (1 - )P4 (29)

where [ = max(¢(r1), p(r2), p(r3)) with

pLA L itz <0

12



We have experimentally noticed that the blending parameter, proposed for steady
state by Deconinck and van der Weide, defined by

]
> [2]]

MjET

(30)

works very well, even though it does not satisfy the positivity requirements (we have
found numerical counter-examples).

Being the PSI scheme non-linear, we need to solve a system of non linear equations even
in the case of the scalar linear problem (6). This is done by Newton’s method. One can
write the PSI scheme as F(U"!) = 0,
F: R - R"
U (E(U))iZI,...,ns

where F;(U) = Y. &5 and ns is th number of nodes in 7,. The kth step of Newton’s
T, M;eT
method is

Uttt = Uk — J(UMF(U"),
where J(U*) = OF/0U evaluated at point U*.
3.2.4 The N-Modified scheme
The N-Modified scheme is described in [24]. We set
oM =0 + ;=g Mer, (31)

W, is computed to get second order accuracy and positivity ezactly or, in other words, ¥;
is computed such that B¥™ is always bounded. In [24] several ways of defining N™ (or
equivalently ;) are discussed. One of the most effective ways of doing it is the following:

v (BY)” 4
) h

with BN = ®Y /®”. Definition (32) combined with (31) leads to

¢ZNM:a<I>lN , =

éN >0 (33)

which implies the positivity of the scheme. Moreover 3" is bounded, which implies that
the modified scheme is linearity preserving.

Remark 3.7. The space-time N modified scheme can be written using the Petrov-Galerkin
formulation (10).

As in the case of the PSI scheme, the N modified scheme is non-linear, the non-linearity
being in the definition of V. Hence it leads always to a non-linear system of equations.
The non linear equations are solved using a Newton algorithm.

13



3.3 Numerical Results
3.3.1 The rotating cosine hill

The rotating cosine hill is a classical test-case for numerical schemes of the two-dimensional
linear unsteady advection equation. The test consists in the transport of a cosine shape
by a circular advection field centered at the origin

ou N
ot
where A = (y,—2)T. The initial solution is (1 + cos(4m\/(z +0.5)2 +¢2))/2 if r =

<Y,vu> —0 in[-1,1]x[-1,1], (34)

1
V/(z+0.5)2+9y2 < = and 0 elsewhere . The computation was made on an unstruc-

tured grid of 8079 nodes and 15836 elements. The time step was taken to satisfy the
condition (27) :

At = 2 CFL rninE (35)

3 ik

with CFL = 0.9. The solution is set to zero at the inflow boundaries at each time step.
The results, using the schemes described in the previous section and the MUSCL scheme
(with minmod limiter and Runge-Kutta integration in time) after one revolution are
compared in Figure 2. We provide the cross—section at y = 0 on Figure 3. The results
obtained with scheme (22) (referred as LDA1 scheme in table 1) are given in figure 4. In
the PSI and blended schemes we used (20).

On the figures we see that the N-scheme is clearly the most diffusive (see also Table 1),
stream-wise and crosswise diffusion being considerable. The LDA schemes keep the height
of the peak much better but the monotonicity is not preserved. The PSI and N-modified
schemes give similar results but the N-modified scheme is the less diffusive with a peak
value of 0.802. These results are much better than those obtained by the MUSCL scheme.

Scheme min max
N 0 0.217
MUSCL 0 0.313
LDA -0.03 0.983
LDA1 -0.08 1.03
PSI 0 0.756

N-modified 0 0.802

Table 1: Min and Max solution values for the rotating cosine hill test case.

3.3.2 The rotating cylinder

This test case differs from the previous only for the initial profile

1 for r < 0.25,
u(z,y) = { 0 else (36)

where r = /(z + 0.5)% + y2, which is not continuous, contrary to the previous case. The
computation was made on the same grid with a CFL of 0.9, the results after one revolu-
tion being displayed in figures 5, 6 and 7.

14



As in the case of the rotation of the cosine hill, the PSI scheme and N-modified scheme
give very close results. These results are better than the ones obtained with the MUSCL
scheme. The LDA schemes exhibit spurious oscillations, as expected. In particular,
Caraeni’s version of the LDA scheme (see [22] and Remark 3.2) are very oscillatory. This
is not a linear stability problem, since the results on the cosine advection are excellent
(see figure 4).

In both cases, the limited N scheme and the blended-PSI behave the same. However,
the modified N scheme CPU cost is about half that of the blended scheme, because one
has no need to evaluate the LDA scheme.

3.4 Conclusions for the scalar problems

We have considered two different techniques for increasing the accuracy of unsteady prob-
lems, the PSI-blending and the N-modified schemes. The results are roughly speaking
similar, with a slight advantage for the N-modified scheme, in term of accuracy and ef-
ficiency. On unstructured meshes, both schemes yield considerably better results than
classical MUSCL schemes.

The extension to systems of equations is possible for both techniques. In particular
for the PSI-blending technique one can follow [17]. This has been done elsewhere and
we do not report the results here. This technique works quite well but in some cases, for
example the interaction of a vortex and a shock (see §4.3.4) or the ramp problem (see
§4.3.3), the results are disappointing : monotonicity is not very well preserved across the
shocks.

For these reasons we have abandoned the PSI-blending technique, and we do not con-
sider it anymore in the paper.

We remark that in [29] the author has developped a different class of space-time
schemes for unsteady scalar advection which also work on prismatic elements. In the
reference the author presents results obtained with these schemes on the rotation of the
cosine hill and of the cylinder on regular meshes finer than the one used here. These results
are considerably more dissipative than the ones obtained with the approach proposed
here, although they are still better than the MUSCL results (which again favours the
residual distribution approach). Moreover, although the author presents an extension
of his schemes to the non-linear inviscid Burger’s equation, the extension to the Euler
equations is not clear at all.
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MUSCL LDA

PSI N-modified

Figure 2: Solutions for the rotating cosine hill after one revolution
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Figure 3: Sections at y=0 of the solutions for the rotating cosine

N-modified
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Figure 4: Contour and cross—section for Caraeni’s LDA scheme on the cosine problem.
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Exact solution N

MUSCL LDA

PSI N-modified

Figure 5: Solutions for the rotating cylinder after one revolution.
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4 Residual Distribution Schemes for the unsteady
Euler equations

Consider the system of the Euler equations

aa—vf + div F(W) =0,

where W and F = (F, G) are given by

W = (p, pu, pv, E)7,
F(W) = (pu, pu® + p, puv, u(E + p))”, (37)
G(W) = (pv, puv, pv* + p,v(E + p))"

where p, u and v are the gas density and velocity components, E is the total energy and
p the pressure. The system is closed by the perfect gas equation of state.

The construction of the Residual Distribution schemes, described in the previous sec-
tion, is based on the quasi-linear form of the convection equations (as for steady schemes)
and a space-time approximation of the unknowns. So extension to the unsteady Euler
equations needs to use :

(i) a second order approximation of W and F in order to get second order accuracy;

(ii) a conservative linearization.

4.1 The cell residual

The cell residual over a prism T' X [t,, t,11] is given by

tn41
oWh
ol = //( o + div Fh> dzdt,
tn, T

where W" and F" are respectively the space-time approximation of the solution and the
fluxes. This approximation is obtained using Roe’s parameter vector Z:

7 = (Bt 0 JPH)T (39)
where H is defined by the relation H = (F + p)/p. We set

t—1t toyr — T
Wh — nWTL+1 n+ W
At A ’
t—t the1 — T
Fh — nFn+1 n+ |
At A ’

where W* = W (Z*) and F* = F(Z®) and Z* being the piecewise linear approximation of
Z at time s (t, or t,,1). One has ®T = I, + I,, with

tpt1

tpt1
owh
I, = / / o dzdt, I, = / / div Fdzdt.
tn, T tn, T
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We recall that for the Euler equations we can express W and F as
1 1 1
W = §D(Z)Z F = §(R1(Z)Z, Ry(2)7) = §R(Z)Z

where the matrices D(Z), Ry(Z) and Ry(Z) are linear in Z (see [24]).
For I; we have then

tn+1
n+1 n+1l _ n n
e

Moreover, since D(Z )Z is quadratic in Z and D(Z) is linear in Z, we have

| | Zl+ZQ Z1+Z2 Zl—|—Zg Zl—|—Zg ZQ+Zg Z2+Z3
D(Z)Zdx = D D
[p@zar = B (DAL p A BT pR I 2
7l 5~ Tl s~ pz
= — D(Z)Z; + — D(Z)Z
12 (l) l+4 ()7'
M;eT M;eT
T —
- %'E:Wﬁu}m,
M;eT M;eT

with W; = D(Z)Z; and Z is the Roe average state Z = (Z; + Z» + Z3)/3 [30].
Finally I; becomes

Now we compute I

tn+1

A
I, = //dide:gdt:g/ div F**!' + div F” dx
T

= = / R(Z%) dav 7+ 4 2 / R(Z™) daV 2"

—n—+1 —n
_ At R(Z )] 7 4 R(Z").nt
2 J 2 3
MjGT

Setting K7+ = 1 <R(Z"“)D—1(Z”“),n§’> and K" = L(R(Z")D~Y(Z"),n"), the cell

2
residual can be finally expressed as

(I>T |T| Z |: Wn+1 lfW/‘n-l-l)_(l
2 J

n 1Nn

At (39)
n+1 71/n+1 niin
+5 Z (Kj W4 K Wj),
M;eT

where W2 = D(Z") 2} and W' = D(Z"") 20+

The final expression is similar to (16), but a difficulty appears with the presence
of terms K;-”’l which are computed at time ¢,,; (due to the non-linearity of the Euler
equations). Therefore system Residual Distribution schemes for unsteady computations

are intrinsically implicit in time. This is solved thanks to a Newton method.
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4.2 System residual distribution schemes

In this section we give the generalization of the unsteady scalar schemes described in
section 3.2.

4.2.1 The system LDA scheme

We will present here only the extension to the Euler equation of scheme (20). The system
version of scheme (22) can be obtained in a similar way. In particular, we set

1
DEPA =(— (K )™ 4 51d><1>¢+

(_(Kz—l-N)n-I-l - Z (I)t K—I—N n—l—l(I)s
M;#M;
where we have set
t |T| ]' n+1 ]'Nn+1 ]' n 1~n

s At n+1 11/ n+1 n {n

JeT

N — ( Z K;L—)—l , Nn+1 — ( Z Kjr_z+1—)—1

M;eT M;eT

and

Remark 4.1. The matrices N"K' and N"" K7 always exist (see [17]), so the system
LDA-scheme is well defined.

4.2.2 The system N-scheme

For a scalar advection equation one has

At At -
+ Tk:’(u? —u"), (40)

T
|_3| (un-i-l - un)

[ [

k+( n—l—l ﬂn—l—l)

oY =

+1

where u™ and u"*! are computed to have the conservation relation (18). For the Euler

equations we set

T 1 1~
o = Il [ 4 Gy — G 4 5
(41)
A n+1+ 117n+1 * A n+ *
+ sz‘ (W = Woi) + 7[( (W - Wy).
If Wy, and W, are computed to make the scheme conservative, namely
* _ n+1 n+1— 1rn+1 * n n— 11/n
Wi =N KT W W =Nt Y KW (42)

M;eT M;eT

Remark 4.1 also applies to the N scheme.
In the appendix A, we show that this system is unconditionally energy—stable.
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4.2.3 The system N-modified scheme

The idea is similar to the one developed in [24]. We present here a summary of these
results, and we refer to the above reference for a detailed presentation.

For sake of simplicity, let us explain our procedure on the linearized d x d system

oW oW oW
A B _
o T TP, 70

with A and B symmetric matrices. Since for any («, ) the matrix a A+ B is symmetric,
there exists a complete set of eigenvectors {r;};—; 4. Following [24], we introduce the
simple waves

Us(x,t) = (t — to) (aa: + By)r(,.
where 7, is an eigenvector in {r;};=14 and A, is the associated eigenvalue. We note that

any function
t—t, tnp1 —t.
W, t) = — W™ (@) + %W (z)

where W™ and W"*! are linear in z, is a sum of 3 x d x 2 simple waves plus possibly
a constant. This number of waves comes from the fact that a triangle has 3 vertices, so
there are 3 basis functions, any vector W x N;(z) can be decomposed into the sum of d

orthogonal vectors, and we have to do so at times ¢,, and ¢,,;. More precisely, W" (resp.
W) can be written as

W) = % WA ()

1 3
= constant + Tl ]2221 Wj”(ﬁj, )

where Wj is the inward normal opposite to the jth vertex of triangle 7. If we take

ﬁ}j = (o, 8;)" and decompose W on an eigenvector basis of a;A + ;B denoted by

{r1}r=1.4 we recognize that
(t = t) (W )Tk, )

is precisely a simple wave.
In summary, any function piecewise linear in time and space can be decomposed into

the sum of 3 x d x 2 simple waves

t—t tha1 —t

Uy(z,t) = [——2(a" iz + pnft 2 (az + ) | re
(w,?) A (@ e+ 5 y) + =—=—(a"z + )
t—=1n 04 bny1 — 1
= | —¢"" () + ——¢"(x) |1,
(@) + ()

Then, following once more [24], it is possible to show that the N scheme (40) is monotone
on any simple wave. This means that the residual ® sent to the node 7 can be written,
for a simple wave, as a linear combination of terms like

N R R i IR DY GO ) E
j=1,3 Jj=1,3

where ¢; is the value of ¢ at the jth vertex of T, ci-“j >0and k£ =1,d.
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Using the above analysis, we introduce the modified N scheme as follows: we take a
direction («, ), consider the eigenvectors of aA + SB and write the residual of the N
scheme as

d
oY =) e, pF=(2), 1)
k=1

We then modify the scalar residual {©¥};—; 3 exactly as in section 3.2.4. We note that

3

Z SO;C = <(I)7 Tk>'

=1

Following [24], and using relations (43), it is possible to show that the system modified N
scheme is stable.

In the case of a symmetrizable system, we proceed along the same lines. The only
modification is that the scalar products between a state variable W or a residual ® with
an eigenvector rj are replaced by the inner product between W (resp. ®) and the left
eigenvector ¢, associated to the right eigenvector ry. In fact, it is known that if A is the
symmetrization matrix, Agrr = ¢, so if we make the change of variable V' = AW, we
come back to the symmetric case.

In the previous description, the choice of the direction («, ) is arbitrary. Different
choices will produce different results, and different schemes. However, all our numerical
experiments for steady and unsteady problems lead to the conclusion that the quality of
the results is independent of the direction (v, 3). By quality, we mean the non oscillatory
properties of the schemes, and the mesh resolution of the different features of the solution.
In all the numerical experiments we present in this paper for fluid problems, we have
chosen the vector (o, 3) to be the local flow velocity vector, for symmetry reasons mainly.

4.3 Numerical Results

In this section we present results on some classical test cases obtained with the schemes
presented in the previous section. For Euler computations, we replace condition (27) by
min —- (44)

where A} is the largest positive eigenvalue of K.

4.3.1 Two-dimensional Sod’s Riemann Problem

The initial data are chosen in order to represent a two-dimensional version of Sod’s shock
tube problem in the domain [—1,1] x [-1,1] :

{ p = 0.1 if 2 xy <0, 1 otherwise (45)

p = 0.1 if z xy <0, 1 otherwise

The velocity (u,v) is initially set to zero everywhere. The solution is computed at time
t=0.2 on a structured triangulation where Ax = Ay = 0.01. The CFL number in (44)
has been set to 0.9.

The isolines of the density and pressure are shown in Figures 8 and 9 for the N-scheme
and the N-modified scheme.
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Figure 8: 2D Sod problem computed by the N-scheme at time t=0.2, density (left) and
pressure (right).

Figure 9: 2D Sod problem computed by the N-modified scheme at time t=0.2, density
(left) and pressure (right).

4.3.2 A Mach 3 Wind Tunnel with a Forward Facing Step

This test case has been extensively studied by Woodward and Collela [31], and it is widely
present in the literature. The setup of the problem is the following : a right-going Mach 3
uniform flow enters a wind tunnel of 1 unit width and 3 units long. The tunnel contains
a forward facing step of height 0.2 units located 0.6 units from the left end of the tunnel.
The problem is initialized by a uniform, right going Mach 3 flow. Reflective boundary
conditions are applied along the walls of the tunnel, and inflow and outflow boundary
conditions are applied at the entrance and the exit of the tunnel. The corner of the step
is a singularity and it is well known that if no special treatment is adopted in this point an
excessive entropy production is observed which alters the quality of the second reflected
shock. This is not physical because at the corner we have an isentropic expansion wave,
so no entropy should be created. However, unlike in [31], we do not modify our scheme
near the corner, since we are only interested in the stability properties of the schemes.
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We have run the simulation on an unstructured mesh containing 10,868 nodes and
21,281 triangles. The mesh is refined near the corner. A portion of the mesh is shown in
Figure 10. The simulation was done at CFL= 0.9.
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Figure 10: Part of the unstructured grid for the Mach 3 problem.

The results obtained with the N scheme and N modified scheme at time 0.4 are given
in figures 11,12 and 13. We see that the quality of the slip line coming out of the triple
point is noticeable, as well as the resolution of the shocks, in particular at the exit section
of the tunnel. The maximum shock width is no larger than two cells. Between the first
order and the second order results, the quality of the fan (at the corner) has dramatically
been improved : the reflected shock is now correctly set, the weak compression shock
after the fan appears, and interacts with the first reflected shock. We also see the slip
line coming out of the interaction between the reflected shock and the weak compression

shock.

Figure 11: Forward-facing step problem. Density iso-lines: 30 equally spaced contour
lines from 0.09 to 6.23. Top : N scheme. Bottom : N-modified scheme.
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Figure 12: Forward-facing step problem. Mach number iso-lines: 25 equally spaced con-
tour lines from 0.02 to 3.82. Top : N scheme. Bottom : N-modified scheme.

e ——————— )8

Figure 13: Forward-facing step problem. Entropy production near the step corner : 17
equally spaced contour lines from 0.63 to 1.5., Top : N scheme. Bottom :N-modified
scheme.

4.3.3 Reflection of a Shock on a Wedge

This problem was studied by Quirk [32]. A planar shock initially enters from the left in a
quiescent fluid and is reflected from a 45 degrees ramp. The shock Mach number, defined
with respect to the flow values in the quiescent fluid, is My = 5.5. In the quiescent gas
ahead of the shock the density is set to 1.4 and the pressure to 1. Reflective boundary
conditions are applied along the ramp and the bottom and the upper of the problem
domain. Inflow and outflow boundary conditions are applied at the entrance and the exit
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of the domain. For this combination of shock Mach number and ramp angle, a double
Mach reflection is expected. The interest of this test case is that , according to [33], the
angle # = 45° and M, = 5.5 is nearly at the transition between a double Mach reflection
and a regular reflection. If the scheme would be too diffusive, we would get a regular
reflection instead of a double Mach reflection. Hence this is a good test of accuracy.

Figure 14: Reflection of a planar shock from a ramp. Density 20 contour lines from 1.18
to 20.12.

The density for the N-modified scheme is displayed in Figure 14. The CFL number
has been set to 0.9. The resolution of the different structures is quite clean, despite of the
poor resolution of the mesh.

4.3.4 Shock-Vortex Interaction Problem

This test case describes the interaction between a stationary shock and a vortex. It was
first presented by Pao and Salas [34], and was studied by Meadows et al. [35] with a TVD
scheme and by Jiang and Shu [36]. The computational domain is taken to be [0, 2] x [0, 1].
A stationary Mach 1.1 shock is set at x = 0.5 and normal to the z-axis. Its left state is
(pyu,v,p) = (1,,/7,0,1). A small vortex is superposed to the flow left of the shock and
centered at (x.,y.) = (0.5,0.25). The vortex is described as a perturbation to the velocity
(u,v), temperature T' = % and entropy S = In p% of the mean flow denoted by tilde values:

i = ere®ging (46)

7 o= —ere® ) cosh (47)

5 (,y o 1)626204(177'2)

T = — 48
oy (48)

S =0 (49)

where 7 = = and r = V(@ —z.)? + (y — y.)?. Here € indicates the strength of the vortex,
« controls the decay rate of the vortex, and r. is the critical radius for which the vortex
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has the maximum strength. We choose the same values as in [36], i.e. € = 0.3, r. = 0.05
and a = 0.204. The above defined vortex is a steady solution to the 2D Euler equations.
The upper and lower boundary are set to be reflective. We use a uniform grid of 251 x 100,
a zoom of which is shown on Figure 15. Also for this test we took CF'L = 0.9.

Figure 15: Zoom of the mesh for the vortex simulation.

The pressure isolines for the N-modified scheme at three different times are displayed
in Figure 16.

Figure 16: Shock vortex interaction. Pressure. N-modified scheme. 30 contours lines
from 0.84 to 1.4. Top left: t=0; Top right: t=0.2, Bottom: t=0.4.
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5 Toward unconditionally monotone and LP schemes

The objective of this section is the construction of unconditionally stable monotone LP
space-time schemes. In particular, we will illustrate two different techniques which allow
us to build non-linear schemes for which monotonicity is not constrained by (27). We
start by building an unconditionally stable linear first order N scheme which utilizes the
two-layers approach introduced in [16]. We will analyze the monotonicity of the scheme
and then present results obtained on the Euler equations with its modified variant.

We then present a different approach to construct a non-linear LP scheme which is
not constrained by (27). We first present an unconditionally stable N scheme which
does not respect the conservation constraint (18). We then borrow from [25] the idea of
constructing a modified scheme which respects (18) starting by the non-conservative N
scheme. We analyze the monotonicity properties of the scheme and present scalar and
Euler simulations showing the stability and accuracy of the modified scheme.

5.1 A two-layers unconditionally monotone LP scheme

Let us consider the scalar advection equation

0 —
8—1;+<)\,Vu>:0 in Q x [0, 7). (50)
The N-scheme reads
o = pn oy 1 8 S o (-t - o0
MjET

By construction, the N scheme is upwind in the prismatic element K : no contribution
is sent to the past node located at time t,, (upwinding in time). In [16] the authors have
introduced a different class of space-time schemes which work on P1 space-time elements
(triangles in 1 space dimension and tetrahedra in two space dimensions). The authors
show that by straightforward application of the standard steady-state residual distribu-
tion schemes, upwinding in time can be obtained, provided that the space-time mesh is
properly constructed and satisfies a constraint on its time width very similar to (27). To
overcome this limitation, the authors have introduced a second layer of space-time ele-
ments in which dependence of the past solution from the future one is allowed. By solving
for two time levels at once they have obtained an unconstrained scheme which they have
“experimentally” shown to have good monotonicity properties.

Here we exploit the same idea but on a greatly simplified (and less expensive) frame-
work : we use prismatic elements. In particular, we consider three levels of nodes with
temporal coordinates t,, t, and t,,1, o € [0,1]. This delimits two layers of space-time
prismatic elements. Considering a triangle T', we denote by K; and K, the prisms delim-
ited by T contained in the first and the second layer, with time thickness Aty = ¢, —t,
and Aty =t 1 — tpiq (see Figure 17).

5.1.1 Description of an unconditionally monotone scheme

Starting from the space-time N-scheme (23), which was made on a single layer of ele-
ments, we reformulate it on two layers of elements to allow us an unconditionally stable
time marching procedure while maintaining monotonicity both in space and time.
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tn+1
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tn+1/2

Aty

J

Figure 17: Space-time grid for the two-layers unconditionally monotone and stable scheme.

We denote by ®;,,, ®; 1o and @;, 1 the residual sent to nodes (M;,t,), (M;, tyia)
and (M;,t,11). In the first layer, the past does not depend on the future, that is to say
<I>ZKT§ = 0. We set

nta Atl + unte g nta
(ute — )+TZI<:NI€( - +ul —ul) (52)

_ |7
i ' u”
MjET

zn+a - 3

In the second layer we do not impose the upwind property, ie ®%2, £ 0. We set

1,n+a
At
q)zKrz—i—a =2 Z k+Nk n+a _ n+a) (53)
M;eT
o2, = ?(Uiﬂ—uﬁ )+ > kFNE; (uptt = uth (54)
M;eT

Finally the scheme reads

> of,.=0 and > @f ., =0 (55)

K,(i,n+a)eK K,(i,n+1)EK

We explain now in detail the contribution to each node:
e For the node(M;, t,1,) one has

| | n+—aow ’I'L Atl TL [0 TL [0
(I)z[%—l—a (I)zKrf—l—a _?(u T Z k+Nk + — + —|—u — U )
M;eT

(56)
A
tz Z k+Nk n+a_ n—l—a)

M;eT
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K K _ |T| n+a n Atl At? + —( nta n+a
Pintra T Pinta _?(uz —uy) + 7(1 + A—tl) MZE:T ki NE; (uf ™ — ul ™)
At ! (57)
1 —(..n n
M;eT
Assembling the contributions of all the elements one obtains Au"t* = Bu™ with
IT| Aty Aty Aty Aty _
Ay = — + —(14+ )k Ay = ———(14+ —2)k Nk; (58
Z(3+2(+At1)z)7 J Z 2(+At1)z ]()
T,M;eT T,(Mi,Mj)GT
T At At
T,M;eT T,(M;,M;)eT

The matrix B has positive entries if At; satisfies condition (27). The inverse of A always
exists and has positive entries for all choices of the time steps Aty, At,.

e For the node (M;,t,.,), assembling contributions of all elements gives Au"*! =
Bu™t® with

_ |T| At? + _ At? + _
A= Y (G + k) Ay= > — =k Nk . (60)
T,MiGT T,(Mi,Mj)GT
T
T,M;eT

The matrices B and A~! always have positive elements for all choices of time step At,.

The time-step for the first layer (At;) is limited by a CFL-like condition, as we have
seen in the previous section for the space-time N-scheme. However, since we do not im-
pose an upwinding condition in time for the second layer, an arbitrary time-step Aty can
be chosen. Then the global time-step At = Aty + At, is not constrained by any CFL
like condition. We have constructed a scheme with unconditionally stable implicit time
stepping which maintains full monotonicity.

The extension to the Euler equations is obtained easily combining (52), (53) and (41).

5.1.2 An unconditionally monotone and LP scheme

Limiting the contributions in the prisms K; and K5, we obtain a monotone and LP

scheme. In particular, from the residuals (1){% Yo <I>ZK; 4o and (IDlKTf 41 we construct modified
residuals @fﬁia, (Df;fia and @ff;_’;l as described in section 3.2.4:
e In the prism K, we construct @fﬁj’;a such that
D e =" (62)
MjGT
Piiita = O, AF) (63)

e In the prism K, we construct @fﬁia and @fﬁil such that
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S [eken + ol ] = ok (64)

M]‘GT
ol = Oh) + O(AP) (65)
ol = O(h®) + O(A) (66)

Then the solution is advanced from time ¢, to time ¢,,; by the following procedure

1. From ¢, to t,1,. Compute the state at time ¢,,, by solving

S (@) =0 (67)

T,M;eT

This is nothing more than the previous scheme of section 3.2.4 applied between
times ¢, and t,,,. We get predicted states for u}”o‘,j =1,---,n,.

n+l - 1

2. Then we evaluate u;™",j =1,---,ng by solving

Soo@) Y (@) =0 (68)

T,M;€T T,M;€T
In (67) and (68), the superscript 7" denotes the residuals relative to triangle 7.

With this construction the resulting scheme is second order accurate both in time
and space, and unconditionally monotone. Due to its non-linearity, equations (67) and
(68) represent two systems of non-linear equations that we solve by Newton iterations.
In the system case, we extend the scalar schemes to system schemes for both prisms
K, and K, as described in sections 4.2.2 and 4.2.3. For example, the residual (52) is
replaced by (41-42). Similar things are done for the relations (53) and (54) with obvious
modifications.

5.1.3 Numerical example : Mach 3 Wind Tunnel with a Forward Facing Step

We use the same mesh of section 4.3.2, which is refined near the corner, with a fixed ratio
Aty /Aty equal to 10. Isolines of density, Mach number and entropy at time t = 4 are
shown. The density, Mach number and entropy deviation are shown on figures 18, 19 and
20. The results look very similar to those shown on Figure 11, 12 and 13. Hence, the
same quality of results is obtained with an improved efficiency. This is very interesting in
the case of very non uniform grids as here.
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Figure 18: Forward-facing step problem. Density iso-lines: 30 equally spaced contour lines
from 0.09 to 6.23. This has been computed with the unconditionally stable N-modified
scheme.

) A

Figure 19: Forward-facing step problem. Mach number iso-lines: 25 equally spaced con-
tour lines from 0.02 to 3.82. This has been computed with the unconditionally stable
N-modified scheme.

Figure 20: Forward-facing step problem. Entropy production near the step corner :
17 equally spaced contour lines from 0.63 to 1.5. This has been computed with the
unconditionally stable N-modified scheme.
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5.2 A single layer unconditionally monotone LP scheme

In this section we will present a single layer LP monotone scheme for which condition (27)
can be relaxed. This is achieved by adopting, in the framework of the space-time schemes,
the approach presented in [25] to construct very high order schemes for the solution of
steady advection problems.

In [25] the authors consider the solution of the steady problem
%
<)\,Vu>:0inQ (69)

They show that a monotone formally k-th order accurate scheme can be constructed on
an arbitrary triangulation 75, of €2 starting from a first order linear monotone scheme. In
particular, they consider schemes for which the discrete analog of (69) is of the form

> slef=0

T,M;€T

They prove that, provided that the distribution coefficients 3] are bounded, k-th order
of accuracy is obtained if

o7 = / <7, Vu') 2 = O+
T

Monotonicity is then guaranteed by defining the distribution coefficients such that for a
given monotone scheme with distribution coefficients (37 )M = (®7)M/®T one has

BrBIHM >0

In [25] this is achieved through the use of definition (31) for the computation of the dis-
tribution parameters. The authors show that monotone and accurate results are obtained

even if

> (@)Y = ot # o,

jeT
in particular they use always the first order N scheme (that is ®' = O(h?)) as the mono-
tone scheme.

Here we will use a similar trick to obtain a non-linear scheme which inherits uncondi-
tional monotonicity from a first order unconditionally monotone scheme.

5.2.1 The unconditionally monotone “inconsistent” scheme

Consider the unsteady scalar problem. We start by defining a different version of the
space-time N scheme. We first remark that (23) corresponds to the combination of the
standard N scheme with Crank-Nicholson time integration for the inconsistent formulation
(12). Our idea is to replace the Crank-Nicholson time integrator by an implicit Euler one.
This yields, on a prismatic element K = T X [t,, t,1+1], the following nodal residual

17|

; (Wit =) + At Y BT NE; (uptt — ) (70)

Mj eT
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Remark 5.1.
1. scheme (70) verifies by construction the upwinding property: ®;, =0Yi € T

2. scheme (70) is not conservative with respect to the second order accurate element
residual ®T given by (16):3 ®jny1 # T

jerT

Since the scheme verifies the upwinding property, we can simplify the notation and
drop the sub-script n+ 1, so that, after assembling the contribution from all the elements,
the scheme can be recast as

The scheme is of course implicit and can be recast as Au™*' = Bu" with

T _
T,MiET T,(Mi,Mj)GT
T
T,M;eT

The matrix B is diagonal with positive entries. The inverse of A always exists and has
positive entries for all choices of the time step At. The scheme is then unconditionally
monotone.

The extension to the Euler equations is obtained easily combining (52), (53) and (41).

5.2.2 A single layer unconditionally monotone and LP scheme

In order to get a consistent, conservative, monotone and second order accurate non-linear
scheme, we proceed on each triangle T" in 73, as follows:

1. Compute the space-time fluctuation ®7 according to (16)

M-according to (70)

2. Vj € T compute the first order monotone residuals (®;)
3. Vj € T compute the monotone distribution coefficients (3;) = (®;)* /®”
4. Vj € T compute the bounded high order distribution coefficients ; via (31)
5. Vj € T compute ®; as &, = ;T

With this construction the resulting scheme is second order accurate both in time and
space, and unconditionally monotone. We will present, for scalar and Euler problems,
results confirming the unconditional stability of the scheme.

In the system case, we extend the scalar schemes to system schemes as described in
sections 4.2.2 and 4.2.3.
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5.2.3 Scalar Tests
The rotating cosine hill

We consider again the test case of the rotating cosine hill of section 3.3.1. The computa-
tional set-up is the same of section 3.3.1 except that here we investigate the influence on
the quality of the solution of the magnitude of the time-step. In particular, we computed
the time-step according to (27) and run this test case with the limited scheme described
in the previous section and different values of the C'F'L number.

The results obtained after one revolution for values of the C'F'L equal to 0.9, 1.5, 3, 6,
9 and 12 are compared in figure 21. We provide the cross—sections at y = 0 in figure 22.
We clearly see that the quality of the solution is little affected by the magnitude of the
time-step up to CF L = 6. For CFL equal to 9 and 12 we start observing a degradation
in the accuracy which is not surprising. In terms of height of the peak the results are
very similar to the ones of section 3.3.1. We report the minimum and maximum values

of the solution in table 2. We remark that monotonicity is preserved for all the values of
the C'F'L number.

CFL min max
0.9 0 0.796

1.5 0 0.796
3.0 0 0.796
6.0 0 0.794
9.0 0 0.762
12.0 0 0.704

Table 2: Min and Max solution values for the rotating cosine hill test case.

The rotating cylinder

This is the same test of section 3.3.2. As in the previous section, we investigate here the
influence of the time-step on the quality of the solution. As in the previous case we have
run the simulation with different values of the C'F'L number, namely 0.9, 1.5, 3, 6, 9, and
12. The computation was made on the same grid. The results after one revolution are
displayed in figure 23. Cross—sections of the solutions after one revolution are provided
in figure 24. We see once more that

(i) The accuracy is is little affected by the time-step magnitude for C F'L up to 6

(ii) Monotonicity is perfectly preserved for all the values of the C'F'L number
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CFL=0.9 CFL=15

CFL =30 CFL=6.0

CFL=9.0 CFL =120

Figure 21: Rotation of a cosine hill. Results with the unconditionally stable single layer
N modified scheme for different C'F'L numbers. 20 contours of the solution
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Figure 22: Rotation of a cosine hill. Results with the unconditionally stable single layer
N modified scheme for different C'F'L numbers. Cut at y =0
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CFL=0.9 CFL=15

CFL =30 CFL=6.0

CFL=9.0 CFL =120

Figure 23: Rotation of a cylinder. Results with the unconditionally stable single layer N
modified scheme for different C'F'L numbers. 20 contours of the solution
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Figure 24: Rotation of a cylinder. Results with the unconditionally stable single layer N
modified scheme for different C'F'L numbers. Cut at y =0
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5.2.4 Results for the Euler equations
A truly 2D Riemann problem

The first problem we consider is the two-dimensional Riemann problem presented already
in [37, 38, 39]. The initial solution, sketched in figure 25, consists of four constant states
describing the interaction between two oblique and two normal shocks moving upstream
with respect to the flow velocity. The computational domain is [0, 1] x [0, 1]. The initial
solution is given by

(15,0, 0, 1.5) if 2> 0.8 and y > 0.8
(0.5322581 , 1.2060454 , 0, 0.3) if 7 < 0.8 and y > 0.8
(p,u, 0, p) = (0.1379928 , 1.2060454 , 1.2060454 , 0.0290323) if z < 0.8 and y < 0.8
(05322581, 0, 1.2060454 , 0.3) if > 0.8and y < 0.8

We have run this test with the system version of the modified N scheme presented in the
last section. We have used this test to investigate the monotonicity of the scheme for
increasing CFL numbers and its ability to resolve complex features of the solution in an
accurate and monotone way.

0.8

@ £ 4

1 2 L 4

% !
"
1 %

0.

®

1

Figure 25: Initial solution and computational domain for the 2D Riemann problem

First we investigated the influence of the CFL number on the monotonicity of the
scheme. We have solved the problem on an unstructured mesh containing 19928 triangles
and 10166 nodes (h =~ 1/100). A zoom of the mesh is given in figure 26. The simulation
was run for three different values of the C'F'L in (44), namely 1.5, 3.0 and 6.0. We display
25 density contours at time ¢ = 0.8 in figures 26 and 27.

In all the figures we see that, even on such a coarse mesh, all the features of the solution
are well resolved, especially the slip-lines originating from the triple points and the jet
of fluid coming out of the initial singularity at (x,y) = (0.8,0.8). We can even see that,
already on this mesh resolution, the slip lines show a mild instability. The most important
remark is that, as in the scalar tests, the monotonicity of the scheme is not really affected
from the increase in the CFL number. Moreover, the solutions for CFL 1.5 and 3.0 are
very close in terms of accurate resolution of the interaction. On the other hand, the
accuracy of the solution is clearly degraded in the case of CF L = 6.0.
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Figure 26: 2D Riemann Problem, ¢ = 0.8. Left: mesh. Right: 25 density contours
obtained with the unconditionally stable N modified system scheme and CFL = 1.5

Figure 27: 2D Riemann Problem, ¢ = 0.8. 25 density contours obtained with the uncon-
ditionally stable N modified system scheme. Left: CF'L = 3.0 Right: CFL = 6.0

This can be especially seen in the resolution of the jet on the diagonal, which show clearly
more dissipation. The inaccurate computation leads in this case to a wrong position of
the shock normal to the diagonal.

In order to test the ability of the scheme to resolve very complex flow features, we
computed a fine mesh solution of this problem. In [39] the authors have run this test with a
time accurate Lax-Wendroff residual distribution scheme limited with an FCT procedure.
They have computed this problem on regular triangular meshes obtained by subdividing
the domain in quads and then cutting each quadrilateral with the right running diagonal.
In the paper they show results on a very fine mesh obtained by subdividing each side of
the domain in 400 segments. This gives, for their fine mesh, 320000 triangles and 160801
nodes. We have run this problem on an unstructured mesh like the one in figure 26
containing 316864 triangles and 159233 nodes (h =~ 1/400). We have run the simulation
with CFL = 1.5. The results are displayed in figures 28, 29 and 30 where we show 25
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contours of density, entropy (s = p/p?) and temperature (T = p/p) at time 0.8. We
clearly see the ability of the scheme to resolve the complex instabilities of the flow in an
accurate and monotone way. Compared to the results of [39], we see that our scheme
shows less dissipation on the slip-lines coming out of the triple points, although in their
solution the instabilities close to the fluid jet are better resolved.

Figure 28: 2D Riemann Problem, ¢ = 0.8. 25 density contours obtained on the fine mesh
with the unconditionally stable N modified system scheme and CFL = 1.5
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Figure 29: 2D Riemann Problem, ¢t = 0.8. 25 entropy contours obtained on the fine mesh
with the unconditionally stable N modified system scheme and CFL = 1.5
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Figure 30: 2D Riemann Problem, ¢t = 0.8. 25 temperature contours obtained on the fine
mesh with the unconditionally stable N modified system scheme and CFL = 1.5

Figure 31: Shock diffraction problem: mesh close to the corner

The shock diffraction problem

This problem has been considered in [32]. It involves the diffraction of a shock wave on a
90° step. The computational domain is ([0, 1] x [6, 11]) [J([1, 13] x [0, 11]). At time ¢t =0
a right moving Mach 5.09 shock wave is placed at x = 0.5. The gas ahead of the shock
is stagnant and its pressure and density are taken to be 1 and 1.4 respectively. Inlet and
outlet boundary conditions are applied at the left and right end of the domain, while
reflective conditions are applied on the step. The corner of the step is a singularity of the
problem . No special treatment has been applied in this point.
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Figure 33: Shock diffraction problem, ¢t = 2.3. 20 pressure contours

We solved the problem on a mesh containing 13869 nodes and 27256 triangles (refer-
ence mesh-size h = 1/100). A close-up view of the mesh in the vicinity of the corner is
given in figure 31. The simulation has been run with the system version of the modified
N scheme presented in the last section taking CFL = 1.5 in (44).

The results are presented in terms of density and pressure contours at time ¢t = 2.3
in figures 32 and 33. The resolution of the secondary shock and of the slip-line are
remarkable. We also underline that no negative density or pressure are present in the
solution even if no ad-hoc treatment has been implemented for the singular point.
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6 Comments on the efficiency

In the schemes we have presented, second order results can be obtained via a non linear
Newton procedure. If first order results are sought, the scheme is also implicit with a linear
implicit phase. How many iterations are needed to reach convergence or a satisfactory
level of iterative residual ? Here, what we call the iterative residual is, in the scalar case,
the maximum of the absolute values of the sum of residuals sent at node M;. In other
words, we are converged if for all M;

| D @<

T,M;€T

for the single layer monotone schemes and

‘ z (I)Z'I,(TiJra S €

T,M;€T
and

| > ef  +@in+1%] <e
T,M;eT

for the unconditionally monotone two-layers scheme. The threshold is € = 107! for the
first order scheme and ¢ = 10~* for the second order ones. The reason for these choices
is that the first order scheme is energy stable so machine zero can be reached, while, as
usual for Residual Distribution scheme, we do not know how to reach machine zero for
high order non-linear schemes.

In all our experiments, we needed 3—4 Newton iterations to reached the prescribed
level of iterative convergence.

7 Concluding remarks

We have developed a family of schemes for unsteady flow problems. The schemes are
designed to work on truly unstructured triangular type meshes. The degrees of freedom
are located at the vertices of the mesh. They use the most compact stencil for second
order accuracy, namely the closest neighbors of a vertex. They are second order accurate
in the sense that if the flow is smooth enough, the truncation error is O(h?), so that the
error is formally second order even on irregular meshes. They are upwind, non oscillatory
and parameter free. Lastly, it is possible to make them unconditionally stable without
losing their basic properties (monotonicity, upwind and second order accurate).
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A Energy-Stability of the Narrow scheme

This appendix contains the energy stability proof, without any restriction on the time
step of the Narrow scheme for the symmetrizable system

ZA 8:@ =0 (z,t) € R® xR, (73)

where W € R™ denotes the vector of conserved variables and the matrices A; are assumed
to be constant. Hence, we assume that there exists a symmetric positive definie matrix
Ag such that via the change of variables W = A,V the system is

~av Z~av )

where A, and the matrices A; = A; A4, are symmetric. The energy norm is defined by
Z DI
M;€eT

In the following the notation ~ over a matrix will mean that this matrix is symmetric.
The Narrow scheme reads

T
> [|3|(W"+1 Wi+ = ZKWK Wyt —wpt Wy — W")] = 0. (75)

T, M; €T M;€eT
In symmetrization variables one has
T| ~
> [ |3| o(VAT — V) 4 ~ Z KiNK; (VP -yt v — V")] =0. (76)
T, M; €T M;€eT

We first multiply this equation by V"™ + V" to obtain

T
> Bl v v v

MiET

(77)
Z Z <K;|-NK]—(V;n+1 - V;n-i—l + Vyn - Vzn)a Vz_n+1 + Vzn> =0
T,M;€T M;€T
Summing over the nodes of the mesh we get
T
> (X Bl —vmare v
Ter, ~ M;eT (78)

t
M;eT M;eT

Using the fact that fTO is symmetric, one has

(Ag(VH — VM, Vit vy = (AU vy 4 (A v
— (A V) — (AgVr, v
= (A VML VY — (AU V)
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The second term of (78) can be written as

Y orer [ ZMJ-ET<K;FNK;(V;’TL+1 — VM 4 V=V, Vi Vzn>] =
ZMiGT [ ZMJ€T<K;|_NK]_(‘/;7L+1 + V]n)7 ‘/;n—'_l + ‘/Zn>
— Y e (KSNK (VA + vy vt e
M;eT 7 7 ) 9

+ > er [ > ng e (KT NKG (VI V), VI V) 4+ (KE (VT V), V4 Vi">]

In equation (78) we can add the term —3 . > (K(V"* + V), Vit 4 V)
because this term is equal to zero since the geometry surrounding a vertex is closed.

Z Z Vn+1+vn) ‘/;n+1_|_‘/;_n> — Z Z Vn+1+vn) ‘/;n+1_|_‘/;_n>

Tery, M;eT M;ery, T,M;eT

= S {CS m)arT v )

M;eTy, T,M;eT
=0

Equation (78) becomes

Tl ~ -
S 3 B vy — G v

Ter, M;eT

Z Z [ (K (VP vy, Vit v (79)

Ter, M;eT

3K NKG (Vv v v,~">] -

Mj eT
Moreover one has

SO KINK (VP VI VIV = Y 0 Y (T VR K NKF (VT V)

MiGTMjET MiETMjGT

= D D (KGNKS (Vv Vi v

M;ET M;ET

ol



Equation (79) becomes

T A n n e n n
S5 Bl vy — v )

Ter, M;eT

Ter, M;eT (80)

+ Z (KFNKG (VI 4+ V), V4 v+

MET

1

Next, rewrite
K/ NK; + K; NK;

in the following form
K+NK +K; NKJr K;NK,; + KJFNKJr + K; NK7,

which leads to

Tl ~ -
0= 3 3 Bl vy — e )

Ter, M;eT

At 1 n+1 n n+1 n
F XX (GENIG )

Ter, M;eT
(81)
1 n n n n 1 n n n n
TV RV VI V) = 5 3 ENKG (VI V1 )
M;eT
1 1
KTV VL VT V) 0 Y (KENKG (VT V), 1 vm]
M;eT
Finally one obtains
D0 D0 S AV — (A V)
Ter, M;eT
(82)

+ > (QF (1, Vo, Va) + QF (Vi, Vo, Vi) + QF (Vi, V3, 13)) =0

Ter,

In [40], it is shown that Q, Q] and Q! are positive quadratic forms : the system N
scheme is energy stable.
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