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Abstract

We present a linear Boltzmann equation to model wave scattering in the Marginal Ice Zone (the region
of ocean which consists of broken ice floes). The equation is derived by two methods, the first based on
Meylan et al. [Meylan, M.H., Squire, V.A., Fox, C., 1997. Towards realism in modeling ocean wave behav-
ior in marginal ice zones. J. Geophys. Res. 102 (C10), 22981–22991] and second based on Masson and
LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of wind-generated surface gravity waves in
a dispersed ice field. J. Fluid Mech. 202, 111–136]. This linear Boltzmann equation, we believe, is more suit-
able than the equation presented in Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolu-
tion of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136] because
of its simpler form, because it is a differential rather than difference equation and because it does not depend
on any assumptions about the ice floe geometry. However, the linear Boltzmann equation presented here is
equivalent to the equation in Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of
wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136] since it is derived
from their equation. Furthermore, the linear Boltzmann equation is also derived independently using the
argument in Meylan et al. [Meylan, M.H., Squire, V.A., Fox, C., 1997. Towards realism in modeling ocean
wave behavior in marginal ice zones. J. Geophys. Res. 102 (C10), 22981–22991]. We also present details of
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how the scattering kernel in the linear Boltzmann equation is found from the scattering by an individual ice
floe and show how the linear Boltzmann equation can be solved straightforwardly in certain cases.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The marginal ice zone (MIZ) is an interfacial region of ice floes which forms at the boundary of
open water and continuous ice. The major way in which the open ocean interacts with the contin-
uous ice is through wave induced breaking, and it is this process which produces the MIZ. How-
ever, wave action does not break up the continuous ice over an infinite distance. Instead, the wave
energy is dissipated by scattering from the ice floes which have formed in the MIZ. TheMIZ is thus
formed by wave induced breaking of the continuous ice and simultaneously shields the continuous
ice from breaking. There are two aspects which need to be understood to model this process: the
first is the wave induced breaking of the continuous ice, and the second is the wave scattering in the
MIZ (Squire et al., 1995). This paper presents a model for the latter process.

The experimental studies of wave propagation in the MIZ reported in Wadhams et al. (1986)
and Wadhams et al. (1988) have shown the following features. There is strong exponential atten-
uation of energy, which decreases as the wave period increases. From a narrow directional spec-
trum at the ice edge the wave field broadens and becomes isotropic as it evolves with increasing
distance into the MIZ. The wave scattering which occurs in the MIZ is due to the scattering effects
of the individual ice floes which comprise the MIZ. To understand the process of wave scattering
we need to understand the scattering which any individual ice floe produces. However, the equa-
tion for the propagation of wave energy, while dependent on the scattering from individual floes,
will take a form quite different to the equation of scattering from an individual floe.

Determining the scattering at the large scale from the scattering from an individual scatterer is
important in many areas of physics. There are many approaches to this problem, the two most
popular being the linear Boltzmann (or transport) equation, and the multiple scattering, both de-
scribed in Ishimaru (1978). However, the MIZ presents a slightly more complex case than is usu-
ally encountered in scattering theories because of the random nature of the scatterers (i.e. the
random geometry of ice floes) and the constant motion of the ice floes. This means that it is ex-
tremely unlikely that any kind of coherent scattering effects will be observed. However, all large
scale scattering theories require as input the individual scatterers and often assume that all scat-
terers are identical. This can lead, in the scattering theory, to coherent scattering effects which we
believe are not significant for the MIZ.

While models for wave scattering in the MIZ were presented in Wadhams et al. (1986) and Wad-
hams et al. (1988), these models were two dimensional and therefore of limited use. The first model
for wave scattering which was three dimensional and which calculated the scattering from an indi-
vidual ice floe correctly was presented by Masson and LeBlond (1989) (because of the importance
of this paper in our present work we will refer to this paper as M&Le). M&Le included terms for
wave generation as well as scattering, and has been used in numerical wave studies (Perrie and Hu,
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1996). However, the importance of M&Le is that they presented the first realistic model for wave
scattering in the MIZ. The scattering theory in M&Le was based on multiple scattering theory and
considered only rigid and circular ice floes. The theory was not presented in its most general form as
it explicitly used circular floe geometry and derived the model for discrete time steps.

Other models for wave scattering in the MIZ have been presented. Meylan et al. (1997) devel-
oped a simple model based on the linear Boltzmann equation. The connection between the scat-
tering at the large scale and at the individual floe scale was made by an ad hoc argument.
However, the individual scattering model for an ice floe was more realistic than that used in
M&Le because the floes were modelled as flexible whereas M&Le considered rigid floes. This flex-
ure is significant for all but the smallest ice floes (as shown in the measurements of Squire, 1983;
Squire and Martin, 1980). A further model was presented by Dixon and Squire (2001) which is
based on Dixon and Squire (2000) in which a Bethe–Salpeter equation is derived for energy trans-
port in a thin elastic plate with random material properties. However, the model in Dixon and
Squire (2001) was two-dimensional (i.e. only allowed two directions of propagation) and it needs
to be extended to three-dimensions to be practically useful.

In this paper, we begin by deriving a linear Boltzmann equation for wave propagation in the
MIZ. In doing so we correct an error in the very similar derivation in Meylan et al. (1997). We
then transform the scattering theory of M&Le by taking various limits to produce a differential
rather than difference equation. From this we actually obtain a linear Boltzmann equation which
is similar to the equivalent equation derived using the method of Meylan et al. (1997). We believe
that this linear Boltzmann equation is a better starting point as a model for wave scattering in the
MIZ because it is much simpler than the model given in M&Le, it is given as a differential equa-
tion so that it is possible to derive the most appropriate numerical scheme and the equation is
independent of any assumption of circular or regularly spaced scatterers. Finally, we show how
to calculate the scattering term from the equation of motion for an individual ice floe and present
a straightforward method to solve the linear Boltzmann equation for some simple cases.
2. The linear Boltzmann equation for wave scattering in the MIZ

In this section we present a derivation of the linear Boltzmann equation for wave scattering in
the MIZ that follows closely the derivation given in Meylan et al. (1997) but corrects an error in
this earlier derivation. The linear Boltzmann equation is applicable to the propagation of wave
energy through the MIZ over length and time scales large relative to the incident wavelength
and wave period, respectively. Over such large scales, we assume that wave energy is incoherent.
We consider the surface of an infinitely deep ocean represented in Cartesian co-ordinates by
r = (x,y). Wave energy is propagating across this surface in all directions so that, at any point,
we must consider the energy travelling in each direction. We introduce an intensity function
I(r, t,h) which is the rate of flow of energy travelling in a given direction, per unit surface, per unit
angle. In the absence of scatterers, we assume that the waves continue to propagate in the same
direction and that the energy intensity satisfies the following equation:
1

cg

o

ot
Iðr; t; hÞ þ ĥ:rIðr; t; hÞ ¼ 0 ð1Þ



420 M.H. Meylan, D. Masson / Ocean Modelling 11 (2006) 417–427
(Phillips, 1977), where ĥ is a unit vector in the h direction and cg is the speed of wave propagation
(the deep water group speed). The presence of the floes will modify this expression by scattering
energy, i.e. by changing the direction in which the energy is travelling.

We modify Eq. (1) to take into account the scattering effects of the ice floes using the general
equation for the propagation of wave energy through a scattering medium,
1

cg

o

ot
Iðr; t; hÞ þ ĥ � rIðr; t; hÞ ¼ �bðr; hÞIðr; t; hÞ þ

Z 2p

0

Sðr; h; h0ÞIðr; t; h0Þdh0 ð2Þ
(Howells, 1960), where b is the absorption coefficient and S is the scattering function (assumed to
be independent of time). Eq. (2) depends on the assumption that each floe scatters independently
and that the energy from different scatterers may be added incoherently. The absorption coeffi-
cient, b(r,h), is the fraction of energy lost by scattering and dissipative processes (assumed linear)
from a pencil of radiation in direction h, per unit path length travelled in the medium. The scat-
tering function S(r,h,h 0) specifies the angular distribution of scattered energy in such a way that,
Sðr; h; h0ÞIðr; t; h0ÞdXdS dX0 ð3Þ

is the rate at which energy is scattered from a pencil of radiation of intensity I(r, t,h 0) at an angle
dX 0 in direction h 0, by a surface dS at position r, into an angle dX in direction h. To apply Eq. (2)
to wave scattering in the MIZ we must first estimate the scattering function S(r,h,h 0) and the
absorption coefficient b(r,h).

The scattering function is determined by calculating the scattering from a single ice floe. Each
ice floe scatters energy, and the energy radiated per unit angle per unit time in the h direction for a
wave incident in the h 0 direction, E, is given by
Eðh � h0Þ ¼ H
2

� �2 qxg
4k

jDðh � h0Þj2; ð4Þ
where H is the wave height, q is the water density, x and k are the radian frequency and wave-
number of the wave, respectively, and g is the acceleration due to gravity. D(h � h 0) is the scat-
tered amplitude for which, at a large distance, r, from the scatterer, the asymptotic amplitude
of the outgoing wave in the h direction, for an incident wave travelling in the h 0 direction, is given
by
H
2

Dðh � h0Þffiffi
r

p : ð5Þ
Note that, in Eqs. (4) and (5), we have assumed that the scattering is isotropic (depends only on
the difference of angle). This will not necessarily be true for a given ice floe, but we expect this to
be true in the MIZ since there are no special directions in which the ice floes are oriented, and the
floes are of random shape.

We must now express the scattering kernel in Eq. (2), S(r,h,h 0) in terms of E, Given the defi-
nition of S (Eq. (3)), S can be found by dividing E by the rate of energy which is passing under
the ice floe. The rate of energy passing under the floe is given by the product of the wave energy
density (1

8
qgH 2, since H/2 is the wave amplitude and we are considering only the energy in the

water), the average area occupied by a floe (Af/fi, where Af is the average area of the floe and
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fi is the fraction of the surface area of the ice covered ocean which is covered in ice), and the wave
group speed (x/2k). This gives the following expression for S:
Sðh; h0Þ ¼ H
2

� �2 qxg
4k

jDðh � h0Þj2 4f ik

qgH 2Afx
¼ fi

Af

jDðh � h0Þj2: ð6Þ
This expression is not exactly the same as the equivalent expression in Meylan et al. (1997)
because, in the derivation for S in Meylan et al. (1997), the wave phase speed rather than the
group speed was erroneously used.

We can determine b from the absorption cross section, ra, and the ice cover fraction fi (M&Le,
p. 58). The absorption cross section, ra, may be estimated from the total scattering or from
experimental measurements. The expression for b is the following:
b ¼
Z 2p

0

fi
Af

jDðh � h0Þj2 dh0 þ ra
fi
Af

: ð7Þ
Combining Eqs. (2), (6) and (7), the following linear Boltzmann equation for wave scattering in
the MIZ is obtained:
1

cg

oI
ot

þ ĥ:rI ¼
Z 2p

0

fi
Af

jDðh � h0Þj2Iðh0Þdh0 �
Z 2p

0

fi
Af

jDðh � h0Þj2 dh0 þ ra

fi
Af

� �
IðhÞ: ð8Þ
3. The multiple scattering theory of M&Le

The scattering theory of M&Le was the first model which properly accounted for the three
dimensional scattering which occurs in the MIZ. The model was derived using multiple scattering
and was presented in terms of a time step discretisation and only for ice floes with a circular geo-
metry. Their scattering theory included the effects of wind generation, nonlinear coupling in fre-
quency and wave breaking. However, what was original in their work was their equation for the
scattering of wave energy by ice floes. M&Le began with the following equation for the evolution
of wave scattering:
oI
ot

þ cgĥ:rI ¼ ðSin þ SdsÞð1� fiÞ þ Snl þ Sice; ð9Þ
where Sin is the input of wave energy due to wind forcing, Sds is the dissipation of wave energy due
to wave breaking, Snl is the non-linear transfer of wave energy and Sice is the wave scattering. Sim-
ilarly, the terms Sin, Sds, and Snl could be added to Eq. (2). However, the purpose of this paper is
to derive a consistent equation for Sice. M&Le solved Eq. (9) in the isotropic (no spatial depen-
dence) case. Furthermore, they did not actually determine Sice but derived a time stepping proce-
dure to solve the isotropic solution using multiple scattering. We will derive Sice from their time
stepping equation.

M&Le derived the following difference equation as a discrete analogue of Eq. (9)
Iðfn; h; t þ DtÞ ¼ ½T�fn ½Iðfn; h; tÞ þ ððS in þ SdsÞð1� fiÞ þ snlÞDt�; ð10Þ
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where fn is the wave frequency (M&Le, Eq. (51)). It is important to realise that ½T�fn is a function
of Dt in the above equation. We are interested only in the wave scattering term so we will set the
terms due to wind input (Sin), wave breaking (Sds) and non-linear coupling (Snl) to zero. These
terms can be readily included in any model if required. M&Le discretised the angle h into n evenly
spaced angles hi between �p and p. [T] fn is then given by
ðT ijÞfn ¼ A2fb̂jDðhijÞj2Dh þ dðhijÞð1þ jacDð0Þj2Þ þ dðp � hijÞjacDðpÞj2g; ð11Þ
where hij = j(hi � hj)j (M&Le, Eq. (42)). In Eq. (11), b̂ (this notation is chosen to follow from
M&Le who used b and to avoid confusion with the expression for b in Eq. (2) and which is used
in Howells (1960) and Meylan et al. (1997)) is a function of Dt given by
b̂ ¼
Z cgDt

0

qeðrÞdr ð12Þ
(M&Le, p. 68). The function qe(r) gives the ‘‘effective’’ number of floes per unit area effectively
radiating waves under the single scattering approximation which is to assume that the amplitude
of a wave scattered more than once is negligible. It is given by
qeðrÞ ¼
2ffiffiffi

3
p

D2
av 1� 8a2ffiffi

3
p

D2
av

� �1=2
1� 8a2ffiffiffi

3
p

D2
av

 !r=2a

ð13Þ
(M&Le, Eq. (29), although there is a typographical error in their equation which we have cor-
rected) where Dav is the average floe spacing and a is the floe radius (remembering that M&Le
considered circular floes). The energy factor A is given by,
A ¼ 1þ jacDð0Þj2 þ jacDðpÞj2 þ b̂
Z 2p

0

jDðhÞj2dh þ fd

� �1
2

ð14Þ
(M&Le, Eq. (52)), where the term fd represents dissipation and is given by
fd ¼ e
fi
Af

racgDt � 1
(M&Le, Eq. (53)) and ac, the ‘‘coherent’’ scattering coefficient, is given by
ac ¼
2p
k

� �1=2

exp
ip
4

� �
2ffiffiffi

3
p

D2
av 1� 8a2ffiffi

3
p

D2
av

� �1=2

Z cgDt

0

expðikxsÞ 1� 8a2ffiffiffi
3

p
D2

av

 !xs=2a

dxs: ð15Þ
It should be noted that the upper limit of integration for ac was given as infinity in M&Le. This is
appropriate in the steady case only; it should have been changed to cgDt in the time dependent
case. However, this corrrection leads to only negligible quantitative changes to the results.

We will transform the M&Le scattering operator T by taking the limit as the number of angles
used to discretise h tends to infinity. On taking this limit, the operator T(DT) becomes
TðDT ÞIðhÞ ¼ A2 b̂
Z 2p

0

jDðh � h0Þj2Iðh0Þdh0 þ IðhÞ
	 


:
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The scattering theory of M&Le depends on the values of the time step Dt and the correct solu-
tion is found for small time steps. We will now find the equation in the limit of small time steps by
taking the limit as Dt tends to zero. As we shall see, when this limit is taken, there is a considerable
simplification in the form of the equation. Since
Iðt þ DtÞ ¼ TðDtÞIðtÞ;
we obtain the following expression for the time derivative of I,
oI
ot

¼ lim
Dt!0

TðDtÞIðtÞ � IðtÞ
Dt

� �
:

We can calculate this limit as follows:
lim
Dt!0

TðDtÞIðtÞ � IðtÞ
Dt

� �
¼ lim

Dt!0

A2 b̂
R 2p
0

jDðh � h0Þj2Iðh0Þdh0 þ IðhÞ
n o

� IðhÞ
Dt

0
@

1
A

¼ cgqeð0Þ
Z 2p

0

jDðh � h0Þj2Iðh0Þdh0 � cgqeð0Þ
Z 2p

0

jDðh � h0Þj2 dh0

þ fi
Af

racgIðhÞ: ð16Þ
We can simplify Eq. (16) by using Eq. (13). The value of qe(0) is given by
qeð0Þ ¼
2ffiffiffi

3
p

D2
av 1� 8a2ffiffi

3
p

D2
av

� �1=2
¼ fi

Af

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4f i=p

p ; ð17Þ
where we have used the fact that fi ¼ 2pa2=
ffiffiffi
3

p
D2

av and Af = pa2.
If we substitute our expressions for qe(0) in Eq. (16) and include the spatial term (which was not

in M&Le since they assumed isotropy) and divide by Cg, we obtain the following linear Boltz-
mann equation:
1

cg

oI
ot

þ ĥ:rI ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4f i=p

p Z 2p

0

fi
Af

jDðh � h0Þj2Iðh0Þdh0

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4f i=p

p Z 2p

0

fi
Af

jDðh � h0Þj2 dh0 þ ra
fi
Af

 !
IðhÞ: ð18Þ
If we compare Eqs. (8) and (18) we see that they are identical except for the factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4f i=p

p
in the two components resulting from the scattering. This difference comes from the fact that, in
M&Le, multiple scattering is neglected by using an effective density, qe, in lieu of the number den-
sity q0. As shown in Eq. (17), the effective density is related to the number density as
qeð0Þ ¼ q0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4f i=p

p
. In summary, we have shown that, by taking the limit as the number of

angles tend to infinity and as the time step Dt tends to zero in the scattering equation of
M&Le, we obtain a linear Boltzmann equation equivalent to the equation given in Meylan
et al. (1997) (once the error in this earlier work has been corrected).
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4. Determining the scattering amplitude

The central difficulty in applying Eqs. (8) and (18) is the determination of the scattering ampli-
tude D(h � h 0). The scattering amplitude is found by solving the boundary value problem which
arises when an isolated floe is subject to linear wave forcing. The exact equations depend on the
equations chosen to model the movement of the ice floe. The solution to the equations of motion
depends on the model used to describe an ice floe. The principal difference between the ice floe
models used by Meylan et al. (1997) and M&Le is the following. Meylan et al. (1997) assumed
that the ice floes had negligible submergence but could flex, while M&Le assumed the floes were
rigid but allowed for submergence. Both models have different ranges of validity (although typical
ice floes tend to be relatively thin). Of course, either ice floe model could have been used in the
large scale scattering models derived by M&Le and Meylan et al. (1997). Here we simply present
the equation for D(h) independent of the equation used to model the ice floe.

The water is assumed irrotational and inviscid and the wave amplitude is assumed sufficiently
small that we can linearise all the equations. The water motion is represented by a velocity poten-
tial which is denoted by /. The coordinate system is the standard Cartesian coordinate system
with the z-axis pointing vertically up. The water occupies the region �1 < z < 0. We denote
the free surface by Cs (located at z = 0) and the wetted surface of the ice floe by Cw.

The linearised boundary value problem for the fluid velocity potential /(r,z) subject to an
incoming wave of frequency x is
r2/ ¼ 0; �1 < z < 0;

o/
oz

¼ 0; z ! �1;

o/
oz

¼ k/; z 2 Cs;

o/
oz

¼ L/; z 2 Cw

9>>>>>>>>>=
>>>>>>>>>;

ð19Þ
(e.g. Meylan and Squire, 1996; Peter et al., 2004 or M&Le). The Laplace�s equation comes from
the fact that the water is irrotational and inviscid. The vanishing of the normal derivative at
z = �1 is the no-flow through the boundary condition at the bottom of the infinitely deep ocean.
The condition at the free surface is the standard linear free surface condition. At the wetted sur-
face of the ice floe the exact equation of motion depends on the way in which the floe is modelled
(for example whether it is flexible or rigid) and we represent this by the operator L. To actually
solve Eq. (19) requires us to choose a specific model for the ice floe and hence to determine L.
Meylan et al. (1997) assumed that the ice floes had negligible submergence but could flex. The
solution to Eq. (19) for this case is described in Meylan and Squire (1996); Meylan (2002); Peter
et al. (2004). M&Le assumed the floes were rigid but allowed for submergence and the solution to
Eq. (19) in this case is described in Masson and LeBlond (1989) and Sarpkaya and Isaacson
(1981).

Eq. (19) requires boundary conditions as x or y tend to infinity which are found from the
incident or driving wave, denoted /In. We assume that /In is a plane wave travelling in the
x direction,
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/Inðr; zÞ ¼ xH
2k

eikxekz: ð20Þ
The condition as jrj ! 1 is the standard Sommerfeld radiation condition (e.g. Wehausen and
Laitone, 1960)
ffiffiffiffiffi
jrj

p o

ojrj � ik
� �

/ � /In
� �

¼ 0; as jrj ! 1: ð21Þ
Once we have found the solution to Eq. (19), we obtain the absolute value of the scattering
amplitude D as
jDðhÞj ¼ 1

H=2

k
2p

� �1=2 x
g

� �
jHðp þ hÞj;
where the Kochin function H(s) is
HðsÞ ¼
Z Z

Cs

� d/
dn

þ /
d
dn

� �
ekzeikðx cos sþy sin sÞdS; ð22Þ
where d/dn is the inward normal derivative.
5. Numerical solution of the transport equation

We present here a simple method to solve the linear Boltzmann equation. It involves simplify-
ing assumptions of the spatial or temporal independence of the solution as well as a discretisation
of the equation in angle. We begin by assuming that the solution is only a function of the x spatial
co-ordinate and time, i.e. there is no y dependence of the solution. We also consider a uniform
MIZ so that the scattering function, 5, is a function only of h and h 0 and b is a constant. The only
variation we allow spatially is that the MIZ occupies the region x > b, i.e. the ice edge is at x = b.
This will allow us to consider a wave spectrum which enters the MIZ from the open ocean. Under
these assumptions Eqs. (8) and (18) become,
1

cg

oI
ot

þ cos h
oI
ox

¼ �bI þ
R 2p
0 Sðh � h0ÞIðh0Þdh0; x > b;

0; x < b:

(
ð23Þ
To solve Eq. (23) we convert the problem to a matrix equation by introducing a discretisation in
angle. We use a discrete ordinate method (Case and Zweifel, 1967) and represent the angular coor-
dinate by a discrete set of n angles evenly spaced between 0 and 2p hj ¼ 2pj

n ; 0 6 j 6 n� 1;
� �

. This
approximation converts Eq. (23) to the following equation:
1

cg

o~I
ot

� o

ox
D~I ¼ �b~I þ S~I ; x > b;

0; x < b:

(
ð24Þ
In Eq. (24) the intensity~I is now a vector of functions of x and t for each angle hj and the elements
of the matrices D and S are given by,
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dij ¼
� cosðhiÞ; i ¼ j;

0; i 6¼ j;

	
ð25Þ
and
sij
�b þ Sðhi � hiÞ 2p

n ; i ¼ j;

Sðhi � hjÞ 2p
n ; i 6¼ j;

(
ð26Þ
respectively. Eq. (24) can be easily solved in the stationary (no time dependence), or isotropic (no
spatial dependence) case. Meylan et al. (1997) solved the stationary problem and M&Le solved
the isotopic problem (with wind forcing etc.). In the stationary case Eq. (24) reduces to, setting
the ice edge to b = 0,
� o

ox
D~I ¼ �b~I þ S~I ; x > 0: ð27Þ
For the isotropic case, Eq. (24) reduces to, setting the ice edge to b = �1,
1

cg

o

ot
~I ¼ �b~I þ S~I ; t > 0: ð28Þ
Eqs. (27) and (28) can be solved by straightforward matrix methods (e.g. Ishimaru, 1978). Eq. (27)
requires boundary conditions (the wave spectrum at the ice edge x = 0 and a condition as x! 1)
and Eq. (28) requires an initial condition (the wave spectrum at t = 0).
6. Summary

We have shown that the scattering theory of M&Le can be reduced to the linear Boltzmann
equation if the discrete equation is converted to a differential equation by taking the appropriate
limits. We also showed that this linear Boltzmann equation is equivalent to the linear Boltzmann
equation presented in Meylan et al. (1997) with an error corrected. The difference between the
two theories is a term which comes from the fact that M&Le explicitly neglected multiple scatter-
ing. Finally, we have shown how the scattering term is calculated from the equation of motion
for an individual ice floe and how the linear Boltzmann equation can be solved in certain
situations.
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