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ABSTRACT

The reflection of water surface waves by long undersea ridges and valleys is studied on the basis, of
linear longwave theory and of refraction theory. If L is the wavelength and & the local water depth,
then for small (L/h)dh/dx the first approximation to the reflection coefficient is established for a large

class of smooth depth distributions A(x).

1. Introduction

Surface wave reflection by submerged mountain
ranges has been studies for tsunamis by Kajiura
(1963) and Carrier (1966), among others. Kajiura
emphasized that the largest reflection coefficients
arise from steep steps [(L/h)dh/dx > 1], but that is
only helpful when such topographic features are
actually present. Usually they are not and, in fact,
(L/h)dh/dx is rather small and the logical approach
is in terms of a ‘‘slowly varying’’ seabed topography
(Carrier, 1966). The physical process is then a fairly
gradual modulation of the waves by the depth
changes.

The natural mathematical model for this is to
recognize a typical value € of (L/h)dh/dx as a small
parameter in the linear longwave equations. How-
ever, the established type of analysis on such lines
(Carrier, 1966) failed to yield an actual estimate of
reflection because it runs into the WKB paradox
(Mahony 1967): the established methods of wave
modulation, whether classical (WKB, etc.) or
modern (two-timing, averaging, etc.), aim at asymp-
totic expansions in powers of €, but the reflection
coefficient has a different asymptotic character
when the seabed is smooth.

The same difficulty arises in the rigorous approach
(Kreisel, 1948; Fitz-Gerald, 1977) based on the
classical linear equations of surface waves (Stoker,
1957) in two dimensions free of a priori approxima-
tions relative to (L/h)dh/dx or L/h. Exact solutions
are obtainable via successive approximations but
their use in estimating reflection when (L/h)
dh/dx is small is impeded by the WKB paradox.

One aspect of the paradox is that estimates of
reflection are readily obtained when the seabed
topography is not smooth (Harband, 1977) and these
indicate misleadingly that wave reflection tends to
zero with increasing smoothness. Mahony (1967)
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has conjectured that the reflection coefficient then
becomes transcendental in e, and this is proved
below.

This in itself is sometimes taken as a justifica-
tion for neglecting reflection—but by comparison
with what? That more wave energy be transmitted
to one shore of the ocean, does not help in estimat-
ing the reflected energy experienced at the opposite
shore. Moreover, Olver (1964) has emphasized that
exponentially small terms need not be quantitatively
smaller than first-order algebraic terms in an asymp-
totic expansion, even when ¢ is quite a small num-
ber. Most of all there are many circumstances when
(L/h)dh/dx is not very small, but it may be antici-
pated with confidence that the physical process is
essentially a modulation of waves during propaga-
tion, and then the reflection coefficient is not par-
ticularly small; but the established methods fail
to furnish any estimate for it.

This paper reverses the approach of the earlier
authors. The WKB paradox is broken first and the
result is used to examine questions of accuracy
(Section 5).

For this, it is helpful to start with the simplest,
approximate model, namely the linear longwave
(or shallow-water) equation and to establish the pre-
cise, first approximation for the reflection coeffi-
cient for small (L/h)dh/dx in this framework for
topographies where the depth A(x) is a smooth
analytical function of only one horizontal coordinate
x. The advantage of this model lies in the trans-
parency and concreteness of the results. It is also the
most plausible model for tsunamis.

Next, the linear longwave equation is replaced
by the refraction equation, which is free of restric-
tions to shallow water and covers all wavelengths
impartially for small (L/h)dh/dx. The precise, first
approximation in this framework is obtained by a
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quite similar analysis in Section 4. The longwave
result emerges as a special case. The advantage of
this model lies in the definiteness of the result,
even without restriction to two-dimensional water
motion.

Its disadvantage lies in the lack of information on
its accuracy and limitations, which arises from the
inadequacy of present knowledge about its rigorous
basis. Therefore, Section 5 adds some comments
on the impact which further development of the
more exact theory may be anticipated to have on
the present reflection results.

2. Longwave approximation

Surface waves of sufficiently small amplitude in
water of depth small compared to the wavelength
are often found to satisfy the linear longwave
equation (Stoker, 1957; Longuet-Higgins, 1967)

V2 — (gh)'Yar + h'Vh-V{ =0 (1)

for the surface elevation {(X,Y), where h(X,Y) is the
undisturbed water depth and g the gravitational ac-
celeration. The water depth will here be assumed to
depend on only one coordinate and to vary slowly
with it, s = h(eX), € < 1. Fourier analysis in Y and ¢
then leads to a representation of { in terms of
modes

{ = F(X) expi(BY — ot)

with real constants 8, o; for a direct interpretation,
the real part may be taken everywhere. From (1),
F must satisfy

d(hdFldX)dX + (o%g — B*h)F = 0 2

and in terms of the topographical distance x = eX
and intrinsic distance

&= r a(x"ydx', of = o¥l(gh) — B, 3)
0
F(X) = f(¢) must satisfy
d¥ldé + 2¢(&)dfidé + €7*f = 0, “)
2¢(¢) = a~¥a? — 0?2gh)h~'dh/dx. (5)

This mathematical transformation mirrors a
natural, physical change of viewpoint which is most
casily described in the case of normally incident
waves for which 8 =0. Then « = o/(gh)!? is the
familiar wavenumber of longwaves (and more gen-
erally, a is the relevant wavenumber component).
Any physical measure of distance should be related
to the wavelength, which varies due to modulation
by the seabed, so that d¢ = adx is the simplest
and most familiar definition of natural distance é£.
The reference to x, rather than X, reflects the expec-
tation that significant changes occur only over many
wavelengths, so that wave distance ¢ is more con-
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veniently related to hundreds of wavelengths, so to
speak; the individual-wave distance is £/e. Physi-
cally, there is no good reason to refer to map dis-
tance x from here on. The endless mathematical
difficulties that arise from needless reference to map
distance x are illustrated by Chapman and Mahony
(1978).

The physically natural form (4) of the longwave
equation shows the influence of the seabed on wave
development to be entirely described by the modula-
tion function ¢. For normally incident waves (8
= 0), it is simply

& = h-1d(hi/dE,

i.e., the relative rate of change of the depth func-
tion 44 that describes amplitude enhancement due
to energy conservation on the most familiar, crude
longwave approximation. Physically, depth is more
naturally measured by the wave depth function G
introduced in Section 4 but for longwaves the dis-
tinction is slight. The decisive role of ¢ in govern-
ing wave modulation is therefore plausible but it is a
local measure of depth variation and the task at hand
is to discover those overall properties of ¢ which
determine wave reflection.

For the sake of a clear-cut, classical definition of
reflection, A(x) will be assumed to tend to positive
limits A, h_ as x — = such that the correspond-
ing wavenumber limits «,, a_ are also positive and
dhl/dx — 0. The problem of transmission and re-
flection is then to find the numbers 7, r such that

e ¥l > 1 as

but e¥<(f — e¥) > r as

£E— o

£ — —oo,

(©)

If o be chosen >0, this radiation condition specifies
an incident wave f~ exp(i¢/e) of unit amplitude
together with a reflected wave r exp(—i¢/e) of (un-
known) amplitude » at £ = —, but only a purely
outgoing wave f ~ 7 exp(ié/e) at £ = +, The sense
of wave travel with respect to x depends on the
choice of sign for «. The amplitudes 7, r are actually
complex numbers, but the phase of r is rarely of
interest and the aim here will be to determine |r/,
which is independent of the signs of o and «, for
the following class of seabed topographies:

(A) h(x) and ho? = /g — 8% have positive lower
bounds (and of course, % is bounded above). This
excludes consideration of wave trapping (Ursell,
1952; Longuet-Higgins, 1967; Shen et al., 1968;
Meyer, 1970) for which questions other than reflec-
tion tend to be of primary interest.

(B) h'(x) is assumed smooth and absolutely
integrable because the seabed is normally of sedi-
mentary origin.

Further techuical qualifications will be introduced in
Section 3.
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Direct verification shows

v(€) = n~2g(&[1 — a(¢)] exp(—ifle) )
to satisfy (4) if
nYdnld¢ = 2¢(€), ®
£(8) = exp f " s(s)a(s)ds, ©
4
dald¢ = 2iale + (@®> — 1)¢, a(—») =0. (10)

In the case of normally incident waves (S8 =0),
n~12 = h=14 5o that the factor n="2 in (7) is seen to
represent the amplitude enhancement expected from
energy conservation already on the crudest long-
wave model. The factor exp(—ié/e) in (7) represents
a wave appropriate to the local depth and (1 - a)g
is the unknown function; g is used merely to simplify
the differential equation for a. Another approach
to (10) is found, for example, in Kajiura (1963).
If a bar denotes complex conjugation, (10) yields

d(aa)ld¢ = (aa ~ 1)a + a)¢

because ¢(¢) is real, and sincea — 0 as £ - —x, it
follows that aa = |a|? < 1 for all ¢£. Direct integra-
tion of (10) therefore shows

a(é)e~2ele = r {la(s)F — 1}d(s)e~25ds (11)

—»r {a®> — 1}pelds =a, as £—x (12)

because hypothesis (B) implies the absolute inte-
grability of ¢(¢). The conjugate, , is another solution,
found independent of v because ]a | < 1, and f must
therefore be a linear combination of v and 7. A
straightforward computation now leads from (6) to
the following representation of the transmission and
reflection coefficients as functionals of a(¢):

T = (- )1~ |ay[2)g(=),
r=a.g(—)/g(-).
Thus |r| is represented as a near-Fourier transform

Jw (az — l)d)e‘”f’fdf . (13)

It may be helpful to interrupt the analysis here for
two comments. The first concerns the meaning of
a(f). In many ways, it is best to regard it merely
as an auxiliary function of technical significance;
there are other formulations of the same analysis
(Chapman and Mahony, 1978) which do not involve
this function. On the other hand, the connection be-
tween the reflection coefficient r and the total
change a, = a(®) — a(—x) of a tempts one to inter-
pret a, — a(¢) as a kind of local reflection coeffi-
cient (Ogawa and Yoshida, 1959; Kajiura, 1963).
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That leads to a temptation to compute reflection
via approximations to the local values of a(¢), which
are easy to find. Both the differential equation (10)
and integral equation (11} for a(¢) indicate that
Ia(f)l <1 [in fact, Ial = O(e)], and if a2 be there-
fore neglected against unity in (10) or (11), the
going is easy. . . .

The second comment concerns the reason why
that road is liable to lead to quite wrong results, and
it goes to the heart of the matter. The integral in (13)
has the awkward property that the integrand is not
small but fluctuates so rapidly that almost all of its
contributions to the integral cancel one another.
Indeed, if we write the integral in its two parts,

r ¢e—2i§’/ed€ — [ a2¢e—2i§/5d§’ s

then the mutual cancellations in the first integral are
so severe that the whole integral is much smaller
than even |a |2 (i.e., is <€?. Even the second
integral is afflicted by the cancellation sickness
(sometimes referred to as a WK B-paradox), it is also
<¢?, and in the end, both integrals turn out to be of
comparable magnitude. The smallness of [a(§)| is
deceptive. To avoid wrong reflection results (to
which many literature references could be given), we
should therefore aim to break the WKB-paradox
by reformulating the integral in (13).

Indeed, the embarrassment of cancellations can
be turned to advantage by the method of complex
embedding familiar in Fourier integral theory
(Titchmarsh, 1937). It starts with thinking of the
wave distance £ as a complex variable. The smooth-
ness of sedimentary seabeds then suggests looking
at modulation functions ¢(¢) which are analytic func-
tions. The original path of integration in (13) along
the real axis of £ may then be deformed into the
lower half-plane where the magnitude of the offend-
ing factor exp(—2i¢/e) decreases rapidly with e. For
maximum advantage, the path should be shifted to a
line parallel to the real ¢ axis so that a constant
factor exp(2 Im &/€) can be extracted from the
integral and the lowest possible value —m, say, of Im
& should be used to get the smallest possible such
factor; the cancellation sickness of (13) must then
necessarily be cured.

Now, the path of integration can be deformed un-
til, and only until, it approaches a singular point of
the integrand. That requires only consideration of
the modulation function ¢(¢) given by (5) because
(10) or (11) can be used (Coddington and Levinson,
1955) to show a(¢) to be analytic where ¢(¢) is.
The best number m that could be hoped for is there-
fore the distance between the real ¢ axis and the
singular point of ¢(§) nearest to that axis. We are
thus led to suspect a fundamental connection be-
tween wave reflection and the breakdown of ana-
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lyticity of the modulation function with increasing
distance from the real ¢ axis.

3. Analysis

It is desirable to state clearly to what extent these
conjectures have been proved. For simplicity, at-
tention will be restricted now to water depth func-
tions Ah(x) which are analytic functions. [More
general classes of smooth functions can be treated
as limits of analytic functions (Meyer and Guay,
1974; Stengle, 1977).] By assumption A and Egs.
(3), and (5), ¢(¢) is then also analytic, and since
it is real for real ¢, its domain of analyticity is sym-
metrical with respect to the real ¢ axis. The forms
of breakdown of this analyticity covered by available
mathematical theory may be described by the fol-
lowing hypothesis:

(C) The modulation function ¢(¢) is analytic for
IImg ] =< m, except for a set (without limit point)
of singular points with {Im¢| =m > 0 arising from
‘‘transition points” x, of the wavenumber o or
depth 4 of the type

a(x) = (x — x¢)"2a,(x), wvreal
h(x) = (x — xo)y(x), A<1

with functions «,(x), #,(x) analytic and nonzero at
xo. Thus 2m denotes the width of the analytic domain
of ¢(&).

The new viewpoint of complex embedding also re-
quires an extended interpretation of the radiation
condition (6) which defines reflection, and an ade-
quate one is as follows:

(D) ¢(£) — 0 as [re¢| — o« uniformly in [Im¢|
<m, and for Im¢ = —m, (&) is absolutely inte-
grable with respect to Re¢ over (—«,—M) and
(M ,») for some M independent of €. In terms of the
raw depth h(x), this is assured by the analogous
hypothesis on 4'(x), i.e, replace ¢(¢) by h'(x), £ by
x, and m by m/a, _ in (D).

It may be noted that the hypotheses (A) to (D)
cover a large class of smooth seabed topographies.
A simple example is h(x) = 1 + k, tanhx, a natural
model of smooth transition in ocean depth, with
0 < k, < max[1,(6%gB*) — 1] for (A). Another is
h(x) = 2 — exp(—x?), a model of a symmetrical
ridge, with o® > 2¢8? for (A). In some special cases
the solution of (4)—(6) is known (Epstein, 1930) in
terms of classical functions and illustrates (Kajiura,
1963) the general, asymptotic reflection results to be
derived now.

The hypothesis (C), (D) imply that the line Im¢
= —m is a path of integration equivalent to the
real axis for the integral in (13), provided the singular
points of ¢(¢) are avoided by indentations of the
path. For definiteness, envisage first the case where
the only transition point x, is a zero (v > 0 in (14)] of

}, (14)
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o® = g%gh — 8*> and 8 # 0. The modulation function
@(¢) then has a branch point at £(x,) = &, such that

(€ — &P > 2 as £ &,
=12 +v) (15

by (3) and (5). Away from it, the Riemann-Lebesgue
lemma and a contracting map argument can be used
to solve the nonlinear integral equation (11) in
principle to show that

|a(§)|—>0 as €e— 0 for Im¢é=Imé = —m,
Reé =y, (16)

for any 7y, < Re&,. [The details of this and the
following arguments are found in Meyer (1975).]
Near the transition point, on the other hand, with
(&) = y(2) and dé/dz = n(£) defined by (8), Eq. (4)
becomes

2
dz? €

n=noz - 201 + 3 nfz - 2¥1, (1)

which meets the hypotheses of Langer (1932). His
analysis shows y(z) to be locally approximable in
terms of Hankel functions, but their asymptotic
expansions show only those of the first kind to be
compatible with (16). Apart from a constant factor,
Langer’s approximation thus becomes

y ~ (pm)2H P (p), p=me™™, m=(£- &e,

as €e— 0 in the »n-plane cut along its negative
imaginary axis, which is found to imply, by (7) to (9),

a(¢) ~ [yH2u(p) — HP(p))
[yH2u(p) + HP(p)], (18)

with y = exp(uvmi/2), and the power series and
asymptotic expansions of the Hankel functions
(Watson, 1944) now show (a* — 1)¢ to be absolutely
integrable with respect to Re£ even at &, despite
(15). A further contracting map argument for (11)
shows a(¢) to remain bounded at Im¢& = —m for
Reé > Reé,.

This information on a(¢) suffices to show that (13)
may be evaluated by the principle of stationary
phase (Jones, 1966) with dominant contribution
only from the critical point &. This gives by (11)
and the asymptotic expansion of (18) (Watson,
(1944)

l r | emle _5 2

(19)

as e€— 0.

T
COS
2+

The left-hand side of (19) gives the order of magni-
tude exp(—2m/e) of the reflection coefficient for
naturally gentle seabed topography (e < 1). Reflec-
tion therefore depends most of all on the analytic
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width 2m of the modulation function ¢(¢). This is
not, perhaps, a topographical scale which physical
intuition might have suggested as characteristic of
wave reflection. It is not related directly to either
the total depth change or the maximal seabed slope
|dh/dx | nor even the maximum of |d¢/d¢|. Rather,
m is the radius of convergence of the Taylor series
of ¢(¢) at that real value of ¢ where this radius is
smallest. Perhaps, m may best be called the wave
distance characterizing the maximal, local intensity
of modulation. Its ratio to the wavelength scale € is
the parameter of most influence on wave reflection.

For a quantitative evaluation of reflection, the
right-hand side of (19) is also important, and it is
seen to depend on the exponent in (14), i.e., on the
qualitative character of the transition point x, that
limits the analytic width of modulation. As an ex-
ample, consider the smooth shelf slope represented
by -

h = D{l + % tanh(x/l)]

with constants D, [ over which the depth increases
by a factor 3, for oblique waves with transverse
wavenumber, say, 8 = o/(2gD)V%. Then o? has a
sequence of roots where tanhx’ =2, x’ = x/[ but &
also has a sequence of poles on the imaginary x’
axis. For Rex’ = 0, tanhx’ = iw with real w increas-
ing monotonely with Imx’. By (3) 2(lo)~W(6gD)\?¢
= logf(tanhx') — logf(0) with

f) =1+ vl — )[4 — v + |12 = 302|V]
X [4+ v+ |12 — 302|123,
On the imaginary x' axis, therefore,
f(tanhx') = F(iw)/F(iw)?,
Fiw) = 1+ [3 + |12 + 3w2|2)(1 + iw)/(1 + w?),

and argF(iw) grows monotonely from 0 to #/3 as
w grows from 0 to «, so that argf{tanhx’) grows
from 0 to 47/3 as we follow the imaginary axis from
the origin to the first pole of 4. At x’ = %4 log3,
on the other hand, tanhx’ = %4 and as Imx’ increases
by im/2, tanhx’ traces a path to 2 through positive
arguments and argf (tanhx’) increases along it only
from 0 to 7. Hence, the root of o2 at tanhx' =2,
f(tanhx') = (V) expi7 limits the analytic width of
$(¢) and

m = mlo/(24g D)2,

Since the roots of o? are simple, v = 1 in (14) and
2 cos[#/(v + 2)] = 1 and from (19)

lr l = exp[—mnlo/(6gDe?)?].

For normally incident waves (8 = 0) on the same
shelf slope, by contrast, the analytic width of ¢(¢)
is similarly found to be limited by the pole of / at
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x' = —i7/2, with
Im¢, = m = #wlo/(6gD)"?
and A = —1 in (14). This also gives rise to a simple

root of a?, however, and
|r| = expl—2mla/(6gDe?)V2].

The changeover of transition point suggests exist-
ence of an intermediate incidence near which two
transition points make comparable contributions to
reflection.

Comparison of these reflection coefficients for
waves incident at different angles on the same
topography illustrates the marked increase of reflec-
tion with obliqueness of incidence. This is expected
since increase of B8 in (3) ultimately brings a root of
o close to the real ¢ axis [which is excluded by
(A) for the present account] and for still greater
obliqueness, refraction theory predicts almost com-
plete reflection (Shen er al., 1968).

For waves normally incident (8 = 0) on a ridge
represented by :

Hx) = D[2 — exp(—x?%1?%)]

the analytic width of the modulation function is
found from (3) to be

2m = al(gD)~'? r u Q2 ~ u) logul~"2du

1
= 2.7001(gD) 2.

It arises from the simple roots of h atx = +i(log2)'?
so that A =1 in (14), and the solution f of (4) may
then be approximated locally by Hankel functions
of zero order and (18), (19) hold with u = (2 + »)™!
= 0. The reflection coefficient is therefore

|r| =2 exp(—2m/e)

in this case.

Other cases may arise, e.g., singular transition
points of a with » < 0 in (14); for v < —2 such a
point is mapped on no £ For —2<v<0, a
modification (Meyer, 1974) of Langer’s (1932) analy-
sis can be employed to repeat the calculations; the
details are different (Meyer, 1975), but the result is
still (19). The same result is obtained for a singular
transition point of / (or G in Section 4) with A < 0
in (14) and B8+ 0 in (3), which corresponds to
v = 2M(1 —-\). A regular transition point of # (or G)
with 0 < A < 1in (14) corresponds to v = N/(1 — \)
in (17), and (19) still gives \rﬁ).

Finally, several transition points could share the
minimum of |Im¢ ] ; if those with Im¢ = —m < 0 be
ordered from left to right, in the sense of increas-
ing Re¢, then the analysis so far sketched covers
the part of the line Im¢ = —m to the left of the
second transition point. But the turning point and
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contraction arguments can then be applied afresh to
the second and further turning points, generally at
the expense of local approximation by Hankel func-
tions of both kinds (Meyer, 1975). The limit of
|r| exp2m/e, moreover, is the sum of individual
terms of the form (19) for each of these critical
points, with the appropriate approximation to a(¢)
for the respective points.

The examples illustrate the dimensional de-
pendence of reflection on

o(gD) /e = 27l/L

(Kajiura, 1963), where o is the frequency, D the
depth scale, [ the horizontal, topographic scale and
L, the wavelength which, for normal incidence in
particular, is L = 27(gh)"?%¢/o in x units, by (3) and
(6). The dependence of refiection on this parameter
is very strong, |r| is a power of exp(—2#//L), and
the precise power depends on the modulation in-
tensity measured by the analytic width 2m of ¢(¢).
It is noteworthy that, if a modulation function ¢
be the sum of two analytic functions of significantly
different analytic width, then that of smaller width
controls reflection, the other has only a relatively
negligible influence. This does not preclude that the
latter could account for most of the total depth
change or for most of the steepness of the seabed.

A little paradox arises therefrom when an ob-
served seabed topography is to be modeled mathe-
matically. Should the scatter in the data be smoothed
out? At first sight, it may appear that it should not,
for if a little analytic wrinkle {(£) be added to a
modulation function ¢(¢), then ¢ is likely to have
much the smaller analytic width and must there-
fore determine reflection. Modulation theory, how-
ever, is based on the premise //L > 1, and for its
application, the data must be smoothed to the extent
that the length scale / of topographic variation is
rather large compared with the wavelength L. If
that procedure leaves a bump in the data, on the
other hand, then this bump is indeed likely to
dominate wave reflection.

4. Refraction approximation

When the surface wavelength is not long com-
pared with the water depth, the motion decays
rapidly with increasing depth below the surface and
the local influence of the seabed on the motion is
reduced accordingly. Over many wavelengths,
nonetheless, gradual changes in water depth may
have an important effect on the development of the
surface wave motion. Refraction theory aims to
estimate this slow, cumulative effect without re-
striction to ‘‘shallow water.”

A mathematical model for this has been proposed
by Berkhoff (1973), Jonsson et al. (1976) and
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Lozano and Meyer (1976). It is motivated by the
simplifications arising from small wave ampli-
tude and slowness of the variation in water depth;
the first suggests linearization of the surface con-
dition and the second, a vertical structure of the
motion dependent to a first approximation on the
local depth, but not on its gradient. It follows that
the velocity potential has, to this approximation,
the form

® = ¥(x,y)e cosh{k(z + h))/cosh(kh) (20)
with dispersion relation
k tanh(kh) = o?/g 21

relating the local wavenumber k(x,y) to the depth
h(x,y) and frequency o. This leads (Lozano and
Meyer, 1976) to the equation

V(GVY) + k*GY =0 ] 2
G = [sinh(2kh) + 2kh)/[4k cosh®(kh)]

for the surface potential ¥(x,y); the wave-depth
function G here represents the attenuated measure
of water depth that effectively modulates the wave
when the water is not shallow; the surface eleva-
tion is { =io¥(x,y).

A rigorous derivation of this model from the classi-
cal linear theory under very restricted circum-
stances has been given by Harband (1977). More-
over, Lozano and Meyer (1976) have confirmed that
(22) yields the appropriate approximation to the
known exact solutions of the classical, linear water
wave equations and contains the heuristic models in
most common use, e.g., the ray theory of water
wave refraction.

If the water depth A(x) depends only on one
Cartesian coordinate x = X, as in the preceding
sections, then also k = k(x), G = G(x), by Egs.
(21) and (22) and Fourier analysis of (22) leads again
to modes W(X,Y) = F(X) expi(BY) which are now
governed by

d(GdF,/dX)ldX + (k*—- B*GF,=0. (23)
This is of the same form as (2), and in the long-
wave limit kA — 0, (21) and (22) show k? ~ o2/(gh)
and G ~ h, so that (2) is the longwave limit of (23).
Conversely, the analysis of Sections 2 and 3 applies
equally to (23) if
=k =, £ = | W) - g1
’ (24)
2¢(¢) = (’G)'d(aG)/dx

in the place of Egs. (3) and (5). The reflection
coefficient is therefore again given by (19),

|r| ~ 2e~2me as e—0, (25

T
COS
v+ 2
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with 2m now denoting the analytic width of the
modulation function defined by (24) and v, the order
of the transition point that limits this width, as de-
fined by (14) with G in place of 4 and a defined
by (24). If several transition points share the same
m, then they contribute additively to |r|.

5. Classical linear reflection

The theory of reflection outlined in the preceding
sections estimates a small effect on the basis of
an approximate theory. This raises the question
whether the approximate theory constitutes a frame-
work within which real water wave reflection can
be studied at all?

Part of the answer may be that for tsunamis,
e.g., the lincar longwave equation (1) appears as a
thoroughly plausible framework and within it, (19)
follows rigorously. In any case, the objection does
not apply to a study of underwater reflection in
the framework of the classical, linear theory (Stoker,
1957) based on linearization of the surface condi-
tion for small surface wave amplitude (unless cir-
cumstances be envisaged, e.g., on beaches, under
which nonlinear effects might make the dominant
contribution to reflection). It may therefore be ap-
propriate to reexamine the present results from the
viewpoint of the classical, linear theory.

A famous study of reflection on that theory for
two-dimensional motion is due to Kreisel (1948),
but his approach aims primarily at reflection from
engineering works of scale comparable to the wave-
length and does not therefore result in close bounds
for reflection by topographical features. A new
mathematical study was undertaken by Fitz-Gerald
(1977) also for the two-dimensional case, to de-
velop a rigorous solution procedure generating suc-
cessive approximations for deep water. Both studies
envisage that the depth tends to constant values as
x — *oo, and the asymptotic form of the potential
as x — =+ is therefore modeled exactly by refrac-
tion theory and the definition of the reflection
coefficient implied in Section 4 agrees precisely
with the exact definition. The exact reflection coef-
ficient is an integral (Fitz-Gerald, 1977)

[r| = (26)

r P(§)e2iffed§

closely analogous to (13). An approach to reflection
via refraction theory is therefore justified in
principle.

It follows from the analogy between (26) and (13)
that the magnitude of (26) again depends primarily
on the distance between the real ¢ axis and the
nearest singular point of P(¢). That distance, how-
ever, remains to be estimated, even to a first approxi-
mation, and the result (25) remains accordingly
subject to revision. For instance, if that distance
should be found to differ from the half-width m of
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d(€) by O(e), then the factor of exp(—2m/e) in (25)
would be substantially inaccurate. The longwave
approximation, on the other hand, involves both the
limits e — 0 and k4 — 0, and the same factor in
(19) might be more accurate, if k4 is sufficiently
small. .

The exact solution of the classical linear equa-
tions for a special shelf slope has been obtained
by Roseau (1952) and its reflection properties have
been discussed by Kajiura (1963). The approach
through a special velocity potential differs much
from the direct approach to reflection in this article
and a detailed comparison has not yet been made
but the results appear to support refraction theory
when the waves are slowly modulated. Unless the
water be deep throughout, that requires a gentle
slope in this solution, and the reflection coefficient is
then |r| = exp(—2m/e) where € < 1 is a measure of
the slope, D is the water depth over the shelf and m,
the positive root of m tanhm = ¢®D/g. Thus m
= kD from (21), where k is the wavenumber
over the shelf. One conclusion is that, except for
deep water, reflection by slow modulation is here
dominated by the top of the shelf slope where the
modulation function has its smallest analytic width.
The toe of the slope has little influence on reflection.

An interesting facet of the special solution is that it
permits us to discuss separately the limits of zero
shelf slope € and zero water depth D over the shelf.
As D decreases so does m, and for waves that are
long over the shelf, o(D/g)¥?> — 0 and m ~ o(D/g)*>.
As D — 0 for fixed slope, |r(—> 1 for all nonzero
slopes from the exact solution. As ¢ — 0 for fixed
D >0, by contrast, |r| — 0. Indeed the double
limit D — 0, e— 0 of this special solution displays
the features of the beach reflection paradox (Meyer
and Taylor, 1972) and thereby suggests the intriguing
possibility that waves of small enough amplitude on
a sloping beach are completely reflected before they
reach the shoreline. That process, however, is out-
side the scope of refraction theory, which applies
only when o(D/g)'?/e > 1.
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