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ABSTRACT

A limitation on the performance of complex empirical orthogonal function (CEOF) analysis in the time
domain is illustrated with synthetic, noise-free, nondispersive, propagating signals, Numerical examples using
a band-limited white spectrum and a simulation of costal-trapped waves sampled with an array of tide gauges,
demonstrate that CEOF analysis is degraded with increasing AxA X (A« is the wavenumber bandwidth and AX
is the instrument array length). A relatively wide wavenumber bandwidth { AxA X > 0(2x)] results in a significant
loss of variance recovery towards the ends of the array. The CEOF method does yield an average frequency
and wavenumber for the first mode, independent of AxAX, that accurately estimate the phase speed of the
nondispersive propagating signal. These simple simulations indicate that modal spatial patterns from a time
domain CEOF analysis of wide-banded signals should be interpreted cautiously.

1. Introduction

Empirical orthogonal functions (EOFs, Lorenz
1956), a standard technique for describing coherent
variability in geophysical data, give the most efficient
description of the observed variability, often reducing
large datasets to a few dominant modes. These domi-
nant empirical modes are sometimes useful in repre-
senting dynamical modes in the data (e.g., Kundu et
al. 1975), although the requirement of orthogonality
in both time and space, the use of the covariance (or
correlation) matrix at zero lag to describe the vari-
ability, and the particular sampling of the observed
field require careful consideration before assigning any
physical significance to a given mode. In particular,
the use of the zero-lagged covariance matrix limits the
analysis to the detection of patterns that are in phase
or = out of phase over the array.

An alternative method for detecting propagating
patterns is complex empirical orthogonal function
analysis in either the frequency (Brillinger 1975) or
time domains (Rasmusson et al. 1983). The former
obrains principal components from the cross-spectral
matrix, while the latter, termed CEOFs' in the present
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note following Barnett (1983), obtains principal com-
ponents and temporal expansions from an essentially
“wide-banded” cross-spectral matrix, The advantages
of performing CEOF analysis in the time domain are
that problems associated with spectral estimation are
(apparently) avoided, phase speeds may be computed
in a straightforward manner, and time series recon-
struction from the CEOF modes provides a convenient
means for determining the temporal nature of the
propagating signal. Time domain analysis has been
used to detect large-scale traveling patterns in meteo-
rologic (Barnett 1983; and others) and oceanographic
observations (White and Tabata 1987; and others).
Horel (1984) has presented several examples of CEOF
analysis on synthetic time series. In his example 4, a
geophysical dataset is simulated as short-duration ir-
regularly occurring progressive waves traveling through
a square grid of sensors. The CEOF analysis is unable
to isolate this propagating variability in a single mode
and Horel concludes, “one should not expect to be
able to detect slow moving, irregularly spaced pulses
over vast distances accurately on the basis of complex
correlations.”

Here, we expand on Horel’s result by identifying the
nondimensional parameter that causes the spread of
propagating variability into more than one CEOF
mode. The discussion is limited to nondispersive waves
for which the analysis is best suited since, typically, a
single phase speed is estimated for each mode. The
present note is motivated by an unsuccessful attempt
to use time domain CEOFs in a study of coastal-trapped
waves observed in coastal sea level and moored obser-
vations along the Mexican Pacific coast (Merrifield and
Winant 1990). Tests of CEOF performance include
both band-limited, white spectra and a simulation of
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the coastal-trapped wave observations. These simple
examples show that CEOF analysis is not appropriate
for nondispersive processes that are broad-banded in
wavenumber ( Ax) relative to the array size (AX). Al-
though the relevance of the parameter AxA X is perhaps
intuitively obvious and also follows from standard
analysis of the coherence of wave phenomena, we feel
that this limitation of the CEOF method has not been
universally appreciated and can lead to erroneous in-
terpretation of modal spatial patterns. The results are
also relevant to frequency domain EOFs; however, we
emphasize the time domain analysis because wave-
number bandwidths tend to be inherently large.

2. The method

The time domain CEOF method obtains phase in-
formation about a scalar field without explicitly re-
sorting to a spectral analysis. Following Barnett (1983)
and Horel (1984), a scalar field u;(¢), where j signifies
spatial position (j = 1,2, - - -, N) and ¢ is time, is
represented in the usual Fourier sense as

ui(1) = 3 [a(w) cos(wt) + b(w) sin(wt)]. (1)

To obtain phase information between stations, a com-
plex representation of u;(¢) is invoked:

Ui(t) = 2 c(w)e™, (2)

where ¢j(w) = aj(w) + ibj(w). Then Uj(¢) can be written
in the form

Ui(t) = 2 {[aj(w) cos(wt) + bj(w) sin(w?)]

+ i[bi(w) cos(wt) — g w) sin(w?)]}
= w(t) + iw(2). (3)

The real part of Uj(¢) is the original scalar field. The
imaginary part is the quadrature function of u;(¢), or
the Hilbert transform ( Thomas 1969 ), which is equiv-
alent to phase shifting each spectral component of u;(¢)
by 7 /2. In this study, # is obtained from the Fourier
coefficients.
The covariance matrix of Uj() is
Ci = (U (D Ur(2) ) (4)
where (..., denotes time averaging. It follows from
standard spectral analysis theory that

R ()
where ¢ is the cross spectrum and w, is the Nyquist
frequency. The CEOF analysis in the time domain ob-
tains the eigenfunctions of C and is, thus, equivalent
to a frequency domain EOF with the cross-spectrum
integrated over all frequencies.
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As in a standard EOF analysis, the eigenfunctions
B,(x), where n denotes mode number, are obtained
from C, and the temporal expansions are given by

N
Ay(t) = 2 Ui(2) Ba(x).

Jj=1

In a CEOF analysis, however, both B,(x) and 4,(r)
are complex. The complex time series can then be rep-
resented as

(6)

N
Ui(t) = 2 A1) B (x).

(7)
n=1
A spatial and temporal phase are defined as
0,(x) = —tan~'[ImB,(x)/ReB,(x)], (8a)
¢n(1) = tan~' [Im4,(£)/ReAn(1)], (8b)

with a wavenumber, frequency and phase speed for
each mode given by

kn = db,/dx (9a)
wy = d¢n/dt (9b)
Cp = Wn/Kn. (10)

3. Test cases

a. Band-limited white spectra

A nondispersive plane wave propagating at phase
speed ¢ past an array of sensors at positions j is given
by

ui(t) = 2, [a(w) cos(kx; — wt)

+ B(w) sin(kx; — wt)]
= > [ai(w) cos(wt) + bi(w) sin(wt)], (11)

where x = w/c, and
ai(w) = a(w) cos(kx;) + Bw) sin(kx;)
(12)

For this example, u;(¢) is a white, band-limited signal
given by

bj(w) = aw) sin(kx;) — B(w) cos(kx;).

Az, if (O] Sws (O5)
o w)® + Bw)* = . (13)
5 if w>w, w<w;.

Substitution of Eq. (2) into (4) yields

Cik = 2 lajar + biby + i(ajbe — bjax)], (14)
and using Eqgs. (12) and (13) gives
273

Cr=A? 3 e, (15)

w=w]

where Axj = x; — x;. Replacing the summation in
(15) with an integral gives
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Cie m~ A’T(2m)™" | g7y

= A®M sinc(AxAxj/2)e™ %% (16)

where Ak = k(w;) — k(w1), ¥ = (k(w3) + (w))/2, M
= (w2 = w;) T/ 27, sinc(y) = sin(p)/y.

We could not determine a general algebraic expres-
sion for the eigenvalues and eigenfulctions of C for an
arbitrary number of sensors (N). The case of two sen-
sors, however, illustrates some important properties of
C. The eigenvalues and eigenfunctions are given by

A2 = AM[1 * |sinc(AkAx/2)]],
Byp = (e7™, xe7%7), (17)

Note that the performance of the CEOF analysis, as
measured by the percentage of variance explained in
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mode 1, depends on the spread in wavenumber relative
to the array size; as the parameter AxAx decreases,
more of the variance is contained in the lowest CEOF
mode (Fig. 1a). The mode 1 wavenumber, determined
from Eqgs. (8) and (9), is k, the average wavenumber
of the band.

CEOQOFs of similar white, band-limited signals, but
sampled with arrays of N = 4, 6, 10 and 20 equally
spaced sensors over a fixed total array length (AX),
were computed numerically. For each value of N, 100
test runs are made by varying the phase speed and the
frequency bandwidth (w,, w,) of the wave signal, thus
fixing the wavenumber bandwidth and AxAX. The
percentage of the total variance explained by mode 1,
as a function of AxAX, is similar for all values of N
(Fig. 1a); it decays monotonically for AxAX < 2(N
— 1) and decays asymptotically to 100/N, the re-
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covered variance of one sensor, for AkAX > 2(N— 1).
For each test run, the mode 1 spatial and temporal
phases (8) correspond approximately to the average
wavenumber and frequency of the spectral band, and
the true phase speed of the propagating signal (10) is
always recovered in mode 1 to within 5% accuracy (see
Fig. 1b for N = 10).

The percentage of variance explained at each spatial
position by mode 1 (Fig. 2) shows that the decrease in
mode 1 total variance is due to the poor recovery of
the signal towards the ends of the spatial array. The
importance of the parameter AxAX in explaining the
variability is analogous to the importance of phase
wobble when computing the coherence in a spectral
band. The more the phase varies over a band, the lower
the coherence for that band. In the expression for C
(16), kAx; is the phase analog and AkAx;y is the phase
spread between any two sensors. Thus, as AxAxj in-
creases, Cj decreases. The CEOF maximizes the vari-
ability in mode 1 by minimizing the Axy, ie. by
choosing the maximum of the spatial amplitude in the
middle of the array. Note AxAX is a measure of the
largest range in phase computed over the array (be-
tween the two furthest sensors) and AkAX/(N — 1) is
the minimum phase range (between adjacent sensors).
When AkAX = 2(N —1), the coherence between ad-
jacent sensors [separation AX/(N — 1)] is zero [Eq.
(16)1, and total recovered variance has a local mini-
mum (Fig. 1a). For AkAX » 2(N — 1), all sensor
pairs are incoherent.

When AkA X =~ =, waves near the ends of the wave-
number band are approximately in antiphase at the
ends of the array and the variance recovered is reduced
significantly (Fig. 2). When A<AX = 2, the total
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FIG. 2. The percent variance explained by mode 1 at each x position
in the array (10 sensors) for band-limited, white spectra and three
values of AkAX.
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FIG. 3a. Time series of the propagating Gaussian-shaped
wave test case at 10 sensor locations.

recovered variance in the case of the band-limited
spectrum is reduced to approximately 50%-80% (de-
pending on the number of sensors, Fig. 1a), and AkAX
< o(2w) is taken as an approximate constraint on the
CEOF analysis for a band-limited, white spectrum.

b. Propagating Gaussian-shaped wave pulses

The coastal-trapped wave test case (Fig. 3) consists
of a series of irregularly spaced Gaussian-shaped pulses
that propagate nondispersively past a one-dimensional,
ten-station array. The time series schematically rep-
resent coastal sea level observations during one tropical
storm season (6 months), at equally spaced stations
over a 2700 km distance along the Mexican coast.
Wave events last for roughly 10 days, have constant
amplitude, and 215 km d™! phase speed. In contrast
to the band-limited white spectrum, the wave signal
here has a distinctive temporal behavior that we seek
to recover by reconstructing the time series with the
CEOF mode 1. The autospectrum for the Gaussian
wave train is red (Fig. 3b) with a nominal frequency
bandwidth of 0.02-0.10 cpd (approximately the half-
power points), yielding AkAX ~ 6.
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FIG. 3b. The autospectrum of the Gaussian-shaped
wave time series.
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FIG. 4a. The mode 1 reconstructed time series for the propagating
Gaussian-shaped wave test case. The dashed lines are the original
time series.

As in the previous test case, the CEOF analysis is
unable to isolate all of the variability in a single mode.
The first mode, describing 66% of the total variance,
is used to reconstruct the time series at each station
(Fig. 4a). The wave field is only partially accounted
for by mode 1, with the percentage of variance de-
scribed at each station decreasing towards the ends of
the array (Fig. 5), similar to Fig. 2. The true phase
speed is represented in mode 1 to within 5%.

The application of CEOF analysis on band-passed
time series improves the reproduction of the time series
by reducing the wavenumber bandwidth of the signal.
In this test run, the same wave signal is analyzed, how-
ever, in four different frequency bands (0.0-0.05, 0.05-
0.1, 0.1-0.15, 0.15-0.2 cpd). This corresponds to re-
ducing the wavenumber bandwidth by very roughly a
factor of 2. The low energy portions of a red spectra
do not contribute much to the cross-spectrum, so the
effective wavenumber is less than for a white spectrum.
Again the correct nondispersive phase speed is obtained
for each band. When the mode 1 reconstructed time
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F1G. 4b. The same as Fig. 4a except the time series are first band-
passed filtered, CEOFs are obtained for each band, and the mode 1
reconstructed time series in each band are then summed together.
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series for each band are summed together at each sta-
tion, yielding a single broadbanded time domain pat-
tern, the reconstructed and original time series are now
in much better agreement (Figs. 4b, 5).

Wavenumber bandwidth effects are, of course, a
problem for frequency as well as time domain EOFs.
In either case, the usual trade-off occurs in selecting
the bandwidth: if the band is too narrow, statistical
uncertainty arises in the estimate of the covariance
matrix C; if the band is too broad relative to the array
length, a single EOF mode is unable to resolve the vari-
ability toward the ends of the array. Statistical reliability
may be gained by prewhitening across each band prior
to forming C (cf. Davis and Bogden 1988) but at the
cost of increased effective bandwidth (for fixed band-
width, the effective bandwidth is maximum for a white
spectrum ). If the spectrum in Fig. 3b is prewhitened
over the four frequency bands, less of the total variance
is explained in the sum of the mode 1 reconstruc-
ted time series (50% compared to 85% without pre-
whitening).

4. Summary

Examples using synthetic, noise-free data indicate
that complex empirical orthogonal function analysis
in the time domain does not isolate, in a single mode,
nondispersive propagating signals that are widebanded
in wavenumber relative to the instrument array size
[AkAX > o(27)]. The symptom of broadbandedness
is reduced mode 1 signal toward the ends of the spatial
array, a feature also observed by Horel (1983). The
method does accurately recover an average frequency
and wavenumber and, thus, an accurate estimate of
phase speed for nondispersive waves, independent of
AxkAX.
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FiG. 5. The percent variance explained at each x position
from the time series in Fig. 4.
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In practice, the wavenumber bandwidth of the anal-
ysis is usually fixed by the duration of the time series
and the averaging needed for statistical stability. Be-
cause the cross-spectrum between relatively distant
sensors is degraded, the ability of the CEOF method
to detect large-scale propagating patterns is not in-
creased by lengthening the array beyond the effective
array length (AX,) determined by the wavenumber
bandwidth,

AX, ~ 27/ Ax.

On the other hand, the array should be long enough
to resolve a typical wavenumber (k ), spanning a min-
imum of one wavelength,

AX,= 27 /k.
These two constraints show that
Ak <k

is required for both minimally acceptable resolution
and an un-degraded cross-spectral matrix.

Our principal result is that time domain CEOFs are
a fairly robust method for estimating the phase speed
of nondispersive waves propagating through large ar-
rays. CEOF spatial patterns, however, should be inter-
preted cautiously; we believe finite bandwidth effects
have not been accounted for in some published in-
stances.

NOTES AND CORRESPONDENCE

1633

Acknowledgments. This work was supported by the
Coastal Sciences Branch of the Office of Naval Re-
search, Contract N00014-87-K-0005. Anonymous re-
viewers made useful comments.

REFERENCES

Barnett, T. P., 1983: Interaction of the monsoon and Pacific trade
wind system at interannual time scales. Part 1: The equatorial
zone. Mon. Wea. Rev., 111, 756-773.

Brillinger, D. R., 1975: Time Series. Data Analysis and Theory, Holt,
Rinehart and Winston.

Horel, J. D., 1984: Complex principal component analysis: Theory
and examples. Climate Appl. Meteor., 23, 1660-1673.

Kundu, P. K., and J. S. Allen, 1976: Some three-dimensional char-
acteristics of low-frequency current fluctuations near the Oregon
coast. J. Phys. Oceanogr., 6, 181-199.

_— and R. L. Smith, 1975: Modal decomposition of the
velocity field near the Oregon coast. J. Phys. Oceanogr., 5, 683~
704.

Lorenz, E., 1956: Empirical orthogonal function and statistical
weather prediction. Rep. No. 1, Statistical Forecasting Program,
Dept. of Meteor., Massachusetts Institute of Technology, 44 pp.

Merrifield, M. A., and C. D. Winant, 1989: Shelf circulation in the
Gulf of California: A description of the variability. J. Geophys.
Res., 94, 18 133-18 160.

Rasmusson, E. M., P. A. Arkin, W. Y. Chen and J. B. Jalickee, 1981:
Bienniel variations in surface temperature over the United States
as revealed by singular decomposition. Mon. Wea. Rev., 109,
181-192.

Thomas, J. B., 1969: An Introduction to Statistical Communication
Theory, Wiley, 663 pp.

White, W. B., and S. Tabata, 1987: Interannual westward-propagating
baroclinic long-wave activity on line P in the eastern midlatitude
North Pacific. J. Phys. Oceanogr., 17, 385-396.

Unauthenticated | Downloaded 11/05/21 01:41 PM UTC



