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Abstract

In order to evaluate the reliability of numerical simulations in geophysi-

cal applications it is necessary to pay attention when using the Root Mean

Square Error (RMSE ) and two other indicators derived from it (the Nor-

malized Root Mean Square Error NRMSE , and the Scatter Index SI ). In

the present work, in fact, we show on a general basis that, in conditions of

constant correlation coefficient, the RMSE index and its variants tend to be

systematically smaller (hence identifying better performances of numerical

models) for simulations affected by negative bias. Through a geometrical de-

composition of RMSE in its components related to the average error and the

scatter error it can be shown that the above mentioned behavior is triggered

by a quasi-linear dependency between these components in the neighborhood

of null bias. This result suggests that smaller values of RMSE , NRMSE and

SI do not always identify the best performances of numerical simulations,

∗Corresponding author. Address: DICCA, Via Montallegro 1, 16145, Genova, Italy
Email address: lorenzo.mentaschi@unige.it (Mentaschi L.)

Preprint submitted to Ocean Modeling August 19, 2013



  

and that these indicators are not always reliable to assess the accuracy of

numerical models. In the present contribution we employ the corrected indi-

cator proposed by Hanna and Heinold (1985) to develop a reliability analysis

of wave generation and propagation in the Mediterranean Sea by means of the

numerical model WAVEWATCH III R©, showing that the best values of the

indicator are obtained for simulations unaffected by bias. Evidences suggest

that this indicator provides a more reliable information about the accuracy

of the results of numerical models.

Keywords: Model validation, RMSE , Scatter Index, WAVEWATCH III R©,

Mediterranean Sea

1. Introduction1

Discussion and analysis of the behavior of statistical indicators employed

for the evaluation of the performances of numerical models is often neglected

due to their apparent simplicity. In some circumstances, anyway, their use

can lead to conflicting and inconsistent results in trying to reproduce physi-

cal phenomena such as atmosphere dynamics or ocean wave generation and

propagation (e.g. Willmott and Matsuura, 2005). Mentaschi et al. (2013)

showed that some problem related to performances evaluation may occur if

the analysis is based on the widespread indicator NRMSE , defined as

NRMSE =

√∑N
i=1 (Si − Oi)

2∑N
i=1 O2

i

(1)

where Si is the ith simulated data, Oi is the ith observation and N is the num-2

ber of observations available for the analysis. The problem arose clearly dur-3

ing a validation procedure of the wave model WAVEWATCH III R©(WWIII,4
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Tolman, 2009) for storm conditions in the Mediterranean Sea. The model has5

been run employing different parameterizations in order to find the optimal6

set for wave simulations in an enclosed basin. Namely, the source terms of7

wave growth-dissipation introduced by Ardhuin et al. (2010) have been used8

in its standard parameterizations BJA (Bidlot et al., 2007) and ACC350 1.9

Hence a sensitivity analysis has been performed in the parameters space in10

the neighborhood of the default values of ACC350 parametrization, varying11

each parameter keeping the others at their reference value. Source terms of12

growth-dissipation proposed by Tolman and Chalikov (1996), hereinafter TC,13

have been also used. An overall number of 43 different parameterizations have14

been tested on 17 different case studies corresponding to wave storms in the15

Mediterranean Sea. Simulated data have been compared against measure-16

ments obtained by 23 buoys belonging to the Rete Ondametrica Nazionale17

(RON, Italy) and to Boyas Puertos del Estado (Spain).18

Figure 1: Comparison between significant wave height data measured by La Spezia buoy

and those simulated by WWIII (ACC350 and TC parameterizations; February 1990

storm).

Results obtained in the framework of this research reported an underes-19

timation of about 11% for significant wave height, and of about 8% for mean20

1The acronym ACC350 refers to the authors F. Ardhuin, F. Collart and B. Chapron,

who developed a term describing the long swell decay, based on a study of Synthetic

Aperture Radar observations (Ardhuin et al., 2008, 2009)
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period when the TC parameterization was used. Conversely the ACC35021

parameterization led to results relatively unaffected by bias, overestimating22

the significant wave height of about 2%, and the mean period of about 1.5%23

(see table 2). As an example of this trend, figure 1 reports the observations24

of La Spezia buoy for significant wave height together with TC and ACC35025

results, for February 1990 storm.26

Values of correlation coefficient ρ were roughly the same for the two para-27

meterizations, revealing a similar scatter component of the error. Therefore28

an indicator combining information on the average and the scatter error,29

like NRMSE , was expected to identify ACC350 as the best overall parame-30

terization. However the value of NRMSE hinted at better results for TC31

than for ACC350 (see table 2 where the overall value of normalized bias32

NBI =
(
S̄ − Ō

)
/Ō, correlation coefficient ρ and NRMSE are reported for33

the two parameterizations).34

In the present contribution we show that this issue can be extended gen-

erally to the RMSE error indicator, defined as

RMSE =

√√√√ 1

N

N∑
i=1

(Si − Oi)
2 (2)

and to its normalized form (NRMSE ). Furthermore, subtracting the average

component of the error we obtain the Scatter Index SI defined here as

SI =

√√√√∑N
i=1

[(
Si − S̄

) − (
Oi − Ō

)]2∑N
i=1 O2

i

. (3)

where S̄ and Ō are the average simulation and observation values respectively.35

In the next section the drawback of RMSE is analysed using a synthetic36

serie of data and then analytically, presenting a systematic approach to out-37
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line and define the problem. A geometrical decomposition of RMSE in its38

scatter and bias components is provided to better understand the dependency39

between these components and the proof of the shortcoming and the relative40

inaccuracy for SI , NRMSE and RMSE is developed. Section 4 is dedicated41

to show how to improve the evaluation of the performances by means of the42

corrected indicator introduced by Hanna and Heinold (1985), hereinafter HH43

from the name of the authors. Finally conclusions are drawn in section 5.44

2. The idealized problem45

The drawback of using the RMSE as an indicator of the performances

of a numerical simulation can be easily reproduced using an idealized time

series. Let us for example consider an observation series given by:

Oi = 1 + sin ti, 0 < ti < π (4)

where ti represents the time discretized in 120 time steps. We define a first

mock simulation, given by

Su
i = Oi + [mod(i, 2) ∗ 1.4 − 0.7] (5)

where the function mod(i, 2) vanishes when i is even and it is equal to one46

when i is odd. The first mock simulation is thus given by the observation47

series plus a sawtooth function, and is clearly unaffected by bias, since the48

number of time steps is even (the superscript u in Su
i stands for unbiased).49

We then define a second mock simulation multiplying the first one by a factor50

0.87: Sb
i = 0.87·Su

i . Simulation Sb
i has the same correlation coefficient as the51

observation series Oi and Su
i , but is affected by a strong negative bias. The52

5



  

two mock simulations are shown in figure 2, together with the observation53

series. The black continuous line represents the observation series Oi, the blue54

line corresponds to the unbiased simulation Su
i while the red line represents55

the biased simulation Sb
i . Clearly the best simulation between Su

i and Sb
i56

is the unbiased one, Su
i . Nonetheless the computation of NRMSE and SI57

returns better values for Sb
i , as shown in table 1 where the values of correlation58

coefficient and bias are also reported.59

Figure 2: (a) Unbiased mock simulation Su
i and (b) biased mock simulation Sb

i represented

against observations (black lines).

Simulation ρ NBI NRMSE SI

Su
i 0.407 0 % 0.421 0.421

Sb
i 0.407 -13 % 0.389 0.367

Table 1: Statistical error indicators of Su
i and Sb

i relative to Oi.

3. Formulation of the problem60

Let us consider a set of N observations Oi of a measurable quantity (in61

our case the significant wave height and the mean wave period) and the62

corresponding values obtained by numerical model simulations. The use of63

different parameterizations for the numerical models results in different sets64

of N simulated values Si, characterized by varying statistical parameters65

such as mean, standard deviation and higher order moments. Therefore the66
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observations and their statistical parameters can be considered as invariant67

of the problem, while simulation results and their statistical parameters are68

the system variables. In order to measure the accuracy of the simulations we69

use the following statistical indicators:70

• the bias

BI = S̄ − Ō (6)

which is an index of the average component of the error. A value closer71

to zero identifies a better simulation;72

• the correlation coefficient

ρ =
1

N

∑N
i=1

(
Si − S̄

) (
Oi − Ō

)
σSσO

(7)

where σS and σO are the standard deviations of the simulations and73

the observations respectively. This quantity, which ranges between -174

and 1, is an index of the scatter component of the error, and a value75

closer to 1 indicates a smaller scatter of the simulated values around76

the observed ones.77

The correlation coefficient has been chosen as the main indicator of the78

scatter component of the error since it remains roughly constant for all the79

simulations, outlining a constant behavior of the random error in our experi-80

ments. In the rest of the manuscript we therefore assume that changes in the81

parameters of the model do not alter the correlation coefficient. The behav-82

iour of other indicators will be analysed varying the bias in the neighborhood83

of null bias.84
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The RMSE indicator combines informations on the average and on the

scatter components of the error since it can be expressed in terms of bias and

correlation coefficient

RMSE 2 = BI 2 − 2ρσSσO + σ2
S + σ2

O . (8)

The behavior of RMSE in the neighborhood of null bias is not immedi-

ately arguable from (8) because the average and the standard deviation of the

simulation are not independent. The dependency arises once the correlation

coefficient is assumed to be constant. A set of simulations with constant ρ

is obtained multiplying an unbiased simulation S0 by an amplification factor

α = (1 + NBI ),

Si = (1 + NBI )S0i (9)

S̄ = (1 + NBI )Ō (10)

σS = (1 + NBI )σS0 (11)

where σS is the standard deviation of S, σS0 is the standard deviation of85

the corresponding unbiased simulation and NBI has been defined in the86

introduction.87

Validity of (9)-(11) implies a constant value of ρ and, vice versa, a con-

stant ρ implies the validity of (10) and (11). Let us assume a generic linear

relationship between σS and S̄ in the neighborhood of null bias:

σS = kS̄ + c (12)

where k and c are arbitrary constants. We can now demonstrate that a

constant value of ρ requires a zero value of the coefficient c, showing that σS

and S̄ are proportional. This proportionality means that relations (10) and

8



  

(11) must hold. To this purpose, if we consider two different simulations,

S ′
i and S ′′

i , such that their average values are related by a coefficient α,

S̄ ′′ = αS̄ ′ and S ′′O = αS ′O, employing (12) it is possible to rewrite the

standard deviation of S ′′
i as a function of S̄ ′:

σS′′ = kαS̄ ′ + c. (13)

Using the above assumptions and the fact that SO = S̄Ō + ρσSσO, we find88

that a constant value of ρ requires a null coefficient c in relationship (12).89

Hence in the neighborhood of zero bias we obtain σS = kS̄ ⇒ σS/S̄ =90

constant .91

Using relationships (10) and (11) in (8) and differentiating with respect to92

NBI one finds a positive value of ∂RMSE
∂NBI

∣∣∣∣
NBI=0

, meaning that RMSE does not93

present a minimum for null bias, but decreases together with NBI . This fact94

shows the drawback of using the RMSE as an indicator of the simulation95

performances, since for a constant value of the correlation coefficient the96

RMSE attains lower values for simulations that underestimate the average97

(negative bias).98

3.1. RMSE geometrical decomposition99

The RMSE indicator can be decomposed in its components proportional

to the average deviation between simulations and observations and to the

scatter of the values around the average. This decomposition provides a

geometrical insight into the fact that the described drawback is due to a de-

pendency between the two components. Let us define the scatter component

SCRMSE as the root mean square deviation between the simulation and the

9



  

Figure 3: RMSE represented as a vector in SCRMSE − BI Cartesian space.

observation series subtracted of their average values

SCRMSE =

√∑N
i=1 [(Si − S̄) − (Oi − Ō)]2

N
. (14)

In the case of an unbiased simulation, SCRMSE and RMSE coincide. If sim-

ulations and observations have the same standard deviation and their corre-

lation coefficient is equal to 1, SCRMSE vanishes. It can be easily shown that

the RMSE can be expressed as the quadratic sum of the scatter component

and the bias BI

RMSE 2 = SC 2
RMSE + BI 2 . (15)

Expression (15) shows that from a geometrical point of view the two con-

tributions are orthogonal and RMSE can be represented as a vector in

SCRMSE −BI Cartesian space (see figure 3). Moreover, the Scatter Index SI

can be written in terms of the SCRMSE as:

SI 2 =

∑N
i=1 [(Si − S̄) − (Oi − Ō)]2∑N

i=1 O2
i

=
SC 2

RMSE

O
2
+ σ2

O

. (16)

It is easy to derive a relationship analogous to (15) for NRMSE :

NRMSE 2 = SI 2 + BC 2
NRMSE (17)

10



  

where BCNRMSE is the bias component of the NRMSE , proportional to the

NBI

BCNRMSE = NBI

√√√√ O
2

O
2
+ σ2

O

. (18)

Expression (17) provides a representation of NRMSE as a vector in SI −100

BCNRMSE space. It is useful to remark that RMSE and its variant NRMSE101

present the same behavior in all respects, and the drawbacks of RMSE are102

identically shared by NRMSE .103

Figure 4: Panels (a) and (b): correlation coefficient versus normalized bias for significant

have height and mean period. Panels (c) and (d): BCNRMSE versus SI for significant have

height and mean period. Blue lines represent expression (21). Red triangles represent the

sensitivity analysis in the neighborhood of ACC350.

3.2. Scatter Index, NRMSE and RMSE systematic deviation104

SI and BC NRMSE appearing in expression (17) are orthogonal but not105

necessarily independent and a relationship can be found for a set of simula-106

tions presenting a constant value of ρ.107

The scatter component of NRMSE , SI , can be expressed in terms of the

standard deviations of observation and simulation

SI 2 =
σ2

S + σ2
O − 2ρσOσS

O
2
+ σ2

O

. (19)
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Hence using (10) and (11) SI can be expressed as a function of NBI , and

assuming that σS0 ∼ σO, i.e. the standard deviations of the unbiased simu-

lation and of the observation series are roughly equal, it is possible to write

SI 2 ∼ σ2
O

O
2
+ σ2

O

[
NBI 2 + 2(1 − ρ)NBI + 2(1 − ρ)

]
. (20)

The first derivative of SI 2 with respect to NBI in the neighborhood of

null NBI is always positive, hence SI is not minimum for null bias. A first

order expansion of SI in the neighborhood of NBI = 0 returns

SI ∼ SI 0

(
1 +

1

2
NBI

)
(21)

where SI 0 is the Scatter Index of the unbiased simulation.108

Figure 5: Hypothetical unbiased simulation versus minimum NRMSE simulation in SI −
BCNRMSE Cartesian space. Given expression (21) (the blue line), minimum NRMSE

simulation is affected by negative bias.

Relationship (21) fits quite well the results of our experiments as shown in109

figure 4, where each point represents a different parameterization: blue ones110

refer to ACC350, black ones to TC and the red ones represent the results111

of the sensitivity analysis in the parameter space in the neighborhood of112

ACC350 (see section 1).113

In panels (a) and (b) the correlation coefficient ρ is plotted versus the114

NBI for both significant wave height and mean period, showing that ρ is115

roughly constant as required by the considerations done in section 3. In116
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panels (c) and (d) results are plotted in the SI − BCNRMSE space revealing117

that they lie roughly on the blue line which represents expression (21). Quite118

surprisingly the parameterization most affected by negative bias, i.e. TC, is119

the one with the best value of the Scatter Index for both significant wave120

height and mean period. This finding reveals that, under the assumptions121

outlined in section 3, the Scatter Index tends to be systematically better for122

simulations characterized by a negative bias. Furthermore, it is well evident123

that NRMSE is affected by the same drawback since the latter can be repre-124

sented as a vector in the SI − BCNRMSE space. Indeed the simulation with125

the best possible value of the NRMSE is not the unbiased one but the one126

perpendicular to the line of the points in SI −BCNRMSE space satisfying rela-127

tionship (21), as reported in figure 5. Considerations drawn for NRMSE can128

be easily generalized to RMSE , given the correspondence between relations129

(17) and (15).130

The behavior of RMSE described in this section tends to be more pro-131

nounced when the correlation coefficient is significantly smaller than 1. This132

can be deduced observing that the Scatter Index, expressed by relation (20),133

assumes a minimum value for NBI = ρ−1. Therefore the drawback of using134

RMSE is more relevant when the scatter component of the error is large.135

4. A corrected indicator136

The discussion presented in section 3 clearly shows that lower values of

RMSE , NRMSE and SI are not always associated to better performances of

numerical models and that those indicators are not always reliable estimators

of simulations accuracy. Notwithstanding this kind of behavior their use is

13



  

widespread in many scientific fields (e.g. Komen et al., 1994; Fekete et al.,

2005; Persson, 2011). To overcome this problem Hanna and Heinold (1985)

proposed the exploitation of a corrected statistical indicator defined as

HH =

√∑N
i=1 (Si − Oi)

2∑N
i=1 SiOi

. (22)

It is straightforward to show that HH can be expressed in terms of simu-

lation and observation average values, standard deviations and correlation

coefficient as follows

HH 2 =
S

2
+ σ2

S + O
2
+ σ2

O

S̄Ō + ρσSσO

− 2 . (23)

Hence HH can be expressed as a function of NBI using (10) and (11), and

assuming that σS0 ∼ σO we can write

HH 2 ∼
(

O
2
+ σ2

O

O
2
+ ρσ2

O

)(
NBI 2 + 2NBI + 2

NBI + 1

)
− 2 . (24)

The first derivative of HH 2 with respect to NBI results

∂HH 2

∂NBI
∼

(
O

2
+ σ2

O

O
2
+ ρσ2

O

)(
NBI 2 + 2NBI

NBI 2 + 2NBI + 1

)
(25)

which vanishes for null bias. The second derivative of HH 2 with respect to

NBI is
∂2HH 2

∂NBI 2 ∼
(

O
2
+ σ2

O

O
2
+ ρσ2

O

)(
2

(NBI + 1)3

)
(26)

which is always positive for NBI = 0. Therefore HH is approximately mini-137

mum when the bias is null. This finding clearly does not imply the equiva-138

lence between bias and HH because, unlike bias, HH is able to capture the139

scatter component of the error.140
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This behavior can be noticed quite clearly in some wave generation/propagation141

simulations in the Mediterranean Sea, as reported in figures 6 and 7 where142

the corrected indicator HH is plotted versus NBI for all the parameteriza-143

tions employed in the sensitivity study. Indeed, numerical simulations with144

the lowest value of HH tend to be closer to the line of null bias, while results145

with higher value of HH tend to be farther away from the vanishing bias con-146

ditions (compare results obtained with ACC350 and TC presented in figures147

6 and 7 and those presented in figure 4). These findings are reported quan-148

titatively in table 2 showing the different error estimations for the corrected149

HH indicator and for the other statistical indicators. The use of HH allows150

to correctly interpret the performances of numerical model simulations and151

their agreement with field observed data.152

ACC350 TC BJA

Hs Tm Hs Tm Hs Tm

NBI 2.1% 1.5% -11.9% -8.4 % -4.6% 1.0 %

ρ 0.883 0.640 0.889 0.659 0.885 0.639

NRMSE 0.2864 0.2424 0.2798 0.2395 0.2800 0.2485

HH 0.3460 0.2505 0.3634 0.2604 0.3502 0.2574

Table 2: Results of statistical indicators for significant wave height Hs and mean period Tm

obtained for parameterizations ACC350, TC and BJA. Values computed for the ensemble

of all storms and all buoys (29620 observations).
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Figure 6: HH versus NBI for significant wave height. Red points represent the sensitivity

analysis in the neighborhood of ACC350.

Figure 7: HH versus NBI for mean period. Red points represent the sensitivity analysis

in the neighborhood of ACC350.

5. Conclusions153

Small values of the widespread error indicators RMSE , NRMSE and SI154

are not always associated with the best performances of a numerical model155

reproducing natural processes such as atmosphere dynamics, ocean circu-156

lation or wave generation and propagation. In particular RMSE and its157

variants tend to assume values typical of better performances for simulations158

which underestimate the measured physical quantities (i.e. wind speed, wave159

height...). Through a geometrical decomposition of the RMSE indicator in160

its average and scatter components it has been possible to demonstrate that161

the above mentioned drawback relies on a linear dependence between the162

two components in the neighborhood of null bias. It has also been shown163

that this deviation is more noticeable when the scatter component of the164

error is large, i.e. when the correlation coefficient is appreciably lower than165

unity. To overcome this issue the error indicator HH , introduced by Hanna166

and Heinold (1985) has been employed. It has been shown that HH attains167

a minimum value for null bias when σS0 ∼ σO is assumed. Evidences from168

16



  

wave generation and propagation analysis in the Mediterranean Sea suggest169

that the HH indicator provides a more reliable and accurate information170

about the accuracy of a numerical simulation than the RMSE indicator.171
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Highlights

RMSE tends to be better for simulations that underestimate the average.

This trend is more noticeable when the correlation coefficient is appreciably lower than unity.

The issue is due to a dependency of the scatter component of the RMSE on the bias.

HH indicator provides a more accurate information on the accuracy of a simulation.


