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The surface velocity field in steep and 
breaking waves 

By W. K. MELVILLE A N D  R O N A L D  J. RAPP 
Department of Civil Engineering, Massachusetts Institute of Technology, MA 02139, USA 

(Received 6 August 1985 and in revised form 10 July 1986) 

Coincident simultaneous measurements of the surface displacement and the 
horizontal velocity at the surface of steep and breaking waves are presented. The 
measurements involve a novel use of laser anemometry at the fluctuating air-water 
interface and clearly show the limitations of surface displacement measurements in 
characterizing steep and breaking wave fields. The measurements are used to 
examine the evolution of the surface drift velocity, spectra, wave envelopes, and 
forced long waves in unstable deep-water waves. Preliminary results of this work 
were reported by Melville & Rapp (1983). 

1. Introduction 
This is the third in a series of papers (Melville 1982, hereinafter referred to as M 1 ; 

1983, hereinafter referred to as M 2) describing laboratory measurements of the 
evolution of initially uniform deep-water wavetrains. In the earlier papers the 
instabilities and breaking of the waves were described with photography and surface 
displacement measurements. In  this paper we extend the description to include 
velocity measurements at the surface. It will be seen that the coincident simultaneous 
measurement of the surface displacement and fluid velocity affords a more revealing 
description than does the displacement measurement alone. 

Theoretical and experimental work over the last decade has clearly shown that 
weakly nonlinear wavetrains become unstable, developing strong two-dimensional 
modulations that evolve through wave breaking (Longuet-Higgins & Cokelet 1978 ; 
M 1 ; M 2 ) ,  while strongly nonlinear waves are unstable to three-dimensional 
disturbances (McLean 1982) that also rapidly lead to breaking (M 1 ; Xu et al. 1982). 
While there has been a satisfactory quantitative agreement between theory and 
experiment for some features of these flows (M 1 ; Yuen and Lake, 1982 ; Xu et al. 1982) 
there has, so far, been no satisfactory assessment of the importance of wave 
breaking. 

The reasons for this are not difficult to find. The theoretical and numerical 
investigations have proceeded in three complementary directions, none of which can 
satisfactorily treat breaking. 

(a)  Linear stability analysis of nonlinear uniform wave fields. This approach 
began with the work of Lighthill (1965), Benjamin & Feir (1967) and Longuet- 
Higgins (1978a, b )  for two-dimensional instabilities, and has evolved to consider 
three-dimensional instabilities of strongly nonlinear waves (McLean 1982). This most 
recent work has been made possible by the exact numerical uniform wave solutions 
presented by Schwarz (1974), Longuet-Higgins (1975), Cokelet (1977) and others. 
This approach is restricted to finding linear instabilities and their initial growth 
rates. 
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(6) The solution of evolution equations and mode-coupled equations. The 
approach had its beginnings in the work of Benney & Newel1 (1967), who derived the 
nonlinear Schrodinger equation, and Zakharov (1968) who obtained the mode- 
coupled equations as an intermediate step in the derivation of the nonlinear 
Schrodinger equation. It has continued with the use of Dysthe’s equation (Dysthe 
1979) and Zakharov’s equation (Crawford et al. 1981). The limitations of the 
nonlinear Schrodinger equation are now well documented (Yuen & Lake 1980). 
Dysthe’s equation is restricted to wave slopes of less than approximately 0.15-0.2, 
and its range of validity has not been extensively tested. Zakharov’s equation also 
appears to have similar restrictions to moderate wave slopes, although it shows 
qualitative agreement with some features of the exact results for larger slopes (k’uen 
& Lake 1980). This approach has been restricted to obtaining solutions for the 
evolution of the envelope of the first harmonic band. 

( c )  Direct numerical solution. Numerical solutions of irrotational free-surface 
flows leading to breaking were obtained by Longuet-Higgins & Cokelet (1976, 1978), 
with more recent examples being due to Wnje & Brevig (1981), Meiron (1981), and 
Baker, Meiron & Orszag (1982). These solutions have been restricted geometrically 
by two-dimensionality and temporally by the impact of the plunging breaker with 
the surface. 

Of these approaches only the last can follow the evolution of the wavetrain to 
breaking, where i t  too fails. With the onset of breaking the flow is no longer 
irrotational, and with the entrainment of air, even the boundary conditions are not 
simply defined. I n  cases in which the mass and momentum carried by the ‘breaking’ 
fluid are small (in some measure) we might expect the dynamical significance of 
breaking to be slight. However, none of the above approaches can lead to such an 
evaluation. At present, there is a clear need for measurement which, by comparison 
with the results of theoretical and numerical investigations, can provide a better 
description of wave breaking and its role in the evolution of free-surface flows. 

For linear or weakly nonlinear irrotational surface waves evolving slowly there is 
a simple relationship between the surface displacement and the velocity field. In  
strongly nonlinear modulated or breaking waves there is no such simple relationship 
and ideally one would like to have measurements of the full three-dimensional 
velocity field along with the surface displacement. In  practice one is normally 
restricted to  some less ambitious programme and accordingly we have chosen to 
measure the horizontal velocity component at the interface. There are a number of 
reasons for this choice of velocity component. The first was our desire to identify 
breaking by searching for events in which the fluid velocity at the surface exceeded 
the phase velocity of the wave (see below). Even in the absence of breaking the 
velocity a t  the surface is particularly appropriate, For irrotational waves the 
exponential vertical eigenmodes lead to horizontal velocity maxima a t  the surface 
and, in principle, improved signal-to-noise ratios for the measurements. For 
example, we shall show that forced modulations of the surface drift are much 
stronger than the associated Eulerian subsurface flows. Further, we expect that 
departures from irrotational flow (or sources of vorticity) are likely to be most 
evident at the surface. 

The method of measuring the velocity appears to be a novel application of laser 
anemometry . A single-channel laser anemometer with a measuring volume of 
sufficient length to contain the vertical excursions of the surface is used. Scattering 
from only the immediate neighbourhood of the surface is ensured by seeding the 
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surface and dyeing the water. In  this way measurements of one horizontal fluid 
velocity component at the interface can be made, 

As indicated above, the original motivation for measuring this velocity came from 
the need to compare fluid and phase velocities in breaking waves. The usual quasi- 
steady criterion for breaking requires that the fluid velocity a t  the surface exceed the 
phase velocity of the wave. But quasi-steady breaking is an exceptional case (e.g. ship 
waves) and in general breaking is unsteady on all scales. So, even if the phase speed 
of the waves were uniform, this breaking criterion need only apply for some fraction 
of the duration of the breaking event. Such comparisons are further compounded by 
the strong modulations of the phase speed in the breaking region (M2). 

I n  this paper we do not pursue this comparison of phase and fluid velocities, nor 
do we confine ourselves strictly to a consideration of wave breaking; instead, we 
present measurements of fluid velocities and surface displacements that demonstrate 
the presence of a number of phenomena in the evolution of unstable deep-water 
wavetrains. These include 

(i) current generation by breaking waves; 
(ii) the development of bound and free wave components; 

(iii) the evolution of wave envelopes in both displacement and velocity ; 
(iv) the evolution of corresponding forced long waves in both displacement and 

(v) the transition to  random behaviour with the onset of breaking. 
surface drift ; 

It is expected that the measurements presented here may prove useful for comparison 
with future exact numerical solutions of the evolution of steep and breaking 
waves. 

The experimental techniques are described in $2. Results are presented in $3, and 
discussed in $4. 

2. The experiments 
2.1. General description 

The experiments were conducted in the glass wave channel a t  the Hydraulics 
Laboratory of the Scripps Institution of Oceanography. The channel is 28 m long, 
and 0.5 m wide, and the water was 0.6 m deep. For all experiments uniform 2 Hz 
waves with slopes in the range [0.23, 0.291 were generated at  one end and absorbed 
on a beach a t  the other end of the channel. The waves were unstable ( M l ,  M2) 
through the Benjamin-Feir mechanism and developed amplitude and phase 
modulations that led to breaking. The breaking region was confined to the central 
section of the channel and all deep-water breaking ceased before the waves finally 
shoaled on the beach. 

The surface displacement was measured with fine resistance-wire gauges (see M 1 )  
and the fluid velocity a t  the surface was measured with a Thermo Systems (TSI) 
backscatter laser anemometer, including a counter-type signal processor. (The 
velocity measurements are described in detail below.) All the data presented here 
were collected after the significant starting transients had decayed (see M 1). 

In  each of the experiments one of the wave gauges was positioned at the same 
downstream station as the laser anemometer and displaced laterally by app- 
roximately 3-5 mm to avoid interference with the velocity measurement. 

Data were collected at 200 Hz in the breaking region (100 Hz in the unbroken 
regions), for 13.65 min a t  each station. A typical experiment involved simultaneous 



4 

Beam splitter -- 
Photomultiplier L r 

W .  K .  Melville and R. J .  Rupp 

- Frequency shifter (Bragg cell) 

- Receiving optics 

1 Transmitting optics (600 mm lens) 

c 

Light intensity 
distribution at 
section AA 

FIGURE 1 .  Schematic of the optical arrangement for measurement of a horizontal velocity 
component at a fluctuating interface. 

velocity and displacement measurements a t  approximately eight stations down the 
channel along with additional displacement measurements a t  intermediate positions. 

2.2.  The velocity measurements 
The optical arrangement for the laser anemometer is shown in figure 1. The 
horizontal beam from a 15 mW He-Ne laser is deflected to a vertical axis where it 
passes through a beam slitter. One of the beams leaving the splitter is frequency 
shifted by a Bragg cell before being focused at the measuring volume. The receiving 
optics are coaxial with the transmitting optics, and the scattered light is measured 
with a photomultiplier. 

The basic design of the optics is constrained by the requirement that the 
measuring volume be long enough to contain the vertical excursions of the surface. 
This is in contrast to most applications of laser anemometry in which one attempts 
to minimize the dimensions of the measuring volume to better approximate a point 
measurement. In practice the effective dimensions of the ellipsoidal measuring 
volume depend on the thresholds of the photomultiplier and signal processor; 
however, for our purposes it is convenient to define the boundary of the ellipsoid as 
the point at which t.he amplitude of the Doppler signal is l / e 2  of its centreline value. 
Then the diameter and length of the measuring volume are give by d, = d,/cos qi and 
d, = d,/sin g5, respectively, where d, = 4hf/nD is the diameter of focused beam, h is 
the wavelength of the light (He-Ne = 632.8 nm), f is the focal length of the lens, and 
D is the diameter of the incident beam. The fringe spacing d,  is kh sin 4, so the 
number of fringes N is given by N = 8f tan #/no = 1.27S/D, where s is the 
separation of the incident beams. For a given laser, h and D are in practice constant, 
and the signal processing imposes a practical lower limit on N ,  and hence S. The 
remaining variable is the focal length of the transmitting lens. For a given S ,  an 
increase in focal length leads to a decrease in g5 and hence an increase in d,, the length 
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of the measuring volume. Since the intensity of the scattered light collected is 
proportional to  f 2 ,  the available laser power imposes an upper limit on focal length. 
In  the measurements described below a 15 mW He-Ne spectra physics laser was used 
with optical and (counter-type) signal processing components manufactured by 
Thermo Systems Incorporated. The important optical parameters, which are shown 
in figure 1, gave a measuring volume of approximately 6 cm length. 

Having ensured that the measuring volume contains the vertical excursions of the 
surface, it remains to ensure that in practice all the scattered light is from particles 
a t ,  or in the immediate neighbourhood of, the surface. This may be achieved by 
ensuring that the scattering particles remain on the surface, or by employing a liquid 
or mixture that has good scattering properties and gives rapid attenuation of the 
incident radiation. The technique employed may depend to some extent on the 
phenomena being studied and specifically on whether the effects of surface tension or 
breaking are significant. For example, in some initial experiments on wind-generated 
waves we used white latex paint to seed the water and found that the resulting 
suppression of the small-scale waves led to a significant change in the wind-wave 
field. Evidently the effect of the paint on the surface properties was to lead to a 
reduced wind-wave growth. 

In  the absence of breaking, fluid particles a t  the surface remain at the surface. This 
is just a restatement of the usual kinematic boundary condition. Thus a neutrally (or 
weakly) buoyant tracer that  is introduced at the surface will remain at the surface.? 
However, with the onset of breaking the fluid at the surface is mixed down into the 
interior. If the attenuation of the incident radiation by the fluid is weak, significant 
scattering may occur from particles below the surface. Unless the surface is plane and 
normal to the optical axis and the fringe spacing may vary below the surface and lead 
to errors in the measured velocity. This is avoided by dyeing the liquid so that it 
rapidly attenuates the incident radiation. 

In  the experiments reported here the surface was seeded with glass microspheres 
having a density of 0.22k0.03 g/cc and a mean radius of 18 pm with 90% of the 
particles having radii in the range 5 4 0  pm. Based on the mean density and radius 
the particles had a Stokesian response timef of 5 x s in water, and a terminal 
velocity of 5 x cm s-l. The particles were introduced a t  the surface in a slurry 
approximately 1 m upstream of the measuring point. This distance, along with the 
relatively small mass flux of the particles, ensured that there was no significant 
interference from the particles or the introduction system. Given the trouble that is 
sometimes taken to ensure a clean surface in experiments of this kind we were 
initially concerned that the particles might significantly affect the flow. Tests with 
linear 2 Hz waves (ak z 0.05) at  a particle density that gave 400-800 velocity 
samples per s showed that the measured and predicted surface velocities agreed to 
within 1-2%. 

2.3. Data analysis 
As a result of the relatively low-power laser used (15 mW) we had to  amplify the 
signal from the photomultiplier before any further analogue processing, including the 
frequency shifting associated with the Bragg cell. This amplification along with noise 

t Keglecting any lift caused by shear or Magnus forces. 
The Stokesian response time T,, for a sphere of density p, and radius a is given by 
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in the frequency-shift system led to intermittent spikes in the velocity signal which 
were attributed to the zero shift frequency being selected by the counter. So, if the 
velocity was negative the spikes were positive, and vice versa. These were readily 
identified and re,moved with a deglitching and interpolation program adapted from 
code made available by R.  T. Guza and M. Freilich (personal communication). The 
ability of the program to discriminate between spikes associated with breaking and 
instrument noise was tested manually and found to  be excellent. The use of this 
procedure resulted in changes in the standard deviation of the signal of less than 1 YO ; 
a negligible reduction in the first five harmonics ( < 10 Hz), and a reduction of the 
background spectral estimates by up to 40% above 10 Hz. This was considered 
acceptable for the purposes of these experiments. 

The details of the subsequent data analysis will be given with the results below. 

3. Results 
3.1. Introduction 

Figure 2 shows a representative set of time series of the surface displacement, q( t ;  x), 
and the horizontal velocity a t  the surface u(7, t), a t  consecutive stations downstream 
for an incident wave amplitude ( a k )  of 0.23. The velocity and displacement are 
directly compared in a uniform deep-water wavetrain through the relationship 

due to Rayleigh (see Lamb, 1932, $250), where CT is the (radian) frequency of the 
waves. In  figure 2 we have set CT = go, the frequency of the incident waves a t  each 
station. The agreement between the measured and predicted velocity (based on 7) is 
excellent a t  the first two stations. The occurrence of breaking is clearly shown by 
significant local departures from (3.1) ; however, following the cessation of breaking 
(at the last two stations), (3.1) again gives a reasonable prediction despite the 
presence of a broader spectrum (see M 1 and the following results). 

A single breaking event is shown in more detail in figure 3. Here the differences 
between the 'signature' of a breaking event in the displacement and velocity time 
series becomes more apparent. In  figure 3, as in all the other breaking events we have 
examined, there is only a small perturbation in surface displacement associated with 
a local increase in aq/at. Initial measurements showed that local maxima in a7la.t are 
not unambiguous indicators of breaking (cf. Thorpe & Humphries 1980) ; nor are the 
local values of 7 .  (For example, in figure 2 the time series a t  13 m and 15 m show 
breaking waves followed by much larger unbroken waves.) The local increase in 
ay/a t  is, however, generally associated with a large increase in u, as shown in both 
figures 2 and 3. This gives a large O(c)  difference between the measured velocity and 
that predicted from (3.1). Figure 3 shows that following the rapid increase in velocity 
there is more gradual recovery to a velocity close to that predicted by (3.1), within 
about a quarter of a wave period. 

3.2. Mean velocities 
The measured mean velocity U s  is defined by 

(3.2) 
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FIGURE 2. Time series of dimensionless horizontal velocity, u/c (  (-), and surface displacement, 
Tkt (----), at consecutive stations at distances xk, downstream of the wave generator. Here c, and 
k, are the linear phase and speed and wavenumber for (a, = 2 Hz) deep-water waves, and the initial 
uniform wave amplitude ak = 0.23. 
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FIQURE 3. An example of surface displacement (----) and horizontal velocity (-) for a breaking 
wave followed by an unbroken wave. Note the large velocity excursion in the breaking wave and 
the larger amplitude of the following unbroken wave. 
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FIGURE 4. Mean surface velocity I/, as a function of downstream position rk, .  for 0, ak = 0.23; A, 
0.25; 0, 0.29. Note the local maxima in the region of wave breaking. Mean is a time average over 
the full record period (13.65 min). 

In  the absence of wave breaking a Taylor expansion about z = 0 gives 

The first term is just a mean Eulerian current while the second term corresponds to 
the lowest-order approximation to the Stokes drift for a particle a t  the surface. For 
a uniform deepwater wavetrain this is equal to 1/2(alc)2c. The averaging employed 
here then is equivalent to the generalized Lagrangian mean of Andrews & McIntyre 
(1978) (cf. (3.3) with their ( 2 . 2 5 ) ) .  In  the absence of breaking, fluid particles a t  the 
surface remain at the surface and the average is over particles that  have always been 
a t  the surface. 

With the onset of breaking the Taylor expansion about 7 is not useful in 
consequence of the larger unknown gradients in the flow. Now the mean velocity is 
over particles that remain a t  the surface; those that mix down make no contribution. 
Splitting the average into the sum of an Eulerian and Lagrangian mean does not 
appear to be rigorously possible. The Eulerian average in the unbroken field depends 
on analytic extension for z > v ,  which would appear to be impossible for breaking 
waves. No attempt then is made to decompose the measurements of U s ,  the mean- 
surface velocity, which are shown as a function of position for ak = 0.23, 0.25, 0.29 
in figure 4. In each case the onset of breaking is marked by a significant rise to a local 
maximum in the mean surface velocity, which subsequently falls. Estimates based on 
figure 2 suggest that all the increase in U s  may be attributed to the excess velocity 
in the breaking waves. The subsequent decline may be attributed to the cessation of 
breaking and the dissipation of the wave field. 
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3.3. Spectra 

For a linear unidirectional wave field composed of a superposition of modes of 
frequency cr,, say, the ratio R, of the power-spectral estimate of y, SL, to that of u, 
Si, will, by virtue of (3.1), be given by 

(3.4) 

(3.5) 

for example 

whereas for the weakly nonlinear uniform wavetrain of fundamental frequency un, 

Thus R, provides some information on the presence of free and forced waves a t  a 
particular frequency. 

Rather than considering a uniform weakly nonlinear wavetrain we follow Yuen & 
Lake (1975) and consider a modulated wavetrain given by 

y = acos8+~ka2cos28+  ..., (3 .7a)  

1 ekz+ ..., 
v a  
k 

# = -  (3.7 b )  

where u( = - dt) ,  k( = 8,) and a are respectively the slowly varying frequency, wave- 
number and amplitude, and @ satisfies Laplace's equation. With the assumptions 
that the fractional modulation of a ,  k and r is O(ak), and that the (slow) length- and 
timescales are of O(ak), we find 

i (ak)2c c C 

ax CC C f  c ,  
c;1- ( x ,  T/, t )  = c;l u(x ,  y, t )  = ~ + a k - ~ 0 ~ 8 + ~ ( a k ) ~ - c o s 8 + O ( a k ) ~ .  

k 
k 

Now y k ,  = [ ( a k ) ~ o s 8 + ~ ( a k ) ~ c o s 2 8 +  ...I L. 

Therefore 

and 

U C C 
- = i ( a k ) 2 - + y k -  
C f  c/ c,  

(3.8a) 

(3.8b) 

where u' is the fluctuating component of u. 
Thus even for modulated wavetrains we expect the spectral densities to be equal 

to  within an error of O(ak), which is by hypothesis a measure of the strength of 
modulation. 

Figure 5 ( a )  displays Sv, S" and R a t  xk,  = 48.3. The corresponding squared 
coherence arid phase a t  the first three harmonics are (1.00, 0.9'), (0.98, - 16.2') and 
(0.90, -9.8"), respectively. The squared coherence a t  the fourth and higher 
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FIGURE 5 .  (a) Spectra of dimensionless horizontal velocity ( u / c c ) ,  ST (-), and dimensionless 
surface displacement (gk,), Sq (----), and I? = S"/Sq (---) a t  xk,  = 48.3 for ak = 0.23. The error 
bar shows the 95 % confidence interval for g = 80 degrees of freedom. ( b )  Corresponding phase. (c) 
Corresponding squared coherence. 
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harmonics is less than 0.7. The ratio R is close to unity in the first and second 
harmonic bands, consistent with the fact that  the wavetrain is almost uniform a t  this 
station. (We are unable to explain the spurious peak in ST between the second and 
third harmonics.) 

Figure 6 ( a )  displays the spectrum at xk,  = 241.5, in the region where breaking is 
established and the mean drift velocity is close to its maximum (cf. figure 2). 

Now Rgo NN R2=, NN 1 ; but R in the remainder of the spectrum appears to  follow a 
-2 power law consistent with a superposition of linear modes. This applies even in 
the first and second harmonic bands. Again the squared coherence drops below 0.7 
for the discrete spectrum above the third harmonic band, while that for the 
continuous spectrum has grown (figure 6c) .  The background phase, figure 6 ( b ) ,  shows 
a roll-off with increasing frequency for the continuous spectrum, while the values for 
the discrete spectrum are typically in the range +20" for the first three harmonic 
bands. Another feature of figure 6, is the subharmonic peaks at u = 0.37, 0.74, 
1.  1 1  Hz. These correspond to the long waves forced by the moduIation of the carrier 
wave. The squared coherence and phase for these harmonics are (0.93, 178"), (0.86, 
151') and (0.65, 126'), respectively. Note that the drift velocity and displacement are 
approximately 180" out of phase whereas the Eulerian velocity would be in phase 
with the displacement. 

Figure 7(a-c) shows the spectra, squared coherence and phase at xk, = 273.7. At  
this station, which is beyond the breaking region, the spectral ratio has a broad 
plateau extending from the second harmonic of the forced wave to the second 
harmonic of the carrier wave. There does not appear to be a simple separation into 
free and forced waves based on the initial carrier frequency vo. The squared 
coherence of the continuous spectrum shows a marked increase over the first two 
harmonic bands of the carrier, and the phase is relatively flat out to the third 
harmonic band without the roll-off evident earlier. 

3.4. Wave groups and forced uiaties 

I n  this section we shall present ensemble-averaged wave envelopes in both amplitude 
and velocity, along with the concomitant forced waves. However, before doing this 
it is useful to review the weakly nonlinear slowly modulated wave theory. 

Following Dysthe (1979) and Lo & Mei (1985) for the slowly modulated wavetrain, 
the flow generated by the modulation of the radiation stress is described by 

V 2 $ = 0 ,  z < q ,  \ 

I -+gq=o, a$ z = o ,  
at 

- = o ,  a# z=-h.J  
aZ 

(3.9) 

for kh = O(lca)-l. A is the complex amplitude of the first harmonic and $ and q are 
the velocity potential and surface displacernent of the long forced wave. From the 
kinematic condition it may be seen that the term a?;l/at is of higher order in the 
dynamic boundary condition and may be neglected. 
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The initial instability of the uniform wavetrain leads to sinusoidal modulations, 
thus we posit 

where 0 = Kx - Ot, 
IAl = A,(l+€cose),  

and 

is the group speed of the linear wave of the carrier frequency u,. The parameter e 
( $ 1 )  measures the modulation strength. 

To lowest order in e 
IAI2 = A; (1 + 2 E cos 8)  

and the corresponding solution for 6 is given by 

q3 = - ev,& eKz sin y. 

It follows that 

and 

G(X, 0, t )  = - su0A2K cos 0. (3.10) 

(3.11) 

Note that .ii and 4 are both 180" out of phase with the envelope. 
For the Benjamin-Feir instability the frequency of the most unstable perturbation 

is (A,k,) go .  Thus we set 52 w (A,k,) u,. 

Then -- - e(A,k,)z 
A 0 4  

(3.12) 

(3.13) and 

with errors of O(A,ko)2 
Note that u is a Eulerian velocity, whereas we measured a mixed Eulerianl 

Lagrangian velocity. 
The forced long wave measured here is in fact the long-wave component of 

i (ak)2c,  where a ,  k ,  c are the modulation variables that are slow functions of time. 
For the initial stages of the Benjamin-Feir instability ak and c are in quadrature, with 
k x k ,  and c x c,, where ak is a maximum (cf. M2,  figure l b ) .  The measurements 
also suggest that the fractional modulation of ak is somewhat larger than that of c 
during the initial instability. With these assumptions, 

1tz1 - - Ea;A;K = 

g 

(3.14) 

Note that this is an order-of-magnitude larger than the Eulerian velocity obtained 
above. 

The ensemble-averaged slow modulations of the wave field were educed by 
performing phase averages on the appropriate variable. For example, the forced long 
wave in the surface displacement was obtained by computing 

where T is the group period. The wave envelope was obtained by averaging the crest 
and trough elevations over 100 bins in (0, T). Each time series contained 300 groups, 
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each having a period of approximately 2.5 s ; thus an error in T of only 0.008 s would 
propagate through T in the averaging, and eliminate the desired signal. Considerable 
care was needed to evaluate T prior to averaging. Initial estimates were obtained by 
spectral estimates to a resolution of 0.00122 Hz. These estimates were used as a first 
guess before iterating to T such that the amplitude of the long wave was maximized. 
The final error in estimating T was &0.0005 s (based on the sampling-clock rate) 
which could propagate approximately 0.37m rad into the long wave over the 
averaging time. For ak = 0.23 the period T = 2.62 s (k 3 %), whereas for ak = 0.29, 

Figure 8 shows the slow modulations for ak = 0.23. The only station a t  which the 
modulations are small enough to be described by the approximate theory reviewed 
above is shown in figure 8 ( a )  (xk, = 177.1). The modulation in the envelope is 
approximately sinusoidal (perhaps less so in the velocity envelope) and A&! = 0.2, 
e = 0.25. With these estimates 

T = 1.760 s (*0.2%).t 

3 = 0.01, k = 0.002. 111 
The measured values are 0.01 (k0.002) and 0.003 (&0.001). Given the magnitude of 
the forced waves (the displacement amplitude is only O( lo-') cm) the agreement is 
satisfactory. 

The development of the slow modulation down the channel is shown in figure 
8 ( a d ) .  Figure 8 ( b )  shows considerable asymmetry in the envelopes and in the forced 
waves. Notice the relatively good agreement between-the envelopes a t  the extremities 
of the group, with a large discrepancy on the forward face of the amplitude envelope, 
suggesting that wave breaking is most common on the forward face of the group. 
Figure 8 (c )  displays the further development of asymmetry in the wave group. The 
results of M 2  show that much of the asymmetry in the envelope is due to the 
localization of the larger wave slopes in the fundamental band and the corresponding 
localization of the higher harmonics. 

Finally, figure 8 ( d )  shows beyond the breaking region. The wave envelopes now 
have steep rear faces. The forced long waves have decreased significantly and appear 
to be comprised mainly of a higher harmonic of the forced wave, (the 4th) having a 
frequency (2.2 Hz) close to that of the carrier wave. 

3.5. Surface displacement vs. velocity 
The data were also examined by plotting the displacement amplitude versus the 
velocity amplitude for each wave. This was done by computing 1/2(yc-yt) k,  and 
1/2(u,-uu,)/c,,$ for each trough and following crest, with the results shown in 
figure 9. 

Figure 9(a) shows such a diagram a t  xk, = 177.1, just before established breaking. 
With the exception of approximately 13 (out of 1600) waves there is a very good 
correlation between the displacement and velocity amplitudes : an approximately 
linear relationship, the line having a slope of 0.86. By contrast, figure 9 ( b )  shows 
the corresponding diagram a t  xk, = 209.3, in the established breaking region. Here the 
diagram displays two regions : a densely populated curve which corresponds to the 
unbroken waves, and a less dense region in which u/c!  is significantly greater than 
yk,. It should be emphasized that as a result of the modulation of k and c these points 

t The percentages here refer to the variability in T at different stations down the channel. 
$ Subscripts t and c refer to trough and crest, respectively. 
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do not give the local wave slope, nevertheless it is clear that breaking is not restricted 
to  the larger waves, with the breaking waves varying over an order of magnitude in 
amplitude. Downstream of the breaking region, figure 9(d) (xk, = 273.7) displays 
very good correlation between the velocity and surface displacement. The data of 
figures 8 and 9 show that the large differences between the normalized velocity and 
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FIQURE 8. (i) Phase-averaged envelopes of surface displacement ak, (---) and velocity u/c( ,  (-). 
These were computed by averaging crests and troughs over 100 bins in the period of the wave 
envelope. (ii) Phase-averaged surface displacement qkc, and velocity u/c , .  (a )  xk, = 177.1 ; ( b )  193.2 : 
(c) 241.5; (d )  273.7. 
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FIGURE 10. Correlation between surface displacement at the crest, Tck,, and horizontal velocity at 
the crest, u,./c( for ak = 0.23 at (a) xk, = 209.3 ; (b) 241.5. Also plotted is Cokelet's (1977) numerical 
prediction of 7,k versus uJc. 

surface displacement which are observed on the forward face of the displacement 
envelope are due to breaking. The randomly distributed points outside the densely 
populated region are due to breaking waves. In  both figures 9(b) and 9(c) the 
maximum value of ak, is approximately 0.34. Since k x k,  for the largest waves in the 
group (M2) this is an approximation to ak, and is some 23 % less than the maximum 
amplitude of uniform deep-water waves. 

Figure 10 shows the maximum elevation versus the maximum velocity at 
xk, = 209.3 and 241.5 (cf. figure 9b, c ) .  We also show the curve 7,k versus u,,c 
deduced from Cokelet's (1977) exact numerical solution for uniform deep-water 
waves. In  consequence of the modulations and our use of k,  and c( to normalize the 
data there is not a direct correspondence between our measurements of unbroken 
waves and Cokelet's results. However, his curve does show reasonable agreement 
with the measurements. One feature of the measurements that facilitates this 
agreement is the fact that  k x k, and c x c, for the largest waves in the group (M2). 
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It should be stressed that a t  the larger breaking-wave amplitudes there was some 
drop-out in the velocity signal, due to entrainment of the glass microsphere. Those 
data were edited out. 

4. Discussion 
In  this paper we have shown that the simultaneous measurement of the horizontal 

velocity a t ,  and the displacement of, the surface in a wave field provides a great deal 
of information that is not available from one set of measurements alone. The wave 
field examined here is essentially two-dimensional with only small three-dimensional 
effects (M 1) .  Extension of the technique to two horizontal velocity components for 
three-dimensional wave fields is trivial. 

Comparison of the velocity and displacement time series shows that there are large 
random velocity excursions in breaking waves, and that the surface-displacement 
signal is not necessarily a good indicator of breaking even in a relatively narrow- 
banded wave field. We anticipate that simple ' breaking criteria ' based on local wave 
properties may prove to be incorrect or a t  least ambiguous. The data presented here 
show numerous examples of relatively low-amplitude breaking waves. One particular 
difficulty with local breaking criteria is that  they address the question of wave 
characteristics at breaking (Ochi & Tsai 1983). However, breaking is not an 
instantaneous process and a wave may break for a significant fraction of a wave 
period. If the breaking wave is in a region of the envelope in which the amplitude is 
rapidly changing (as they are here) its amplitude may decrease to  a very small value 
during breaking. It then becomes important to distinguish whether one is interested 
in, say, the statistics of breaking waves or the statistics of incipient breaking waves. 
There also appears to be some ambiguity in the use of wave-breaking criteria in 
conjunction with joint statistics of amplitude and frequency. It is common to 
postulate a breaking criterion which is an effective wave slope and then imply that 
all waves with a slope greater than this criterion are breaking. Implicit in this 
argument is the assumption that the wave slope increases during breaking. In  
contrast the measurements here, along with the results of M2, suggest that the wave 
slope reaches a maximum in the displacement envelope and declines on the forward 
face of the amplitude group (see also Melville & Rapp 1983) ; that is, the wave slope 
is reduced as the wave breaks. Whether the results of these experiments can be 
directly applied to the field is not clear but they certainly cast serious doubt on the 
usefulness of current forms of breaking criteria and support the recent field 
observations of Holthuijsen & Herbers (1985). 

The averaged velocity measurements, which in an unbroken wave field correspond 
to the Lagrangian mean velocity, show a significant maximum in the breaking 
region. In  the absence of breaking us - O(a2k2)c,, and from figure 5 we see that the 
increase due to breaking is comparable to the absolute value prior to breaking. From 
figure 2 it is clear that the increase must be due to the large velocity excursions in 
the breaking waves. This can be checked as follows : There is typically one breaking 
wave per group, i.e. there are O(ak) breaking waves/wave. The velocity excursion in 
a breaking wave is O ( c )  and lasts for approximately 10-25 % of a wave period, which 
is comparable to ak, say. Thus the increase in Us due to  one breaking wave per group 
is O(a2k2) c,. On the basis of these data i t  is not worth trying to make a more accurate 
assessment ; however, this approximation makes i t  clear that even gentle breaking of 
this kind can significantly increase the mean surface-drift velocity above the value 
for an unbroken surface. 
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The spectra of both velocity and surface displacement also emphasize the dangers 
of using one field to infer the other, in situations in which a mixture of free and bound 
waves are present. The growth of the continuous spectrum is evidenced by the 
coherence and phase a t  the last downstream station (figure 7 c )  and it would be of 
considerable interest to have measurements of the kind presented here for much 
longer evolution times. 

The phase-averaged measurements clearly bring out the structure of the average 
group and show the strong asymmetry especially in the velocity field. The also show 
that breaking is more prevalent on the forward face of the amplitude envelope but 
in phase with the maximum of the velocity envelope. This supports our earlier 
comments about breaking criteria. 

One of us (W.H.M.)  would like to thank his former colleagues a t  the Hydraulics 
Laboratory of Scripps Institution of Oceanography for their assistance with building 
equipment for the experiments. This work was supported by National Science 
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