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Wave modulation and breakdown 

By W. K. MELVILLE 
R. M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 
and Institute of Geophysics and Planetary Physics, University of California, San Diego, 

La Jolla, CA 92093 

(Received 6 October 1981 and in revised form 7 September 1982) 

Time series of amplitude, frequency, wavenumber and phase speed are measured in 
an unstable deep-water wavetrain using a Hilbert-transform technique. The modu- 
lation variables evolve from sinusoidal perturbations that are well described as slowly 
varying Stokes waves, through increasingly asymmetric modulations that finally 
result in very rapid jumps or ‘phase reversals ’. These anomalies appear to correspond 
to the ‘crest pairing’ described by Ramamonjiarisoa & Mollo-Christensen (1979). The 
measurements offer a novel local description of the instability of deep-water waves 
which contrasts markedly with the description afforded by conventional Fourier 
decomposition. The measurements display very large local modulations in the phase 
speed, modulations that may not be anticipated from measurements of the phase 
speeds of individual Fourier components travelling (to leading order) at the linear 
phase speed (Lake & Yuen 1978). 

1. Introduction 
The last two decades have seen considerable theoretical advances in our knowledge 

of the stability and interactions of nonlinear waves (see Whitham 1974; and, for a 
recent personal account, Phillips 1981 a ) .  It is well known that such phenomena lead 
to modulations of wavenumber and frequency, as well as amplitude, with the 
frequency dependent on both wavenumber and amplitude. These modulations are not 
just theoretical curiosities but have important consequences in oceanography and 
meteorology, as well as naval architecture and ocean engineering (Longuet-Higgins 

Despite these theoretical advances the experimental measurement of these modu- 
lations has lagged far behind and I know of no published method in the fluid-mechanics 
literature that demonstrates an unambiguous simultaneous measurement of both 
amplitude and phase modulation. However, the basis of such a method has existed 
in the communications and electrical-engineering literature for the same two decades 
a@ is developed here to demonstrate the method on surface gravity waves.? 

I n  one of the first experimental papers on the stability of nonlinear gravity waves, 
Feir (1967) used the measured time between crests to show the frequency modulation 
that accompanies amplitude modulation. Unfortunately this gives a rather poor 
resolution of the frequency, which is adequate only for slowly modulated wavetrains. 
Subsequent workers in the field have used rectification and low-pass filtering of the 
surface displacement to provide a measure of amplitude modulation, and zero-crossing 
methods to measure frequency modulation (Lake & Yuen 1978). However, such 

1980). 

t Since this work was informally reported and this paper begun, a thesis with preliminary results 
for wind waves has appeared (Sahar 1981). 
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methods are not reliable when the wave amplitude undergoes very large fluctuations 
in one wave period. Conclusions based on such methods of data analysis are also 
questionable. Much of the data analysis relating to wave stability has depended on 
power-spectral estimates (Lake et al. 1977; Melville 1981) in which the phase 
information is neglected entirely. Moreover the spectra may become rapidly populated 
with numerous discrete lines (along with a continuous spectrum), rendering simple 
interpretations difficult, if not impossible. 

The work reported here was originally motivated by the need to compare fluid 
velocities and phase velocities in breaking waves (Melville 1982). We originally 
intended to use the conventional correlation between two wave gauges to obtain the 
phase speed of the waves. However, i t  was soon realized that such measurements are 
global in that they represent phase speeds of Fourier components obtained from time 
series of considerable duration, whereas the breaking events are local in time and 
spread over a number of Fourier Components. Initial measurements also showed that 
significant frequency modulations could occur in a mechanically generated wavetrain 
of initially uniform frequency, so there was no reason to expect that  an unstable wave- 
train could be characterized by a single wavenumber or phase speed. These 
observations do not agree with a conjecture of Lake & Yuen (1978) that  the numerous 
Fourier components in a strongly modulated mechanically generated wavetrain were 
not free waves but merely the bound components needed to describe the individual 
waves and their envelope. This conjecture was used to interpret wind-wave data in 
which the effects of nonlinearity dominated those of randomness. 

The validity of the linear or weakly nonlinear dispersion relationship in wind-wave 
fields has been questioned by a number of workers since Ramamonjiarisoa’s (1974) 
laboratory measurements. Some of the ambiguities involved in measuring the 
component wave speeds have been recently resolved by Phillips (1981 b )  and Crawford 
et al. (1981). While this question is not directly addressed here, the controversy 
regarding the phase speed of surface waves indicated that it was not generally 
appreciated that the local phase speed could be accurately measured as a function 
of time; with most experimenters resorting to measuring the phase speed of the 
individual Fourier components. 

I n  this paper we show, with some relatively weak restrictions, that  the measure- 
ment of the surface displacement can be used to obtain the time series of both 
amplitude and phase a t  a point. Finite-differencing of the phase in space and time 
leads to  time series of wavenumber and frequency respectively, and hence the phase 
speed. The method is demonstrated on nonlinear deep-water waves, It confirms the 
dispersion relatonship to 0 ( c 2 )  for weakly modulated waves, and shows evidence of 
anomalous behaviour in the phase with very rapid variations of the wavenumber, 
frequency and phase speed. This phenomenon which appears as a phase reversal may 
be related to the ‘crest pairing ’ of Ramamonjiarisoa & Mollo-Christensen (1979) and 
the ‘lost’ wave crests of Lake & Yuen (1978). The amplitude and frequency records 
are used to measure a propagation speed for these modulations. These results suggest 
that  the description of such strongly modulated mechanically generated wavetrains 
as being ‘effectively non-dispersive ’ (Lake & Yuen 1978) may need reassessment. 

I n  $2 the method for retrieving the amplitude and phase is presented. I n  $3  the 
experiments are described. The results are given in $4, and their interpretation 
discussed in $5. 
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2. Modulation measurement 
The basis of the method for measuring the amplitude and phase depends on the 

use of the Hilbert transform to represent the complex part of an analytic signal whose 
real part is measured. The method has been used in the electrical-engineering 
literature in the context of signal demodulation for at, least two decades (Schwartz, 
Bennett & Stein 1966; Deutsch 1962; Bracewell 1978). The novelty of its use here 
lies in the demonstration that not only frequency modulation but also wavenumber 
modulation, and hence phase-speed modulation, can be measured. 

If g( t )  is a real function of time in the interval - co < t < co we may define the 
analytic function 

(2.1) W )  = g ( t ) - W ,  

where 1 g(t’)dt’ 
& t ) = - 9  ~ 

77 J-, t ‘ - t  ’ 

is the Hilbert transform of g.  From the convolution theorem, 

F ( g )  = i sgns F(g), (2.3) 

where 9 denotes the Fourier transform. It follows that 

9 ( h )  = 2 F ( g )  (s 2 O ) ,  ( 2 . 4 ~ )  

= o  (8 < 0). (2.4b) 

Use of (2.4) and the fast-Fourier-transform algorithm makes computation of h(t) fast 
and efficient. 

From the above results i t  follows that if 

g ( t )  = %[a(t)  e i$ ( t ) ]  (2.5) 

then h(t) = aft) ei$(t). 12.6) 

The analytic function then describes both amplitude and phase modulation. I n  
particular, from (2.6) we may define a wave field by a ‘carrier’ frequency go and a 
complex envelope A ( t  ) , where 

h(t) = A( t )  ePiuot, (2.7) 

A( t )  = a(t)  e i ( + + U o L ) .  (2.8) 

This description is constrained by the requirement that the bandwidth of the 
spectrum of A ( t )  be less than or equal to 2gO (Schwartz et al. 1966). 

In  the nonlinear surface waves of interest the spectrum is populated in the 
neighbourhood of the fundamental frequency and the higher harmonics. It is 
therefore necessary to  bandpass the measured signal to satisfy the bandwidth 
constraint on A( t ) .  This is the only arbitrary step in the procedure outlined here, and 
in all the results presented the frequency bands are defined by a , (n - i ,  n+i),  
n = 1 ,  2,  . . . , where B, is the fundamental frequency. It should be stressed that this 
filtering (in Fourier space) does not necessarily restrict the instantaneous frequencies 
to these bands. 

This bandpass filtering also fits quite naturally (as i t  should) with theoretical 
descriptions which describe the wave field as an ordered series of functions representing 
the modulation of the fundamental wave and its harmonics. For example, if 
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represents the surface displacement with the j t h  term representing the contribution 
from the neighbourhood of the ( i+l) th  harmonic, with E as the (small) ordering 
parameter, then the amplitude aj and phase g5j can be evaluated. The wavenumber 
and frequency defined respectively by 

kj(Z, t )  = 2, 34. u,(x, t )  = -2, 34. ax at 

may be approximated by the appropriate first differences. 
In the experiments described below, time series of surface displacement were 

measured a t  time intervals of At at two stations separated by a small distance Ax 
in the direction of wave propagation. Each time series was Fourier-transformed and 
bandpass filtered, and the analytic signal was computed and decomposed into its polar 
components a and 4. The amplitude, frequency, wavenumber and phase speed were 
then estimated by 

a(x, t )  = +[a(t; x-$Ax) + a(t  ; x++Ax) ] ,  

CT(X,  t )  = [$ ( t  -$At ;x) - #( t  + gAt ; % ) ] / A t  

k(x, t )  = [$( t ; x + $AX) - $( t ; X: - $AX)]  /AX 

respectively. 
c(x,t) = u/k 

3. The experiments 
The technique was tested during a series of experiments that have been described 

a t  some length in a recent paper (Melville 1982) and the reader is referred there for 
the detail not given here. 

The experiments were conducted in the glass channel at  the Hydraulics Laboratory, 
Scripps Institution of Oceanography. The channel is 0 5  m wide, 28 m long and the 
water was 0.6 m deep. Uniform deep-water 2 Hz waves were mechanically generated 
at one end of the channel and became unstable through the Benjamin-Feir 
mechanism, which led ultimately to breaking. The waves were dissipated on a beach 
at the other end of the channel. 

Surface-displacement measurements were made with two resistance wave gauges 
separated by 8 cm ( A x )  in the direction of wave propagation. The wave gauges were 
sampled at 100 Hz in the unbroken wave field at at 200 Hz in the breaking region. 
The data were stored on magnetic tape and processed on a digital computer. 

The calibrated data were bandpass-filtered in bands of 2 Hz width centred on the 
fundamental frequency (2 Hz) and its higher harmonics. The analytic functions were 
subsequently computed for each of these filtered signals. Three series of experiments 
were processed in this manner for 0.23 < ak < 0.29,t only one series of experiments 
(ak = 023) was examined in the detail presented below. However, the results for 
ak = 029 agree in all important physical respects with these results. 

The position of the measurements in the data presented below is described by the 

t The amplitude here refers to the amplitude of the initial uniform wavetrain and is defined as 
half the difference between the mean crest and mean trough position sampled over 100 waves. This 
amplitude includes contributions from all the Fourier components. This should not be confused 
with the amplitude of the first term in the Stokes’ expansion. 
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dimensionless distance xk,, where x is the distance down the channel from the 
equilibrium paddle position and k, (0.161 cm-l) is the wavenumber of the linear 
deep-water wave of 2 Hz. 

4. Results 
4.1. Single-point measurements 

Figure 1 (a )  displays the essentially uniform wavetrain at xk, = 58, the displacement 
qo from Fourier components in the fundamental band (1-3 Hz), the amplitude ao(t) ,  
the phase &(t )  and the frequency cro(t). The measured amplitude in the fundamental 
band is almost constant and is, to the accuracy of the experiment, equal to the total 
wave amplitude. This is to  be expected, since the first correction to  the wave 
amplitude in the Stokes expansion is of order ( c ~ k ) ~ ,  comparable to the expected 
measurement err0r.i The measured frequency differs by at most 1 yo from that of the 
2 Hz sinusoidal waveform driving the wave generator. 

Figure 1 ( b ) ,  a t  xk, = 155, shows the modulated wavetrain resulting from the 
Benjamin-Feir instability, with both amplitude and frequency modulations present. 
At this station the modulations are approximately sinusoidal. However, a t  xk, = 177 
(figure 1 c) the frequency modulation is beginning to show an asymmetric form with 
steeper forward faces and more gently sloping rear faces. At this station the waves 
were occasionally breaking. Figure 1 ( d )  (xk, = 209, in the established-breaking 
region), shows the further development of the asymmetry, with the amplitude 
modulations also showing steep forward faces. The frequency modulation now shows 
an asymmetry in amplitude (i.e. about the initial frequency of 2 Hz) as well as in time : 
the positive perturbations are significantly greater than the negative perturbations. 
The positive-frequency perturbations have also extended beyond the upper limit of 
the bandpass filter (3 Hz); presumably a consequence of the nonlinear interaction 
between different Fourier modes in the fundamental band. The results at xk, = 242 

I- 
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(a) 

FIGURE 1 (a) .  For caption see p. 495. 

t Experimental errors are discussed in the appendix. 
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(C) 

FIGURE 1 ( b ,  c).  For caption see facing page. 

(figure 1 e )  show a dramatic change, with the amplitude modulations extending almost 
to  zero with small coincident regions of negative frequency. These negative frequencies 
result from regions of phase reversal. They will be examined in more detail in 54.3. 
The other important process displayed in this figure is the evolving phase shift 
between the amplitude and frequency modulations. I n  figure 1 (a) the frequency leads 
the amplitude by approximately 90°, consistent with the linear analysis of the 
Benjamin-Feir instability. As the waves evolve down the channel the phase difference 
increases until (in figure Id)  the amplitude and frequency are approximately 180° 
out of phase. 

Similar processing may be carried out on the second-harmonic band covering 
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FIGURE 1 .  Surface displacement T ,  bandpassed (1-3 Hz) displacement yo, amplitude a,, frequency 
no and phase $o at (a) xk( = 58; ( b )  155; (c) 187; (d )  219; ( e )  251. 

frequencies in the range 3-5 Hz, and the results are shown in figures 2 (a-c). Each of 
these figures shows the unfiltered wavetrain, the filtered wavetrain and the corres- 
ponding amplitude, phase and frequency signals. Figure 2 ( a )  (xk, = 155, cf. figure 
1 b)  shows evidence of more than one modulation frequency, which when compared 
with figure 1 ( b ) ,  at  the same station, clearly shows that the waves are not simply 
modulated Stokes waves. In figure 2 ( b )  (sEe = 177) we already see evidence of the 
phase reversals, not seen until xke = 242 in the fundamental band. In addition there 
are large positive-frequency perturbations with frequencies greater than 10 Hz, or 
more than double the largest Fourier-component frequency in this band. Further, 
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( b )  

FIQURE 2 (a,  b ) .  For caption see facing page. 

the frequency perturbations also extend below into the fundamental-frequency band. 
Figure 2 ( c )  shows the second-harmonic band a t  xkt = 242, where again the 
instantaneous frequencies extend above and below the range 3-5 Hz. The amplitude 
has become localized in the neighbourhood of the largest waves, contributing to the 
asymmetry of the wave groups that is apparent in the surface-displacement signal. 

4.2. Two-point measurements 

The single-point measurements do not permit a resolution of the wavenumber. This 
may be resolved with two adjacent measurements, which in this case was accomplished 
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FIQURE 2. Surface displacement 7, bandpassed (3-5 Hz) displacement v,, amplitude a,, frequency 
u, and phase 6, at (a )  xk, = 155; ( 6 )  187; (c) 251. 

by two wave gauges separated by a distance of 8cm in the direction of wave 
propagation. This separation proved small enough to resolve quite accurately the 
wavenumber modulations of the fundamental band. Measurements made with a 
separation of 1.5 cm gave unacceptable errors in the measured wavenumber. The 
cause of these errors was not determined, but i t  may be mechanical (e.g. wake 
interference) or electronic (interference between the two bridges). As a result, the 
wavenumber measurements were restricted to the fundamental band for which the 
wave-gauge separation was a sufficiently small fraction of the wave length : 
approximately 0-2 of the uniform wavetrain. 

Figures 3(a-d)  show the wavenumber k, (em-'), the frequency go (Hz), the slope 
a,E, (based on the amplitude of the envelope of the fundamental band), and the 
measured and theoretical phase speed normalized by the linear phase speed for 2 Hz 
waves.t The measured phase speed c was computed from the measured frequency and 
wavenumber. The theoretical phase speed ct was computed from the approximate 

(4.1) 
dispersion relationship 

using the measured wavenumber k,  and measured amplitude a,. For consistency an 
additional correction proportional to  the second spatial derivative of the amplitude 
should be included for strongly modulated waves (Chu & Mei 1970); however this 
would have required a third displacement measurement for finite differencing. 

Unfortunately the data taken at the station closest to  the paddle were not usable 
and so no direct check of the dispersion relationship for the unmodulated wavetrain 
was possible. However, figure 3 ( a )  (xkc = 155) shows an approximately sinusoidal 
modulation of all the variables with a very good agreement between the measured 

4 = SkOP + (a0ko)21 

t This unlikely combination of dimensioned and dimensionless variables was chosen for ease of 
graphical representation. 
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( b )  
FIQURE 3(a ,  6 ) .  For caption see facing page. 

and theoretical phase speeds. The difference between these two speeds is at most 1 % 
in this weakly modulated wavetrain. Longer-period fluctuations are also evident and 
are most likely evidence of long period modes of the channel. These are also seen in 
figure 3 ( b )  ( zkL  = 187), where the waves were occasionally breaking. This intermittent 
breaking is almost certainly due to these longer-period fluctuations. The important 
features of this figure are the good agreement between the phase speeds, and the 
development of asymmetry in the wavenumber fluctuations. The wavenumber and 
frequency fluctuations are in phase and lead the slope fluctuations. No accurate 
measure of this phase difference was made, but i t  appears to be in the range [in, in]. 
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( d )  
FIGURE 3. Fundamental modulation variables : wavenumber k, (cm-I), measured phase speed c/ce 
(-), computed phase speed ct/cs (- - -), aoko + 1.5 and frequency CT, (Hz) at (a )  xks = 155; (b)  188; 
( e )  204; (d) 220. 

Figure 3 (c) (zk, = 204) displays measurements from the established-breaking 
region. The agreement between the phase speeds is still quite good, although the errors 
at the extrema are now as large as & 9 yo, with maxima as much as 32 yo greater than 
the linear phase speed, and minima as much as 17 yo less. The measured wavenumber 
is now showing strong asymmetries in both amplitude and time, which are also 
evident in the frequency. The slope curves have begun to develop sharper crests than 
troughs but remain approximately symmetric in time. 
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FIGURE 4(a). For caption see facing page. 

The final figure in this series (figure 3(d), xke = 220) shows that the perturbation 
in wavenumber and slope have become localized within each group. The frequency 
(which is linearly interpolated between the two gauges) is changing so rapidly in space 
that the finite separation of the gauges may be evident in the last few groups. The 
agreement between phase speeds is still remarkably good, with the exception of the 
regions in which the frequency is rapidly changing. Immediately following this record 
(at the same station) phase reversals were measured and gave rise to rapid jumps 
in the measured variables. These jumps were also evident at the final station 
(xk ,  = 252). They are examined in more detail in $4.3. 

4.3. Phase reversals 

The most surprising aspect of these results is the appearance of phase reversals. They 
occur first in the second-harmonic band and then in the fundamental band at a station 
further downstream. The resolution of the phase is best shown in a polar diagram 
of the trajectory of (ao(t), q50(t)) where the real axis is the measured, filtered, surface 
displacement, and the imaginary axis its Hilbert transform. 

Figure 4(a) (cf. figure 1 )  shows such a trajectory a t  xke = 204 for a period of 10 s. 
The trajectory is contained in an annular region described by the maxima and minima 
of the envelope. (For a uniform wavetrain the trajectory describes a circle centred 
a t  the origin with a radius equal to the envelope amplitude.) It is worth noting that 
the trajectory passes around the origin, the phase decreases monotonically by 277 
in each (not necessarily equal) wave period, so that the frequency is everywhere 
positive. However, at xke = 251.38 (figure 4 ( b ) ,  cf. figure 1)  we see that the trajectory 
on four occasions does not pass around the origin, but instead forms a closed loop 
in the neighbourhood of the origin. That is, the phase does not decrease monotonically 
but increases in a small interval of time during which the amplitude is also small. 
Figure 4(c) shows the trajectory a t  xke = 252.67 over the same period displayed in 
figure 4(b), and here we see that the anomalies in the trajectory have evolved (in just 
8cm),  with the loops disappearing. leaving regions of large curvature in the 
trajectory. These anomalies are clearly evolving rapidly ; changing qualitatively in a 
small distance as they propagate in the same direction as the waves. 
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FIGURE 4. Polar diagram of the analytic function ho(t) = ?&) -i&(t) 
a t  (a) xk, = 203; ( b )  251.38; (c) 252.67. 

I n  figure 5 we have used the data a t  the stations shown in figures 4 (b ,  c) to compute 
the variables shown earlier in figure 3. I n  figure 5 ( a )  it  is shown that the negative 
frequencies evident earlier are also accompanied by regions of negative wavenumber. 
These regions of negative wavenumber are coincident with very rapid changes in 
wavenumber. Time delays between the frequency minima a t  the two wave gauges 
were used to measure the propagation speeds of these events. The ratios of 
propagation velocity to linear phase speed, c,/c,, for the seven events in figure 5 (a )  
are 1.01, 0-88, 1.35, 1.17, 091, 1.21, 1.26 respectively, with all events propagating in 
the same direction as the incident wavetrain. I n  all but the first event there existed 
a point where the propagation speed was equal to the local measured phase speed. 



502 W. K .  Melville 

I I I I I I I I i 

I I I I I I I I 1 1 

-8 I I I I I I I I I 1 1 
0 4 8 12 16 20 

t (s) 

( b )  
FIC~JRE 5. (a )  Fundamental modulation variables: ko/k , ,  u,/n,, a, (cm), a,k, at xkt = 252 

(b)  Phase speed c/cf at xk, = 251 : -, measured; . . . , equation (5.1). 

Event Time (s) 

1 2.9 
2 5 4  
3 8.2 
4 10.8 
5 13.6 
6 16.2 
7 18.7 

CICCmax 

3.97 
6361 

7.35 
138.01 
62.01 
1007 
34.14 

Ct/Cemax 

3.06 
1674 
3.76 

14.43 
12.46 
4.39 
947 

- 0.42 
- 6.09 
- 6.50 

-5.1 1 
- 32’47 

- 

- 1.55 
- 3.65 
- 3.66 
- 

- 3.29 
- 10.41 

c,/ce 

1.01 
0 8 8  
1.35 
1.17 
0.9 1 
1.21 
1.26 

TABLE 1 .  Maxima and minima of measured and computed ratios c/ce, ct/ct and measured 
propagation speed cB/c, during events in figure 5 
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It is worth noting that these propagation speeds are much larger than the linear group 
velocity of the incident wavetrain. 

Figure 5 ( b )  shows the measured and computed phase speed for the same period as 
shown in figure 5(a).  It is evident that the regions of negative frequency and 
wavenumber are regions of very rapid change in the phase speed. The occurrence of 
negative phase speeds shows that the regions of negative wavenumber are not 
necessarily coincident with the regions of negative frequency. The regions of negative 
phase speed are very small and more accurate measurements are needed to resolve 
the details in these regions. Nevertheless, there appears to be reasonable qualitative 
agreement between the measured and computed phase speeds. (It should be noted 
that for ease of presentation the speeds have been arbitrarily truncated a t  seven times 
the linear value.) The maximum and minimum of the measured and computed phase 
speeds for each of the events in figure 5 are given in table 1 .  The measured maxima 
are as much as two orders of magnitude greater than the linear phase speed. These 
large variations are to be compared with the phase speed for a uniform wavetrain, 
which is a t  most 1 . 0 9 ~ ~ .  We do not believe that the phase speeds are accurate up to 
the extrema measured in each event; nevertheless, the profiles in events 1,  2 and 5 
are in reasonable quantitative agreement for phase speeds up to an order of 
magnitude greater than the linear phase speed. 

It is of interest to note that these large gradients always occur in the neighbourhood 
of local minima in wave amplitude. I n  the data processed these anomalies occurred 
only in the breaking region, and first in the higher harmonics. 

5.  Discussion 
I n  this paper we have shown that the Hilbert-transform technique may be used 

to measure the amplitude, frequency, wavenumber and phase speed as continuous 
variables in a strongly nonlinear unsteady wavetrain. The measurements show that 
the weakly modulated waves in the fundamental band were consistent with the 
Stokes’ second-order dispersion relationship. Subsequent evolution of the waves 
displayed features that have not been directly observed using the conventional 
data-analysis procedures, and are not described by available theoretical results. These 
include an evolving phase shift between amplitude and frequency modulations, 
localization of slope modulations, and phase reversals. 

The initial frequency modulation was found to lead the amplitude modulation by 
approximately in; but as the evolution of the groups proceeded the modulations 
became asymmetric and the phase difference increased to approximately m, with 
regions of small amplitude coincident with regions of high frequency. This suggests 
that amplitude and frequency modulations may have different propagation speeds. 
A preliminary attempt was made to determine these speeds by measuring the time 
required for extrema in the modulations to  pass between the two wave gauges. These 
measurements showed considerable scatter in the range 0 3 - 1 . 2 ~ ~  ; nevertheless, a t  
each station the mean propagation speedt for the frequency was greater than that 
for the amplitude (up to 30 yo greater), consistent with the observed change in phase 
shift. It is worth noting that the mean velocities were in the range 1.G1.5 times the 
linear group velocity and point to the need for an examination of the use of this 
velocity to  characterize the propagation of strongly modulated groups. Rama- 
monjiarisoa & Mollo-Christensen (1979) emphasized the important role of the phase 

t These mean values were computed over 10-20 individual groups. 
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shift between amplitude and frequency modulations in describing the asymmetry 
between the upper and lower sidebands in the spectrum. These measurements provide 
initial evidence of this evolving phase shift. 

The measurements also demonstrate the importance of considering wavenumber 
as well as amplitude modulations in determining the ‘ waveslope’ ak (cf. Lake & Yuen 
1978 ; Longuet-Higgins 1980). The measurements (figures 3 d ,  5 a )  display an increasing 
localization of ak with increasing modulation. This is reflected in the amplitude of 
the second-harmonic band (figure 2 c), which also displays a coincident localization 
with increasing modulation. There is some evidence from the measurements of 
Ramamonjiarisoa & Mollo-Christensen (1979, figure 3 e )  that  this effect continues a t  
least to the third harmonic. Thus the localization of ak in the fundamental band leads 
to a further enhancement of the total wave amplitude as a result of the corresponding 
localized contributions from the higher-harmonic hands. This localization of ak ,  which 
would not be directly evident without measurements of the wavenumber, helps 
describe the developing asymmetry of the wave groups. These observations are not 
consistent with the assumption of an approximately constant wavenumber, and 
demonstrate the importance of considering wavenumber modulations in describing 
the evolution of the wavetrain. 

Next we come to the identification of phase reversals and the concomitant rapid 
variations in the modulation variables. I n  one of the earliest papers dealing with the 
stability of nonlinear deep-water waves, Lighthill (1965) predicted that a singularity 
would result after a finite time. Subsequently Chu & Mei (1970) showed that, for 
modulations of finite length, an additional term contributes to the dispersion 
relationship and suppresses the singularity. These measurements show that regions 
of very rapid variations in the phase do occur near the minima of wave amplitude. 
The measurements are unlikely to  be very accurate in regions of very rapid phase 
reversal ; however, the changes in phase measured independently at the two gauges 
are consistent. If they were in significant error across the ‘jumps’ then the 
wavenumber would not recover to  a value consistent with the frequency in the central 
region of the group, and this error would accumulate across each jump. This is 
convincing evidence that these phase jumps are real despite their occurrence in 
regions of small amplitude. 

As far as I am aware, these phase jumps have not been directly observed before, 
and clearly further measurements need to be made. Perhaps the most important 
question to be answered concerns their possible role in the shift to  lower frequency 
following wave breaking (Lake et al. 1977; Melville 1982). Ramamonjiarisoa & 
Mollo-Christensen (1979) have drawn attention to  the phenomenon of ‘ crest pairing ’ 
in both laboratory and ocean wind waves. Their description of this is perhaps a little 
vague (‘ One crest simply overtakes the previous crest and disappears. As a result a 
wave of twice the dominant wave period is produced momentarily ’) ; nevertheless, 
it seems that phase reversals of the kind measured here may be what they saw. The 
large gradients in phase speed (figure 5b) may appear as though one crest overtakes 
the previous crest. The observation that the frequency is simply halved is not 
consistent with our measurements, although the trend appears correct. The polar 
diagram (figure 4b) ,  with the orbit not passing around the origin, may be consistent 
with a crest not appearing in its expected place in the time series; however, it also 
suggests that ‘trough pairing’ may be an equally valid name, with the loss of an 
expected trough. Lake & Yuen (1978) described the downshift qualitatively as a ‘loss’ 
of a wave crest in each modulation period when the amplitude appears to be reduced 
to zero. Their description appears to be qualitatively consistent with our 
measurements. 
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Appendix. Errors 
It is not possible to make a very reliable estimate of the errors involved in the 

measurements reported here ; however, we can present convincing arguments that 
they do not significantly influence the main results reported. The two important 
sources of error are the deteriorating wave-gauge response with increasing frequency 
and the finite-difference approximation of the gradients in the phase. The static 
calibration of the wave gauges typically gives an r.m.8. error in the calibration curve 
of kOO2 cm, so this must be taken as a minimum error. Extrapolating this error to 
dynamic measurements is not possible but the results provide some checks. For 
weakly modulated waves the measurements (figure 2a) show an error, when 
compared to the theoretical phase, of at most 1-2 yo. The slope is only a small 
correction to the measured phase speed and we expect that most of the error comes 
from the measured frequency g and wavenumber k .  Thus e, + ek - 0.02, where e, and 
ek are the fractional errors in CT and k respectively. The frequency corresponds to a 
phase difference 0(10-1) rad and the wavenumber t o  a phase difference O(1) rad. So 
if we assume that independently e, or ek could account for this error we have a 
maximum phase-difference error O( 

The more serious concern with errors occurs in the region of the phase jumps where 
the amplitude is small (comparable to the measurement error) and the frequency is 
large. At first sight this may seem to be a region of rather large errors; however, we 
expect that  the main sources of error in the wave gauges result from film draining 
behind the receding surface and capillary hysteresis effects in vertical 
acceleration/deceleration of the surface. The vertical velocity is O(aa) and the 
vertical acceleration is O(aa2).  The reduction in amplitude in the regions of the phase 
jumps would appear to compensate for the higher frequency, keeping the errors within 
acceptable limits. For example, the phases measured independently a t  the two gauges 
recover across the jumps so that the difference between the measured and computed 
phase speed is a t  most about 10 % where the higher-order corrections ( K as.) in the 
computed phase speeds are expected to be negligible. This implies that  while details 
of the measured phase in these rapklly varying regions may not be accurate the 
independently measured phase jumpsmay have an error O( 10-l) rad. It is worth noting 
that over 7 or so groups shown in figure 5 (b)  this error does not accumulate. This 
implies that  error estimate may be conservative. 

In  the regions of the phase jumps we do not believe the measurements are 
quantitatively reliable, especially where the effects of finite gauge separation show up 
in the average frequency ; however, the qualitative features of the measurements 
appear to be consistent with the computed phase speeds, especially in the ‘weaker’ 
events in figure 5 (b ) .  
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