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Effects of wave breaking on the surface drift 

Ame Melsom 

Norwegian Meteorological Institute, Oslo, Norway 

Abstract. The present paper is an investigation of the motion induced in the ocean by 
breaking waves. The theory that is presented here addresses two related problems concern- 
ing such motion. First, several parameterizations for transfer of momentum during break- 
ing are examined. Second, attempts are made to describe the surface drift and the vertical 
structure of motion that results from multiple breaking events. It is shown that the various 
parameterizations of breaking events are robust in the sense that they qualitatively and 
quantitatively give similar results. However, for description of the vertical structure of the 
current, the Reynolds stresses must be parameterized. For this purpose, we will here adopt 
the concept of eddy viscosity. It is demonstrated that wave breaking enhances motion close 
to the surface and retards motion in the deeper parts of the ocean. Also, the drift induced by 
multiple events of breaking is significant, and it is only slightly deflected from the direc- 
tion of wave propagation. 

1. Introduction 

The circulation of the ocean's surface layer has tradition- 
ally received much attention. This is due to a variety of 
problems ranging from spill simulations to interpretation of 
satellite data where an accurate description of the near-sur- 
face circulation is required. An important feature of this cir- 
culation is the motion associated with gravity waves. Most 
of the analytical theory in this field has been developed for 
constant amplitude waves and frictionally damped waves 
[Lamb, 1932; Longuet-Higgins, 1953]. However, under the 
action of the wind, the wave amplitude will generally 
increase in time (or space). The main purposes of the 
present paper are to develop a robust model for a breaking 
event and to investigate the effect of multiple events of time 
dependent wave breaking on the surface drift of the ocean. 

The total mean atmospheric stress does not only induce 
ocean currents through the action of the shear stress alone 
[Ekman, 1905] but also supplies momentum to growing 
surface waves. If we disregard the effect of friction and 
average over one inertial cycle, no net Lagrangian motion is 
induced by constant amplitude waves in a rotating ocean 
[Ursell, 1950; Hasselmann, 1970]. When viscosity is taken 
into account so that the waves are allowed to decay, average 
Lagrangian motion is present, but the volume flux remains 
zero [Weber, 1983; Weber and FOrland, 1990]. 

After the wind has been acting on the ocean surface for 
some time, the amplitude of the fastest growing wave com- 
ponent will reach a critical steepness at which the wave 
breaks. Thus the amplitude is reduced within a compara- 
tively short time interval. At subsequent times, the waves 
will rebuild due to the additional momentum that is pro- 

vided by the continued action of the wind. In this way, an 
average balance between energy input from the wind and 
dissipation due to repeated events of wave breaking will 
evolve as the sea becomes fully developed. 

In a recent paper, Weber and Melsom [ 1993a] examined 
the nonlinear drift current that develops due to wind and 
waves. Several cases covering damped waves as well as 
growing waves were investigated. It was demonstrated that 
the drift that is associated with growing waves does not 
exhibit inertial oscillations before breaking occurs. Fur- 
thermore, it was shown that the wave-induced surface cur- 
rent is almost a linear function of the friction velocity. 
However, the Lagrangian formulation that was applied in 
that paper cannot handle wave breaking due to the disconti- 
nuities of material surfaces that are associated with such 

breaking. 
Following that paper, Weber and Melsom [1993b] con- 

sidered the volume flux in a saturated sea. They concluded 
that mean Lagrangian momentum transfer from the atmo- 
sphere to the ocean via surface waves occurs only in the 
presence of growing waves. Hence one role of breaking is 
that it provides the necessary basis for lasting wave growth 
and a corresponding momentum transfer. However, only 
vertically integrated properties were considered in the latter 
paper. The present paper is an attempt to take the theory a 
step further by examining the vertical distribution of the 
induced current. A crucial problem involved in such a the- 
ory will be to describe the transfer of momentum from the 
waves to the mean drift during events of wave breaking. 
Hence an entire section in the present paper is devoted to 
this problem. 
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2. Mathematical Formulation 

The method of separation of wave motion, mean motion, 
and high-frequency motion that will be applied here is the 
same as that of Weber and Melsom [ 1993b]. On the basis of 
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an assumption of distinct timescales, the Eulerian pressure 
and velocity fields are divided into three separate parts: 

(p,v) = (p',v') + (p,•) + (•,7•) (1) 

Here primes, carets, and overbars denote small-scale turbu- 
lent fluctuations, wave motion, and mean motion, respec- 
tively. By application of time-averaging processes, 
equations for the wave motion and for the mean motion 
may be developed. The two time-averaging processes that 
are employed are denoted by < > and { }. They correspond 
to temporal integration over periods that remove linear tur- 
bulent and linear wave quantities, respectively. 

We restrict ourselves to considering motion confined to 
the ocean's mixed layer and take the density p to be con- 
stant. Furthermore, we assume that the ocean depth is infi- 
nite in mathematical terms. A Cartesian frame of reference 

is applied, with the vertical z axis being positive upward. 
The undisturbed horizontal surface is taken to define z = 0. 
We will consider motion in an ocean that rotates about the 

vertical axis with a constant angular velocity f/2. The gov- 
erning Eulerian equations for wave motion and mean 
motion become 

and 

^ 

+ •'. V•' - { •'. V•'} + j• x ½, = -V• 
+Vm v •r +V. -•¾-¾•-<¾'¾'>+ {<¾'¾'>} 

0+v. x v = 

-V•-gk+v m v + V. [- {<v'v'>} - 

(3) 

respectively. Here g is the vertical acceleration due to grav- 
ity, v m is the molecular viscosity coefficient, and V denotes 
the gradient operator. For details on the derivation of these 
equations the reader is referred to Weber and Melsom 
[1993b]. As in that paper, we will consider motion associ- 
ated with a monochromatic surface wave that travels in the 

x direction, 

• = •o e•t cos (kx- rot) (4) 

where k is the wave number, ro is the frequency, and [• is the 
growth rate. The corresponding wave velocities are then the 
solutions of (2) with appropriate boundary conditions. The 
nonlinear terms involving 9 and v are neglected. This will 
restrict the accuracy of the description of the wave field 
close to breaking. However, the amount of momentum 
transfer from wave motion to mean motion should not be 

affected significantly by this simplification. Thus, in the 
few seconds around breaking when the nonlinear terms can- 
not be neglected, a bulk parameterization is used by taking 
advantage of the principle of momentum conservation. 

In a study of monochromatic waves we assume that 
V. <v'v'> - A cos rot + B for the separation (1) to be 
meaningful. Furthermore, it is assumed that there is a rela- 
tively small contribution from <v'v'> at frequencies close 
to ro, i.e., IAI << IBI. Then, the two terms in (2) that 
involve the turbulent Reynolds stress will tend to can- 
cel each other, since V. [-<v'v'>+ {<v'v'>}] - 

-A cosrot. Hence their combined effect on the wave 

motion will be neglected in (2). Due to their small magni- 
tude, viscous stresses will also be disregarded. 

To lowest order infiro, the motion that corresponds to the 
monochromatic wave (4) now becomes 

h = •oroe•t+•Zlcos(kx-rot ) -•sin(kx-rot)] 
• = •of e•t + •z sin (kx - rot) (5) 

½v : •0 ro e•t+ kz Isin (kx- rot) + [3cos (kx- rot)] 
In the presence of wave motion, the velocities of the 

individual particles (the Lagrangian velocities) become dif- 
ferent from the corresponding Eulerian velocities. Transfor- 
mation of the Eulerian problem to Lagrangian description 
may be carried out utilizing the formula 

V L = V + V S = V + VL(r0, X) dx ß V0vL(r0, t) (6) 
t o 

[Phillips, 1977]. Here the subscript L denotes the 
Lagrangian, v is the Eulerian velocity vector, and Vs is the 
Stokes drift. An approximate solution for the mean Stokes 
drift is given by 

v s = $' ß V½' = •02rok e 2(kz + [•t) i (7) 
t 0 

from (5), co•ect to second order in wave amglitude. Keep- 
ing in mind that the wave amplitude is •0 e•t, this is the 
well-known result of Stokes [ 1847]. 

We will also disreg•d effects of the molecul• viscosity 
for the mean motion. Furthermore, the wave stress tensor 
{ g9 } follows from (5), and the equation for the horizontal 

mean Lagrangian motion becomes 

- a a½s a aVs (8) x --v .... v 
where an eddy viscosity fomulation has been applied for 
the mean turbulent Reynolds stresses. The te•s on the left- 
hand side of (8) represent acceleration, effects of rotation, 
and turbulent momentum diffusion, respectively. The first 
te• on the right-hand side •ises from the fact that the 
periodic motion possesses a time dependent Lagrangian 
mean drift. The final tern in (8) appears as a result of the 
transfo•ation of the momentum diffusion term. Observe 

that it is necess•y to ret•n the Coriolis term in the wave 
motion (5) to obtain (8) [Hassel•nn, 1970]. 

In order to solve this problem, the appropriate bounda• 
conditions must be imposed. For large depths the cu•ent 
induced by wind and waves must vanish, i.e., 

v•0, z•-• (9) 

The surface bound•y condition is obtained by requiting 
a continuous stress. Then, 

O• (z=O) =PRO( ) T0 = 
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where T O is the mean tangential stress that acts on the sur- 
face. Since the initial wave amplitude is •0, the ocean has 
been exposed to a wind stress for some time prior to t = 0. 
Hence there is no obvious choice of initial condition for the 
mean motion. We shall take 

3œ(t=0) = •v s(t=0) (11) 

which is consistent with the wave motion present at that 
time. 

Obviously, the partial differential equations for momen- 
tum and mass are not valid during breaking events. Thus it 
is convenient to divide the problem by considering the drift 
induced by wave breaking separate from the drift that is 
associated with growing waves. As we shall see in the next 
section, it is then possible to calculate the drift induced by 
breaking events by applying the principle of momentum 
conservation. 

3. Effects of an Event of Wave Breaking 
First, we examine effects of one isolated breaking event. 

Due to the short timescale of a breaking event and the rapid 
development of an associated drift current, we can safely 
disregard effects of rotation in the present context. The 
breaking process itself is a very complicated phenomenon 
which we will not attempt to describe here. Instead, we take 
advantage of the principle of momentum conservation of an 
isolated system. Take AMœ to be the amount of Eulerian 
momentum that is lost from the wave motion when the 

amplitude is reduced by A•. Then, 

AMœ = pA( (0•i = AM1 + AM 2 (z < •) (12) 

where AM! and AM 2 are given below. 
One consequence of breaking is that momentum is lost 

from the periodic wave motion at the surface due to ampli- 
tude reduction. This process, where mass moving in the 
wave propagation direction (dark shading) is replaced by 
mass moving in the opposite direction (light shading) after 
breaking, is described in Figure 1 a. We find 

(•o + a•) cos •0 

AM1 = p $ 9dz =• AM1 = •AME (13) 
•o cos q0 

where q) is the phase function. 
Moreover, the wave motion will be affected instanta- 

neously in the entire water column through the change in 
the pressure gradient that is associated with the drop in 
amplitude. For the momentum transfer below the material 
interface rl = z + •o e2•:z cos q) we find 

AM 2(z<•l) = PSAgdz 
e2kz 

• aM: (z < rl) = •-aMe (14) 
The momentum that is transferred to the mean motion by 
this process is depicted in Figure 1 b (shaded area). 

Finally, wave breaking results in a change in the Stokes 
drift. Note that 

Z 

b 

Figure 1. Momentum conversion from periodic motion to 
mean motion during breaking. (a) Sketch of conversion due 
to shifted distribution of mass. The wave propagates to the 
right. (b) Sketch of mean momentum lost from the periodic 
motion -• due to reduced velocities after breaking. The 
magnitude of the amplitude reduction has been exagger- 
ated. See the text for details. 

0 

p $ Avsdz = - AMœ (15) 
so the vertically integrated Lagrangian momentum is not 
affected by wave breaking [Weber and Melsom, 1993b]. 

In the case of decaying waves, the transfer of wave 
momentum to the__mean drift may be parametrized by a vir- 
tual wave stress Tv w that acts on the mean current at the 
surface [Longuet-Higgins, 1969]. In the present context, the 
momentum that is lost at the surface due to amplitude 
reduction will be redistributed by turbulent stresses, com- 
pletely analogous to Longuet-Higgins' case. As was 
pointed out above, momentum is lost from the periodic 
motion throughout the entire water column. In order to con- 
serve the overall momentum, we also introduce an initial 

drift v 0 , so that 
oo 0 

AME= AMI+ AM2= $•vwdt+p $5Vodz (16) 
0 --oo 

The forcing terms in (8) are associated with the drift cur- 
rent that is induced by growing waves and the wind stress. 
We will return to this problem in a later section. The 
momentum equation for the mean Lagrangian drift induced 
by wave breaking, v B , then becomes 
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0t •z • = 0 (17) 
The initial condition is 

v B(t = 0) = v o+Avs 
(18) 

AVs = -2A• •oooke 2kz i 

and the boundary condition at the surface becomes 

Tvw = pv (z= 0) (19) 

Qualitatively, (17) - (19) are a problem involving mixing 
of momentum from the surface to the ocean's interior. 
Hence a good parameterization of the Reynolds stress is 
necessary for obtaining the correct development of the ver- 
tical distribution of momentum. Here our aim is to test vari- 
ous ways of parameterizing the transfer of momentum due 
to a breaking event. For such intercomparisons the simple 
assumption of a constant eddy viscosity coefficient will suf- 
fice. It may be argued that in a saturated sea the strong tur- 
bulent mixing of the wave zone will lead to quasi- 
homogeneous conditions in this region. This argument sup- 
ports the use of a constant value for v. 

3.1. Virtual Wave Stress as an Impulse 

Assume that the momentum is instantaneously trans- 
ferred to the mean flow when a breaking event occurs. We 
may then take 

m 1 

Tvw = 5pA• •0c0 •5(t) i 
- 1 d 1• 

- 7AM2 (Z < rl) = vø - • az -5 Avs 
(20) 

where •5 is the Dirac delta function. The solution of (17) 
with conditions given by (20) is obtained by Laplace trans- 
formation and subsequent inverse transformation, yielding 

• [•e-Z2/(4vt) u• = a• •ot.O d•vt 
oo COS (XZ) e -vtx2. 1 

-E4-k2I •:•7•-5 axj (21) 0 

Note that this expression is not well defined for t = 0 due to 
the impulse imposed at the surface at this time. However, 
we have 

1 

lim u•(z<0) = •Au s (22) t-•0 

in concord with the initial condition. 

The temporal development and vertical profiles of Ul are 
depicted in Figure 2a and 2b, respectively. We have chosen 
k = 0.2 m -• and v = 1 x 10 -3 m 2 s -•. The numbers on the 
vertical axis in Figure 2a and the horizontal axis in Figure 
2b represent the nondimensional drift u r, defined by 

u 1 

t/r = A• (000k (23) 
The horizontal axis in Figure 2a corresponds to nondimen- 
sional time t r = r. Ot/2E, the number of wave periods after the 
breaking event. The vertical axis in Figure 2a denotes the 

UF 

(1) 
lO 

5 

o 
50 100 150 200 

a 

o 2 4 6 8 
,. I , I I , I 

(3) 

b 

Figure 2. Nondimensional drift velocity induced by an 
event of wave breaking. Momentum conversion was 
parameterized according to (20). (a) Induced drift as a func- 
tion of nondimensional time t r after the breaking event. 
Curves 1, 2, and 3 correspond to nondimensional depths 
Zr = 0, -0.05 and -0.2, respectively. (b) Induced drift as a 
function of nondimensional depth Zr. Curves 1, 2, and 3 
show the velocity profiles at nondimensional times t r = 5, 
20, and 100, resr>ectively. We have taken k = 0.2 m -• and v 

3 2 F 
-- 1 x 10- m s- . See the text for further details. 

nondimensional depth z r = kz. The curves 1, 2, and 3 in Fig- 
ure 2a depict the evolution of the drift velocities at depths 
Zr = 0, -0.05, and -0.2, respectively. In Figure 2b, curves 1, 
2, and 3 display the velocity profiles for times t r = 5, 20, 
and 100, respectively. 

3.2. Time Dependent Virtual Wave Stress 

Although wave breaking is a phenomenon with a very 
short duration, it does probably not behave as a delta func- 
tion. In order to assess the sensibility of the solution (21) to 
the temporal development of breaking, we take 

-- 1 

Tv w = •pA• •or. OK e -rt i 

:•0 1 -- (24) = -•avs 
Here, •c -• is a timescale that corresponds to exponential 
decay in the intensity of the breaking event. The solution is 
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again obtained by Laplace transforms and can be written as 

u 2 = a( x 

i 1 -•-d•-• sin ( z 4C•--• ) e - '• t - 

+4k 2 
o 1 ) ] k V x 2- K/V COS (XZ) e-VtX2dx (25) 

At first sight this expression may seem somewhat odd. The 
first term in the brackets does not go away even at an infi- 
nite depth, and one of the terms in the integrand has a sin- 
gularity at x = (lcu/v) 1/2. However, at large depths the 
contribution from the singularity will cancel the term out- 
side of the integral. It may, for example, be shown that u 2 
satisfies the initial condition. 

Take •c = c0/2•, that is, the exponential decay rate of the 
forcing is equal to the wave period. In Figure 3, curve 1 
then displays the nondimensional depth at which the differ- 
ence between the solutions u 2 and u 1 is 5% of u 1, as a func- 
tion of nondimensional time. The domain above the curve 

corresponds to larger differences; below the curve, the dif- 
ferences are less than 5% of u 1. We observe that when t r > 
3, the differences between the two solutions are smaller 
than 5% at all depths. 

3.3. Initial Distribution of Momentum 

It may be argued that the process of wave breaking has a 
certain vertical extent and is not really acting at the very 
surface only. In order to examine the effect of an initial ver- 
tical distribution of the transformed momentum AM•, take 

(26) 

rVo= •(A( •otOaeaZ-AUs)i 

0 10 20 

-0.025- 

(2) 

-0'051 

3O 

I 
t t- 

Figure 3. Nondimensional depth Z r at which the velocity 
difference arising from two different parameterizations of 
breaking is 5%, as a function of nondimensional time t r. 
Curves (1) and (2) correspond to 5% velocity differences in 
(21) and (25), and (21) and (27), respectively. The domain 
to the fight and below the curves shows the depths where 
this difference is less than 5% at the corresponding times. 

Thus at is the rate of vertical decay of the initial distribution 
of AM•. As previously, Laplace transforms allow us to 
determine the solution, which in this case becomes 

1 A u 3: ( (oO) x 

+ at2 
0 

4k2 q • - x2 • •k21 cos (xz) e -vtx2 (27) 

The case of momentum transfer by a virtual wave stress 
impulse can be reproduced from this solution by taking the 
limit at --> oo, i.e., 

u• = lim u 3 (28) 

An infinitely large value of at corresponds to introducing a 
finite amount of momentum in an infinitely thin surface 
layer at t = 0. This is exactly the effect of an initial virtual 
wave stress impulse. The vertical scale at-1 of the initial dis- 
tribution of AM• must be related to the vertical scale of 
wave breaking, which is the generating mechanism. Hence 

I- 1 
we expect at- to be proportional to A•. For k = 0.2 m- , we 
have A• - 0.015 - 0.15 m, depending on the amount of 
energy being transferred [Weber and Melsorn, 1993b]. In 
Figure 3, curve 2 depicts the nondimensional depth at 
which the difference between the solutions u 3 and u 1 is 5% 
of Ul, as a function of nondimensional time. Here we have 
used at = 10 m -1. We observe that when t r > 27, the differ- 
ence between the two solutions is smaller than 5% at all 

depths. 

4. Multiple Breaking Events and Drift 
Currents 

The problem that remains to be solved is given by (8) - 
(11) where v S is the Stokes drift associated with waves with 
growing amplitude. Denoting the drift induced by wind and 
growing waves by v[• and that induced by N breaking 
events by :v•v B , we have 

:v• = :v• + :v• (29) 
We may introduce a complex drift 

w = u L+ivL (30) 

Here, i is the complex unit number. The various parameter- 
izations that were explored in the previous section differed 
significantly only the first minute or so after the breaking of 
the wave. Thus, when examining effects of multiple break- 
ing events, only one parameterization will be considered. In 
this section, momentum transfer due to wave breaking will 
be assumed to act as a virtual wave stress that behaves like 

a õ function in time, i.e., (20). 
It will be demonstrated that the drift that is induced by 

multiple breaking events develops on a timescale of several 
hours. When the Coriolis force is taken into account, it can 
easily be shown that the induced drift becomes 

wB ( t, z) = e-iftu• ( t, z) (31) 

where te 1 is given by (21). This relation follows from the 
substitution property of Laplace transforms and is due to 
the simplicity of the transformed Dirac delta function 
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{ L[•5(t)] = 1 }. Thus it only holds for u 1. Assuming a con- 
stant interval AT B between two subsequent breaking events, 
the drift WNB induced by N breaking events becomes 

N 

%vB = E wB [t- (n - 1) ATo, z] (32) 
n=l 

when breaking occurs at the critical amplitude 

•c = •o e[• arB (33) 
The solution for w[• in the simple case of a constant eddy 

viscosity is determined: 

w• = 2• (1 - i) Ee( i +i)z/œ_ e-lit cos (xz) e -vtx2 x2+ (l+i)E -2d 
0 

+ 02co x 

( 1 - a) e 2kz + ( 1 - i) akE e (1 + i) z/œ 
4•kl( I __ • x 2 + ( 1 + i) E -2 

o 1 1 x2 .• 4k 2 cos (xz) e-VtX2dx (34) 

E = d2v/f is the Ekman depth, and a is a nondimen- 
sional coefficient given by 

( 2•/f - i) ( 2k2E 2 + i) 
a = (35) 4k4E 4 + 1 

The steady volume flux becomes 
0 

= tlim (36) 

In the saturation range, the volume flux induced by the 
turbulent wind stress at the surface, Wwind, and the flux 
induced by growing waves, Wwave, are of comparable mag- 
nitude [Mitsuyasu, 1985; Weber and Melsom, 1993b]. Here 
(36) yields 

Wwind r 0 
= (37) 

Wwave D •02 
It has been demonstrated both analytically [Jacobs, 

1987; Weber and Melsom, 1993a] and experimentally 
[Plant, 1982; Mitsuyasu and Honda, 1982] that the nondi- 
mensional quantities •/co and U,/C are related in accor- 
dance with 2 

- g (38) 

for the most rapidly growing wave. Here U, is the friction 
velocity in the logarithmic bottom layer of the atmosphere, 
and C = co/•c is the wave phase speed. Introducing the wave 
steepness parameter A = •0 k, we find 

Wwind r 0 Da/D '•S 
= - (39) 

Wwave Pa U, 2 A2K A2K 

In (39), 'r is the ratio of the wind stress at the ocean sur- 
face (To) to the total stress in the logarithmic layer of the 
atmosphere (PaU,2), and s = PalP, Pa being the density of 
the air. In the quasi-steady conditions of a saturated sea, 
momentum cannot accumulate in the logarithmic bottom 
layer of the atmosphere. Hence we must also have 

Wwind 
= (40) 

Wwave 1 -X 

We take s = 1.2 x 10 -3 and A = 0.3 for a fully developed 
sea. From his survey of field and laboratory observations, 
Plant [1982] finds that the coefficient K lies in the range 1 x 
10 -2 to 3 x 10 -2. Investigating two continuous wave spectra 
due to Phillips [1958] and Toba [1973], Weber and Melsorn 
[1993b] found 'r - 0.4. However, 'r = 0.4 gives values for K 
that are outside the stated range. Thus we shall take K = 1 x 
10 -2 and 'r = 0.25, which satisfy (39) and (40) simulta- 
neously. Denote the relative energy that is lost from the 
wave motion due to a single breaking by Ae, i.e., 

ae •c2 -- •02 2153TB = = e - 1 (41) 
•02 

We take v = 10 -3 m 2 s -1, U,/C = 10 -1 [Jacobs, 1987], and 
f= 1.2 x 10 -4 s -1. When k = 0.2 m -1 we find [5 = 1.4 x 10 -4 
s -1 from (38). Experimental results indicate that Ae lies 
between 10 -• and 10 -• [Melville and Rapp, 1985]. We 
choose Ae = 5 x 10 -2, then the interval AT B becomes 170 s. 
In Figur_e 4, the surface drift induced by multiple breaking 
events, v•v_, is depicted as hodograph 1, whereas the corre- 
sponding •rift due to wind and growing waves, :v[•, is dis- 
played by hodograph 2. The numbers on the axes represent 
nondimensional drift velocities. Since :v[• is independent of 
•c2-•02, it is not practical to make the velocity components 
nondimensional using (23). Instead, the drift velocities have 
been divided by the initial surface Stokes drift Us; o = •02cok. 
The asterisks represent the surface drift vector after the cor- 

0 

0 

-2- 

V/Us:o 

I 
-% U/U s; o 

(2) 
9 

3 

6 

Figure 4. Hodographs of the nondimensional surface drift. 
Hodograph 1 displays the part of the surface drift that is 
induced by wave breaking when the wave energy Ae is 
reduced by 5% in each event of breaking. Hodograph 2 dis- 
plays the part of the surface drift that is induced by wind 
and growing waves. The numbered asterisks on hodograph 
2 denote evolution time in pendulum hours. See the text for 
details. 
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responding number of pendulum hours. The temporal 
development of hodograph 1 is similar to that of hodograph 
2. 

We define r as the ratio of the surface drift induced by 
wave breaking to the drift induced by wind and growing 
waves, i.e., 

r: tlim <z: 0, (42) 
From Figure 4, we find that r is around 20%. The sensitivity 
of the value for this ratio to various parameters will be dis- 
cussed in the final section. 

5. Discussion and Concluding Remarks 
In many ways, the descriptions of waves and wave 

breaking that have been adopted here are rather idealized. 
To begin with, only a single Fourier component is consid- 
ered. Breaking of this monochromatic wave constitutes a 
somewhat peculiar process in the present formulation, inso- 
far as the breaking events occur simultaneously everywhere 
at regular time intervals. Consequently, the results that have 
been obtained in this paper should be interpreted as repre- 
senting the statistical properties of the state of a saturated 
sea. 

Let us first consider the drift that is induced by momen- 
tum transfer in the case of an isolated event of wave break- 
ing. The principle of momentum conservation yields the 
initial drift and forcing due to breaking. After breaking, dif- 
fusion causes a redistribution of momentum in the vertical. 
Since the forcing in principle is confined to the surface, the 
local maximum of the drift will be reached earlier at small 
depths than at large depths. For the same reason, the maxi- 
mum drift velocity at any given time is the value at the sur- 
face. These features of momentum diffusion can all be 
observed in Figures 2a and 2b. 

Furthermore, it is revealed from Figure 3 that parameter- 
ization of momentum transfer due to wave breaking is a 
robust procedure, in the sense that the various descriptions 
(20), (24), and (26) yield only minor differences. To the 
author's knowledge, this is a new result which will hope- 
fully prove to be beneficial for future investigations of 
problems that involve wave breaking. The success of the 
parameterization by a delta function is due to the scales 
involved. Both the vertical extent and the temporal devel- 
opment of the induced drift are of much larger scales than 
those associated with the process of wave breaking. 

From (21) we observe that the temporal decay of the sur- 
face drift induced by a breaking event is proportional to t-1/2 
for large times. Since this is a rather small rate of decay, we 
anticipate that the combined effect of multiple breaking 
events significantly enhances the surface drift. In fact, com- 
putations reveal that the quasi-steady surface drift induced 
by multiple breaking events is typically 5 times the magni- 
tude of the surface drift that is induced by the most recent 
of these events. 

In his classic paper, Ekman [1905] calculated the wind- 
induced current assuming a constant eddy viscosity. Then, 
the surface drift is deflected 45 ø to the fight of the wind 
stress vector (in the northern hemisphere). On the other 
hand, observations indicate that the deflection angle is 
much smaller than this value. On the basis of an eddy vis- 

cosity that increases linearly with depth, Madsen [1977] 
demonstrated that the wind-induced surface drift becomes 

more parallel with the wind. However, it should be pointed 
out that this linear profile was originally developed for flow 
in the vicinity of solid boundaries such as the bottom or an 
ice cover [Melsorn, 1993] and not for a free interface. In 
relation to this discussion, we observe from Figure 4 that 
the presence of wave breaking decreases the deflection of 
the surface drift from the direction of the wind stress. 

Weber and Melsom [1993b] showed that there is no inte- 
grated volume flux induced by wave breaking. Accordingly, 
the influence of wave breaking on the surface drift will to a 
large degree be determined by the level of turbulent mixing 
of momentum. A high level of turbulent mixing leads to 
small vertical gradients. Then, since the flux is zero, the 
effect of wave breaking on the surface drift becomes rela- 
tively small. This effect is clearly shown in Figure 5a. 
There, the ratio of the steady wave-induced drift to the drift 
induced by wind and growing waves, r, is depicted as a 
function of the eddy viscosity v. The values for v are given 
in SI units on the horizontal logarithmic axis. Curve 1 has 
been calculated based on the same parameter values as in 
Figure 4 (except for v). 
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Figure 5. The ratio of the steady surface current induced 
by wave breaking :v.. to the remaining drift :v,, r. (a) Here 
r is depicted as a f•ction of eddy viscosity •) (in square 
meters per second). Curve 1 corresponds to the parameter 
values chosen for Figure 4, whereas curve 2 displays the 
ratio when K = 2.7 x 10 -2 and x = 0.4. (b) Here r is depicted 
as a function of the relative energy reduction Ae (for K = 1 
x 10 -2 and x = 0.25 as in Figure 4). 
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The value of the ratio r defined by (42) depends strongly 
on the growth rate [•. In the present formulation, [l is deter- 
mined by the nondimensional parameter K and by the rate 
of the friction velocity U. to the propagation speed C for 
the most rapidly growing wave; see (38). To further exam- 
ine the sensitivity of the ratio r, we apply values from previ- 
ous studies of waves in a saturated sea: x = 0.4 [Weber and 
Melsorn, 1993b] and K = 2.7 x 10 -2 [Mitsuyasu and Honda, 
1982]. The resulting functional dependence of r on v is dis- 
played in Figure 5a by curve 2. Note that this yields a some- 
what larger contribution from the drift induced by wave 
breaking compared to curve 1. Also, keep in mind that the 
choice of parameters for curve 2 is inconsistent with (39) 
and (40). 

When the energy that is lost from the periodic motion 
during breaking is small, the surface drift that is induced by 
a single breaking event becomes relatively small, too. How- 
ever, a small loss of energy in each breaking event corre- 
sponds to a high frequency of such events (assuming that 
the growth rate [5 is not affected by this frequency). Thus 
the amount of energy that is lost in the breaking process 
does not influence the magnitude of the surface drift signif- 
icantly. This is evident from Figure 5b, where the ratio r has 
been depicted as a function of the relative energy loss Ae. 

In conclusion, it has been demonstrated in the present 
paper that the drift that is induced due to wave breaking is 
not much affected by either the parameterization of break- 
ing events or by the reduction of the wave amplitude due to 
the breaking process. However, the surface drift is sensitive 
to the estimates for the growth rate • and the eddy viscosity 
V. 
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