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ABSTRACT

There exist different theories representing the effects of surface gravity waves on oceanic flow fields. In the

past, the author has conjectured that the vertically integrated, two-dimensional fluid equations of motion put

forward by Longuet-Higgins and Stewart are correct and that theories that differ from their theory cannot be

entirely correct; this paper explores these differences. Longuet-Higgins and Stewart deduced vertically in-

tegrated, two-dimensional equations featuring a wave radiation stress term in the fluid dynamic, momentum

equation. More recently, the author has proposed vertically dependent, three-dimensional equations that

have required correction but when vertically integrated, agreed with the earlier, two-dimensional equations.

This paper derives both vertically independent and vertically dependent equations from the same base and,

importantly, using the same expression for pressure in the belief that the paper will contribute to the un-

derstanding and clarification of this seemingly difficult topic in ocean dynamics. An error in the classical

papers by Longuet-Higgins and Stewart has been detected. Although the final phase-averaged result was

correct, the error has had consequences in the development of vertically dependent equations. The prognostic

equations in this paper are for the Eulerian current plus Stokes drift; toward the end of the paper these

equations are contrasted with prognostic equations for the Eulerian current alone.

1. Introduction

On the ocean surface, the correlation of wind pressure

fluctuations and wave slope forces wave generation but

also is a forcing term in the phase-averaged momentum

equation. Phase averages of wave motion yield residual

particle displacements (Stokes drift) identical to current

displacements. The difference between the instantaneous

wave velocity minus its phase average leads to the so-

called radiation stress, first identified by Longuet-Higgins

and Stewart (1962, 1964, hereinafter L-HS), which

modifies the momentum equation much like turbulence

Reynolds stress but, in addition, includes a component

due to pressure.

L-HS, Phillips (1977, hereinafter Phillips), and Smith

(2006) derived vertically integrated, wave radiation stress

terms as an addition to the fluid dynamic equations of

motion rendering them suitable for two-dimensional

oceanic flows with a wind-driven wave surface. These

derivations start from the basic vertically integrated,

fluid dynamic equations after which the total velocity is

partitioned into current and wave velocities resulting in

phase-averaged equations applicable to vertically in-

dependent ocean models. A characteristic of the

aforementioned papers is that prognostic equations are

obtained for the combined (Eulerian) current and

Stokes drift.

Following L-HS, this paper presents a concise review

of the vertically integrated wave circulation equations

but then derives the corresponding, vertically de-

pendent equations directly from their integrated

counterparts. The purpose is to demonstrate the in-

timate connection between the two equations sets and,

at the same time, provide a corroborative and some-

what simpler derivation of the vertically dependent

wave–current interaction equations in Mellor (2003).

An error in the L-HS formulation that, however, dis-

appeared in their final equations led to a similar error in

the formulation by Mellor (2011) but is corrected here

and in Mellor (2013a).

The basic equations of fluid dynamics are cited in

section 2, wherein velocities and pressure are parti-

tioned into their mean and wave components. Section 3
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and appendix A are devoted to an expression for pres-

sure, an important element of the ensuing derivations,

which distinguishes this paper from papers that present an

alternate expression for pressure. The vertically in-

tegrated equations are cited in section 4, from which the

phase-averaged integral equations of L-HS are derived in

section 5. The same vertically integrated equations are the

basis of the derivation of vertically dependent, three-

dimensional equations derived in section 6. Some rela-

tionships between the derivations of sections 5 and 6 are

discussed in section 7, wherein a subtle but important er-

ror in the L-HS derivation is revealed. For convenient ref-

erence, the complete phase-averaged, three-dimensional

equations are summarized in section 8, and small and ne-

glected errors related to surface wave slope and bottom

topographical slope are discussed in section 9. In section 10

and appendix B, there is discussion of theories by

McWilliams and Restrepo (1999), Newberger and Allen

(2007a,b), and Ardhuin et al. (2008) that apply to verti-

cally dependent oceanmodels but which diverge from the

findings of the present paper and, when vertically inte-

grated, diverge from the findings of L-HS and Phillips.

Incorrect rendering of the pressure term in Mellor

(2003) was later corrected in a PDF file (available on-

line at http://shoni2.princeton.edu/ftp/glm/Corrected2003.

pdf) and in Mellor (2013a). As mentioned above, a

similar error occurs in L-HS; nevertheless, their final

radiation stress result is correct, as is the final result in

Mellor (2003).

2. The basic equations

The basic equations of fluid motion are

›ub
›xb

1
›w

›z
5 0, (1)

›ua
›t

1
›ubua
›xb

1
›wua
›z

52
›p

›xa
, and (2a)

›w

›t
1

›ubw

›xb
1

›w2

›z
52

›p

›z
2 g , (2b)

where the Greek subscripts a or b5 (x, y) denote the

horizontal coordinates; z is the vertical coordinate; t is

time; the three-dimensional velocity is (ua, w); p is the

kinematic pressure; and g is the gravity constant. Re-

peated subscripts denote summation, for example,

›ub/›xb 5 ›u/›x1 ›y/›y. We have omitted the Coriolis

and baroclinic terms and turbulence and pressure–slope

vertical momentum transfer (Mellor 2013b) in order to

simplify most of the ensuing discussion; these terms will be

reinserted in section 8.

The vertical boundary conditions for (1) and (2) are

w5
›h

›t
1 ub

›h

›xb
at z5h (3a)

and

w52ub
›h

›xb
at z52h . (3b)

In the above, h(xa, t) is the free-surface elevation, and

h(xa) is the depth.

In the following, dependent variables are partitioned

into current variables ûa, p̂, ĥ (whose temporal and

spatial scales are large compared to inverse wave fre-

quency and wavenumber) and wave variables, such that

h5 ĥ1 ~h, ua5 ûa 1 ~ua,

w5 ŵ1 ~w, and p5 p̂1 ~p . (4a--d)

The wave variables are taken to be

~h5 a cosc, ~ua 5 kaac
coshk(z1h)

sinhkD
cosc , (5a,b)

~w5 kac
sinhk(z1 h)

sinhkD
sinc, and

~p5 kac2
coshk(z1 h)

sinhkD
cosc , (5c,d)

where we define c[ kbxb 2vt; kb is the wavenumber

vector and k5 jkbj; a is the amplitude; s is the intrinsic

frequency, c5s/k is the phase speed, and v5s1 kauAa;

and uAa is based on phase-averaged velocity and is defined

in Mellor (2003). The phase-averaged, free-surface eleva-

tion is ĥ, and h is the depth. Also, D[ ĥ1 h is the water

column depth. Equations (5a) – (5d) are the well-known

linear wave relations; they are valid in the full instan-

taneous range h. z.2h (Mellor 2011). The dispersion

relation is s2 5 kg tanhkD and is used below where ap-

propriate; also kac2 5 ga tanhkD so that, for example,

(5d) can be written ~p5 ga[coshk(z1 h)/coshkD] cosc.

Errors associated with (5) are discussed in section 9.

We denote phase averages by an overbar; thus,

( ) [ (2p)21
Ð 2p
0 ( ) dc. For simple linear terms, the over-

bar and the overcaret are identical, for example, ĥ5h;

the phase average of product terms are those that are

determined in section 4 and beyond. (Note that cos2c5
sin2c5 1/2 and cosc5 sinc5 cos3c5 sin3c5 0, and so

on.) From the phase-averaged definition and using h as

an example, h0 [ (2p)21 Ð 2p
0 [ĥ0 1 (›ĥ/›c)0c1 ~h]dc5

ĥ0 1p(›ĥ/›c)0 so that current variables are further

defined as those where a21›ĥ/›c5 (kaa)
21›ĥ/›xa or

(sa)21›ĥ/›t are small as stated above.
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3. Pressure

Pressure plays an important role in the following

derivations. In appendix A, it is found that

p2patm5 g(ĥ2 z)2 ~w2(z)1 ~p(z)1O(ka)2c2 cos2c ,

(6)

where patm is the atmospheric pressure acting on the free

surface. After insertion into the momentum equation

below, the last term in (6) disappears, but terms of order

(ka)4 will be neglected and represent an error of the

same order. However, the phase average of (6) is exactly

p2 patm 5 g(ĥ2 z)2 ~w2, in agreement with L-HS. To

lowest order in ka, the free-surface pressure p(h)5 patm.

Specifically, p(h)2 patm 5 01 c2(ka)2 cos2c1 c2O(ka)3.

This result is obtained from (5c) and (5d) by expanding

h5 ĥ1 ~h and ~w(h)5 ~w(ĥ)1 › ~w/›zjĥ~h to obtain ~w(h)5
kac[11 (coshkD/sinhkD)k~h] sinc1cO(ka)3 and, simi-

larly, ~p(h)5kac2[(coshkD/sinhkD)1k~h] cosc1c2O(ka)3

for insertion into (6).

Equation (6) differs from that in Mellor (2003), which

was corrected in a PDF file (available online at http://

shoni2.princeton.edu/ftp/glm/Corrected2003.pdf) and in

Mellor (2013a). It also differs, for example, from the

treatment of pressure in McWilliams and Restrepo

(1999) and Ardhuin et al. (2008).

4. The vertically integrated equations of motion

First, integrate (1) and (2a) from2h to h, incorporate

(3a) and (3b), and then phase average to obtain

›

›xb

ðh
2h

ub dz1
›h

›t
5 0 (7)

and

›

›t

ðh
2h

ua dz1
›

›xb

ðh
2h

ubua dz52

ðh
2h

›p

›xa
dz . (8)

Equations (7) and (8) will be applied to obtain the ver-

tically integrated equations in section 5 and to obtain the

vertically resolved equations in section 6.

5. The derivations as in L-HS and Phillips

The derivation of the vertically integrated equations is

reviewed here. L-HS, in their pursuit of the then novel idea

of radiation stress terms, generally neglect the nonlinear

advective terms as in (8). The book by Phillips is rich in

its omnibus description of surface (and internal) waves.

However, his derivation of phase-averaged momentum

equation is spread around different pages and a derivation

of an important element of the stress radiation term [the

last term in (16)] is missing. This term and its vertically

distributed counterpart has been a source of controversy in

the literature, as discussed in sections 7 and 9.

a. The continuity equation

Following L-HS, (7) may be partitioned according to

›

›xb

 ðh
2h

ûb dz1

ðh
2h

~ub dz

!
1

›ĥ

›t
5 0. (9)

Now,
Ð h
2h û dz5

Ð ĥ
2h û dz and

Ð h
2h

~ub dz5
Ð
2ĥ

h
~ub dz5

~ub(ĥ)~h plus higher-order terms in ka. Therefore, the

integral continuity equation may be written

›

›xb
(M̂b1MSb)1

›ĥ

›t
5 0,

wherein

M̂b[

ðĥ
2h

ûb dz , (10a)

and

MSb [ ~ub(ĥ)~h5
kb
k

ga2

2c
5

kb
k

E

c
(10b)

is the integral Stokes drift. Wave energy is E5 g~h2 5
ga2/2. Now, define Ma 5 M̂a 1MSa so that

›Mb

›xb
1

›ĥ

›t
5 0. (11)

b. The momentum equation

Similarly to (9), (8) may be partitioned according to

›

›t

 ðĥ
2h

ûa dz1

ð
ĥ

h

~ua dz

!
1

›

›xb

2
4ðĥ

2h
(ûa 1 ~ua)(ûb 1 ~ub) dz1

ð
ĥ

h

(ûa 1 ~ua)(ûb 1 ~ub) dz

3
5

52

ðĥ
2h

›p

›xa
dz2

ð
ĥ

h ›p

›xa
dz . (12)
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The pressure integrals, using (6), convert to1ðĥ
2h

›p

›xa
dz5D

›

›xa
(gĥ1patm)2

›

›xa

ðĥ
2h

~w2 dz (13a)

and ð
ĥ

h ›p

›xa
dz5

›

›xa

ð
ĥ

h

p dz2p(h)
›h

›xa
1 p(ĥ)

›ĥ

›xa
.

The last two terms on the right side, using (6), can be

evaluated as c2O(ka)4 and c2O(ka)2›ĥ/›xa; generally,

j›ĥ/›xaj, (ka)2 so that both terms can be neglected.

Furthermore, we obtainð
ĥ

h

p dz5 g
~h2

2
1 ac2O(ka)4 , (13b)

which derives from the two portions of (6) g(ĥ2 z) and

~p(z); phase averages of the integrals of the other por-

tions of (6) result in O(ka)4 terms. LH-S obtained the

same result as in (13b) but for the wrong reason, as

discussed in section 7.

The tendency integrals in (12) are similar to the ad-

vective terms in (10). The advective integrals in (12) are

evaluated according toðĥ
2h

(ûa1 ~ua)(ûb1 ~ub) dz5

ðĥ
2h

(ûaûb dz1 ~ua~ub) dz,

and

(14a)

ð
ĥ

h

(ûa 1 ~ua)(ûb1 ~ub) dz5 ûa(ĥ)MSb1 ûb(ĥ)MSa .

(14b)

Assembling (12), (13), and (14) yields

›Ma

›t
1

›

›xb

� ðĥ
2h

ûbûa dz1 ûb(ĥ)MSa1 ûa(ĥ)MSb

�

52D
›

›xa
(gĥ1 patm)2

›Sab
z

›xb
,

(15)

where

Sab
z
[

ðĥ
2h

(~ub~ua2 dab ~w
2) dz1 dabE/2 (16)

is the radiation stress, as in L-HS and Phillips, and

E5 g~h2 is the wave energy. Using (5), it may be shown

that (16) becomes

Sab
z
5E

�
cg

c

kakb

k2
1 dab

�
cg

c
2

1

2

��
, (17)

where cg 5 ›s/›k is the group speed, and dab is aKronecker

delta function (51whena5b or5 0 otherwise). Following

Phillips, let ûb(z)5 const. 5D21M̂b, after which the ad-

vective term in (15) is D21(M̂a 1MSa)(M̂b 1MSb)5
D21MaMb plus the termMSaMSb 5 O(ka)4, which can be

neglected. [Phillips initially includes the term within Sab
z
,

but subsequently the term disappears. Note that the

assumption of constancy of ûb(z) can be avoided as seen

below by vertically integrating (30).]

6. The vertically dependent equations

The present strategy, as inMellor (2003), is to map the

wave variables from x, y, and z coordinates to x, y, and §

coordinates such that

z5 ĥ1 §D1 ~s(§) and

~s5 a[sinhkD(11 §)/sinhkD] cosc , (18a,b)

where ~s is the vertical displacement of material sur-

faces due to waves. Notice that the phase-averaged

z5 ĥ1 §D, and thus §5 (ĥ2 z)/D can be recognized

as the ‘‘conventional sigma’’ coordinate (reserving s for

frequency). For §5 0, z5 ĥ1 ~h is the material surface

displacement. For §521, z52h. Now see that, to

lowest order in ka,

~ua5 kaac
coshk(z1 h)

sinhkD
cosc

5 kaac
coshk(ĥ1 §D1 ~s1 h)

sinhkD
cosc

5 kaac

�
coshkD(11 §)

sinhkD
1

sinhkD(11 §)

sinhkD
k~s

�
cosc

or

~ua5 ~uDa 1
›~uDa

›§

~s

D
(19a)

plus terms higher order in ka. Similarly,

~w5 ~wD1
› ~wD

›§

~s

D
, ~p5 ~pD 1

›~pD
›§

~s

D
. (19b,c)

In the above, definitions are

~uDa [kaac
coshkD(11 §)

sinhkD
cosc , (20a)

1 Note that partial differentiation is taken outside of the

integral because ~w2(ĥ)/gD5 (ka)2 tanhkD/(2kD) � 1 and there-

fore ~w2(ĥ)›ĥ/›xa � Dg›ĥ/›xa. Also, ~w2(2h) 5 0, the consequences

of which are discussed in section 9.
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~wD[ kac
sinhkD(11 §)

sinhkD
sinc,

~pD [ kac2
coshkD(11 §)

sinhkD
cosc . (20b,c)

The subscript D signifies that (20a), (20b), and (20c) are

confined to the phase-averaged vertical space ĥ. z.2h.

a. The continuity equation

Using (18), (19a), and dz5 (D1 ~s§)d§, one may convert

ðh
2h

ua dz5

ð0
21

�
ûa 1 ~uDa 1

›~uDa

›§

~s

D

�
(D1 ~s§) d§

5

ð0
21

 
ûaD1

›~uDa
~s

›§

!
d§ .

(21)

Thus, (7) can be written

ð0
21

›

›xb
(ûb 1 uSb)Dd§1

›ĥ

›t
5 0

since, from (18a) and (20a),

uSa5
1

D

›~uDa
~s

›§
5

ka
k
(ka)2c

cosh2kD(11 §)

2 sinh2kD

5
2kaE

c

cosh2kD(11 §)

sinh2kD
(22)

is the vertically resolved Stokes drift. After vertical in-

tegration, one obtains (10b). [Note that the derivation of

(22) is alternative to the more conventional Lagrangian

process (e.g., Phillips, 31–32) but with the same result.]

Therefore,

ð0
21

 
›DUb

›xb
1

›ĥ

›t

!
d§5 0, (23)

where we define Ub [ ûb 1 uSb. Next add a termÐ 0
21(›V/›§) d§5 0 to the left side of (23), whereinV(0)5
V(21)5 0 so that (23) is unchanged. This, however, does

not guarantee that the integrand is nil. However,

›DUb

›xb
1

›V

›§
1

›ĥ

›t
5 0, (24)

where ›V/›§[2›DUb/›xb 2 ›ĥ/›t is defined so that

the left side of (24) is nil everywhere in the range

21, §, 0 and therefore (24) conforms to the conven-

tional sigma coordinate continuity equation as used in

numerical ocean models [e.g., the Princeton Ocean

Model (POM) and the Regional OceanModeling System

(ROMS)]. The variable V will be recognized as the

component of velocity normal to surfaces of constant

sigma as viewed in a Cartesian coordinate system.2

b. The momentum equation

Now focus attention on themomentum equation [(8)].

From (6), the pressure term isðh
2h

›p

›xa
dz5D

›

›xa
(gĥ1 patm)

1
›

›xa

ðh
2h

(2 ~w21 p) dz2 ~w2(h)
›ĥ

›xa

Taking the partial differential outside of the integral and

after phase-averaging results in only one extra term,

~w2›ĥ/›xa, but that term can be neglected since ~w2 � gD

(see footnote 1). Now using (18) and (19c), we have

ðh
2h

›p

›xa
dz5D

›

›xa
(gĥ1 patm)1

›

›xa

ð0
21

�
2g~s2 ~w2

D 1 ~pD 1
›~pD
›§

~s

D

�
(D1 ~s§) d§ (25)

Note that ~w2 after expansion does yield ~w2
D plus an addi-

tional term that, however, is of order (ka)4 and is ne-

glected. The term under the phase-averaged bar in (25)

can be evaluated as 2g~s~s§ 2D ~w2
D
1 ›(~pD~s)/›§ since all

other terms such as g~sD are nil. Thus,

ðh
2h

›p

›xa
dz5D

›

›xa
(gĥ1 patm)

1
›

›xa

ð0
21

�
2D ~w2

D 1
›

›§
(~pD~s2 g~s2/2)

�
d§ .

(26)

The partial derivatives have been taken outside of the

integral of (26) since horizontal derivatives of the in-

tegral limits are nil.

The first term on the left side of (8), the tendency

term, is simply ›(
Ð 0
21 DUa d§)›t. The advective term in

(8) is

2 As in Mellor (2003), the sigma coordinate (nearly) vertical

velocity is V5W2Ua(›ĥ/›xa 1 §›D/xa)2 ›ĥ/›t2 §›D/›t; here,

W andUa are Cartesian variables. Notice how the equation relates

to Cartesian bottom (§521, V5 0) and surface (§5 0, V5 0)

boundary conditions.
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›

›xb

ðh
2h

ubua dz5
›

›xb

ð0
21

�
ûb 1 ~uDb1

›~uDb

›§

~s

D

��
ûa1 ~uDa 1

›~uDa

›§

~s

D

�
(D1 s§) d§ .

The expression under the integral can be written

Dûb ûa 1 ûb›(~uDa~s)/›§ 1 ûa›(~uDb~s)/›§ 1 D~uDa~uDb 5
D(ûa1uSa)(ûb1uSb)2DuSauSb1D~uDa~uDb, where again

uSa 5 ›(~uDa~s)/›§. The termDuSauSb is of order (ka)
4 and

can be neglected. Thus, we arrive at

›

›xb

ðh
2h

ubua dz5
›

›xb

ð0
21

D(UaUb 1 ~uDa
~uDb) d§ .

(27)

The result of inserting (25), (26), and (27) into (8) is

ð0
21

"
›

›t
(DUa)1

›

›xb
(DUaUb1DSab)

#
d§

52D
›

›xa
(patm1 gĥ) , (28)

where the wave radiation stress is

Sab 5 ~uDa
~uDb 2 dab ~w

2
D 1 dab

�
›

›§
(~pD~s2 g~s2/2)

�
. (29)

Now add
Ð 0
21 (›VUa/›§) d§5 0 to the left side of (28) so

that the integral equation is unchanged and the in-

tegrand can be written

›

›t
(DUa)1

›

›xb
(DUaUb 1DSab)1

›VUa

›§

52D
›

›xa
(gĥ1 patm). (30)

Furthermore, the addition of the third term on the left

side is necessary3 to conform to established fluid

dynamic theory.

7. Relationships between the integral and
differential equations

One advantage of sigma coordinate equations is that

vertical boundary conditions are ‘‘built in,’’ and they are

easy to vertically integrate. Thus, reintegration of (24)

and (30) readily yields (11) and (15).

In section 5, it was seen that some of the phase-

averaged wave properties were obtained from the por-

tion of integrals whose limits were from ĥ to h, whereas

in section 6, wave properties were imbedded in the in-

tegrand of integrals that spanned the range z5 from

2h to h or §5 from21 to 0. However, the two strate-

gies are related. Thus,

ð
2ĥ

h

~ub dz5 ~ub(ĥ)~h5

ð0
21

 
›~uDb

~s

›§

!
d§

so that the determinations of the integral Stokes drift

in (10) and (22) are equivalent. The mathematical

equality between the surface-concentrated second

term and the distributed integrand on the right side

may be the basis of the occasional misconception that,

physically, Stokes particle drift is concentrated at the

surface.

At this point, it is appropriate to point out that the

derivation of L-HS introduced a subtle error in their

determination of
Ð h
ĥ p dz. They heuristically assumed

that, hydrostatically, p5 g(h2 z) so that
Ð h
ĥ p dz5

g~h2/2, as in (13b). In hindsight, the hydrostatic as-

sumption is certainly incorrect. Instead, the portion of

(6), g(ĥ2 z), yields a negative value of g~h2/2, whereas

the term ~p(z) contributes a positive g~h2. Furthermore,

the vertically distributed term in square brackets in

(29)—now deemed to be correct—would not be ob-

tained using p5 g(h2 z). [Following L-HS, Mellor

(2011) also used the hydrostatic pressure relation that

led him to erroneously replace the square bracketed

term in (29) as a delta function concentrated at the

surface.]

8. Summary of the full, vertically dependent
equations

To provide convenient reference, we repeat the con-

tinuity equation:

›DUb

›xb
1

›V

›§
1

›ĥ

›t
5 0. (31)

To the momentum equation, add Coriolis, baroclinic,

and vertical momentum transfer terms to (30) such

that

3Omitting DSab, the left side of (30) can, instead of flux form,

be written in acceleration form so that, using (24), one obtains

›Ua/›t1Ub›Ua/›xb 1 (V/D)›Ua/›§1 (Ua/D)(›ĥ/›t1 ›DUb/›xb 1
›V/›§)5 ›Ua/›t1Ub›Ua/›xb 1 (V/D)›Ua/›§ only if ›VUa/›§ is

included in (30). In Cartesian form, the term converts (appendix A

of Mellor 2005) to ›Ua/›t1Ub›Ua/›xb 1W›Ua/›z and therefore

conforms to established fluid dynamic theory.
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›

›t
(DUa)1

›

›xb
(DUaUb1DSab)1

›VUa

›§

1 «abzfzDUa 1D
›

›xa
(gĥ1 patm)

1D2

ð0
21

�
›b

›xa
2

§

D

›D

›xa

›b

›§

�
d§5

›tTa
›§

1
›tPa
›§

, (32)

where f is the Coriolis parameter. The last term on the

left side is the baroclinic term—familiar to users of

sigma coordinate equations—where b[ gr̂/r0; r̂ is the

phase-averaged density, and r0 is a reference density.

The baroclinic term is derived from the hydrostatic re-

lation for vertically variable density after transformation

to sigma coordinates. On the right side, tTa(§) is the

conventional turbulence momentum transfer, whereas

tPa is a pressure–slope transfer introduced by Mellor

(2003); it is a term absent from other theories. All of

these additional terms could have been added to (2) and

tracked through sections 4 and 6; their derivations are

devoid of the complexity associated with the advective

and wave radiation terms.

If the products in (29) are formed from (18b) and

(20a), (20b), and (20c), phase averaged, and inserted

into (29), one obtains

Sab5 kE

�
kakb

k2
FCCFCS 2 dabFSSFSC

�
1 dab

E

2D
J(§) ,

(33a)

where

J5
›

›§
(2FCCFSS 2F2

SS) (33b)

and where convenient definitions are

FSS 5
sinhkD(11 §)

sinhkD
, FSC 5

sinhkD(11 §)

coshkD
, (34a,b)

FCS 5
coshkD(11 §)

sinhkD
, and FCC 5

coshkD(11 §)

coshkD
.

(34c,d)

Equation (33b) integrates so that
Ð 0
21 J d§5 1. Now, if

the two terms whose coefficients are dab are combined,

the result is identical to the expression for Sab in Mellor

(2003) but from an expression different than (29).
The vertical integral of (33) is (17). For deep water, as

in kD/‘ (in practice kD. 3), all of the F terms in (34)

limit to exp(kD§)5 expk(z2 ĥ).

The pressure–slope transfer term in (32), tPa(§), arises

from consideration of a small wind pressure component

in addition to (6) and proportional to sinc; it therefore

correlates with ›~h/›xa. Thus, pw›~h/›xa is recognized as

surface form drag (e.g., Donelan 1999) that is projected

into the water column as tpa 5 pw›~h/›xaFSSFCC. For a

full description of pressure–slope transfer and its in-

teraction with turbulence transfer in the water column,

refer to Mellor (2013b).

After wave parameters have been calculated, Stokes

drift can be obtained from (22) and then the current

ûa 5Ua 2 uSa may also be obtained.

Equations for scalar quantities may be written as

›DT

›t
1

›DUbT

›xb
1

›VT

›§
5

›q

›§
, (35)

whereT is any scalar variable, and q is the vertical flux of

that variable. If T is taken to be temperature, then q is

vertical heat flux including penetrative solar radiation.

Equation (35) is derived in a similar way as the conti-

nuity equation in section 6.

In the preceding developments, sigma coordinates

have been a convenience. However, the end results (31),

(32), and (35) can be transformed to Cartesian co-

ordinates for which reference is made to appendix A of

Mellor (2005; wherein the term Spa should everywhere

be expunged).

For completeness, the wave energy equation is added;

it is, ab initio, a vertically integrated equation and is

›E

›t
1

›

›xa
[(cga 1 uAa)E]1

ð0
21

Sab
›Ua

›xb
Dd§5Sin2 Sdis ,

(36)

where Sin and Sdis are source and sink terms. It has been

determined that uAb 5
Ð 0
21 rûb d§ (Mellor 2003), whereÐ 0

21 r d§5 1, and r is a weighting function so that ûb is

appropriately weighted near the surface. Equation (36)

may be complemented by an equation for ka (e.g.,

Komen et al. 1994; Mellor 2003). Both equations apply

to a monochromatic wave train, and both equations are

found in Phillips except that his equations are restricted

to a vertically constant Ua. Whereas Sdis can include

wave breaking, the transfer of wave momentum uSa to

current momentum ûa is automatic in (32) and requires

no added empiricism.

When dealing with wave spectra,E(s, u), as described

in Komen et al. (1994) and in many references cited

therein, terms allowing for changes in frequency and

wave direction should be added to (36). Spectral aver-

ages of the F terms in (34) are needed to feed into (32)

and (33). This does create a burden on computational

resources in addition to the need to deal with five in-

dependent variables and the need to deal with frequency

shifts due to wave–wave interaction. An approximation
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whereby the spectral shape is parameterized has been

proposed in Mellor et al. (2008) to greatly reduce the

computational burden.

9. Errors of order (ka)4

In all developments of phase-averaged equations, it is

assumed that temporal and spatial scales of amplitudes

are small, that is,(as)21›a/›t and (ak)21j›a/›xj � 1. Sim-

ilar conditions apply to k and s. Coupling between

waves, vertical current gradients (Kirby and Chen 1989),

and density gradients are excluded by stipulating that

s21j›Ua/›zj and s21N � 1; N5 (2gr21
0 ›r̂/›z)1/2 is the

Brunt–Väisälä frequency.
Throughout this paper’s development, wave slope ka

has been stipulated to be small. Thewave terms contained

in (29) or (33) and the addition of the Stokes drift term to

Ua are terms of order (ka)2. Terms of order (ka)3 are

identically zero since they are coupled with triplet prod-

ucts of sines or cosines whose phase averages are nil.

Terms of order (ka)4 have been neglected throughout the

paper. Relative to the retained terms, the neglected terms

represent an error of order (ka)25O(1022). Note that, ab

initio, waves are represented by only the first term in the

Stokes series, as in (5); including the second-order term

would again introduce terms of neglected order.

An error is embodied in the linear wave solutions

[(5a)–(5d)], which are based on the boundary condition
~w(2h)5 0. Bennis et al. (2011) apparently state that the

linear wave solutions cannot be invoked as done in this

paper no matter how small the slope may be. This, of

course, is not correct. Rather one should pose the

question: what is the error associated with a finite slope?

The error has been investigated in Mellor (2013a) and

found to be proportional to (ka)2(›h/›x/sinhkD)2.

Therefore, consistent with the slope error of order (ka)4,

one should require that (›h/›x/sinhkD)2 # (ka)2. For

most oceanographic applications, this requirement

should not be overly restrictive, even less so if kD . 3.

10. Prognostic equations for the Eulerian velocity

The developments in this paper and those of L-HS and

Phillips predominantly deal with prognostic equations

for Ua 5 ûa 1 uSa or Ma 5 M̂a 1MSa, whereas the pa-

pers by McWilliams and Restrepo (1999) [see also the

more complicated paper by McWilliams et al. (2004),

which is extended to include phase-averaged long-wave

equations] and Ardhuin et al. (2008) obtain prognostic

equations for ûa or M̂a that introduce a ‘‘vortex force’’

term. Restricting to integral equations, Smith (2006)

does derive an equation for M̂a; he first obtains an

equation for MSa from (36) and then subtracts it from

Ma to obtain M̂a. The latter does contain a vortex force

term plus other terms. The derivation of his integral

equations are revisited in appendix B and extended to

obtain a vertically dependent, prognostic equation for

ûa. There is further discussion of similarities and differ-

ences between the equations of McWilliams and Restrepo

(1999), Newberger and Allen (2007b), and Ardhuin et al.

(2008) and those in this paper and the vertically integrated

equations of L-HS, Phillips, and Smith (2006).

A difference is the treatment of pressure. The

McWilliams and Restrepo (1999) derivation begins with

the curl of the momentum equation wherein the pres-

sure gradient term disappears; then, after considerable

manipulation, the resulting phase-averaged vorticity

equation is ‘‘uncurled’’ and a gradient pressure term can

be reintroduced, but their choice of a new, phase-

averaged pressure differs from that derived in appen-

dix A and cited in (6). In McWilliams and Restrepo

(1999) and Ardhuin et al. (2008), the Stokes vertical

component is nonzero so that, instead of (31), the di-

vergences of uS and û are separately nil requiring the

existence of a nonzero vertical Stokes drift. As derived

in L-HS and Phillips and in this paper, Stokes drift has

horizontal components [(22)], but the derived vertical

component is nil; thus, currents and Stokes drift are

coupled in the continuity equation [(31)].

Ardhuin et al. (2008) include terms proportional to

›ûa/›z in their formulation. This could have been in-

corporated in the equations of this paper. For example,

add the term (›ûa/›§)(~s/D)5 (›ûa/›z)~s to the terms in

the parentheses of (21) and complete the ensuing analysis.

It is found that the new term relative to ûa is of order (ka)
2

and, to be consistent,must happily be neglected. The same

is true if (›T/›§)(~s/D) were taken into account in (35).

The theoretical development in Newberger and Allen

(2007a) is quite complicated, but the final equation set in

appendix B of Newberger and Allen (2007b) is not. These

equations are meant to apply to shallow water (kD � 1).

Themomentum equation for Eulerian current is vertically

dependent but is forced by vertically integrated terms like

(16) but where a vortex force term replaces the first term

on the right side of (16). Also, gradients of component

Stokes drift are concentrated at the surface and are a

surface boundary condition for the underlying continuity

equation.Additionalmodeling for breaking wave rollers is

added to the wave energy equation.

A relatively recent paper by Aiki and Greatbatch

(2013) seems to have bearing on the approach of this

paper and the 2003 paper, but the paper is quite com-

plicated and I could not extract equations such as (31)

and (32) for comparison. However, they correctly

complained about my earlier characterization (born out

of the now discovered error in L-HS) of a portion of Sab
[(33b)] as a surface-concentrated Delta function.
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The pressure–slope term tPa(§) in (32) is not found in

papers cited in this section.

Bennis et al. (2011) have created an inviscid baro-

tropic, shallow-water (kD’ 1) test case whereby unidi-

rectional waves progress into an open channel. The

channel bottom topography is first flat, then increases by

33% of the total depth, is flat again, and then decreases

to the inflow value. The vortex force in this case is nil,

and so they obtain zero currents. Stokes drift is given by

(22). In contrast, a similar calculation by Mellor (2011,

appendix 4) produced the same Stokes drift plus a ver-

tical current profile stronger than the Stokes drift. This

was because of the vertical variation of the second term

of the radiation stress in (33)—the first term being ver-

tically constant in this flow case. For, say kD$ 3, the

bottom radiation stress is less than 0.2% of the surface

radiation stress, and therefore the variations in bottom

topography have negligible effect.

Acknowledgments. The paper was significantly im-

proved because of reviewer comments.

APPENDIX A

Derivation of (6)

The determination of the important pressure term in

(6) requires care. Thus, integrating (2b) from arbitrary z

to h and using (3a) yields

p(z)2 patm5 g(h2 z)2w(z)21
›

›t

ðh
wdz

1
›

›xb

ðh
ubwdz , (A1)

where p(h)5 patm. The two differentiations have been

taken outside of the integrals by using (3a). The

boundary layer or hydrostatic approximation is invoked

so that, in the absence of waves, p(z)5 patm 1 g(ĥ2 z);

therefore, the remaining terms in (A1) are wave terms.

The first integral on the right side of (A1), using (5c),

may be evaluated as

ðh
~wdz5 ac

�
coshk(ĥ1 h)

sinhkD
1

sinhk(ĥ1 h)

sinhkD
k~h1O(k~h)2

�
sinc2 ac

coshk(z1 h)

sinhkD
sinc

5
ac

tanhkD
sinc1 (ka)ac cosc sinc2 ac

coshk(z1 h)

sinhkD
sinc1 acO(ka)2 sinc cos2c ,

and

›

›t

ðh
~wdz52

(ka)c2

tanhkD
cosc1 (ka)2c2 cos2c

1 (ka)c2
coshk(z1 h)

sinhkD
cosc1 c2O(ka)3 .

(A2)

The second integral in (A1) has been evaluated in detail,

but by inspection

›

›xb

ðh
~ub ~wdz5 c2O(ka)2

›

›xb
cosc sinc

5 c2O(ka)2 cos2c , (A3)

Combining (A1), (A2), and (A3) yields

p(z)2 patm5g(ĥ1 ~h2 z)2 ~w22
kac2

tanhkD
cosc

1 kac2
coshk(z1 h)

sinhkD
cosc1O(ka)2c2cos2c.

The third term on the right side equals 2g~h, cancelling

g~h in the first term. Therefore,

p(z)2 patm5 g(ĥ2 z)2 ~w2 1 ~p(z)1O(ka)2c2 cos2c ,

(A4)

where ~p(z) is given by (5d) or (19c). In (A4), since ~w2

is O(ka)2, we have retained the O(ka)2 cos2c term

here, but the phase averages of cos2c and the

product cosc cos2c, which otherwise appear in (25),

are nil. Therefore, terms of order (ka)4 have been ne-

glected. Note that whereas the phase resolved (A4) is

needed, the phase average of (A4) could have been

obtained directly and exactly from (A1) since the phase

averages of ›(
Ð h

~wdz)/›t and ›(
Ð h

~ub ~wdz)/›xb are nil.

APPENDIX B

Derivation of a Prognostic Equation for ûa

This is an effort to derive a prognostic equation for

ûa. It leans heavily on the precursor derivation by Smith

(2006) that became a guide through rather tortuous

algebraic manipulations. The difference here is that ûa
is not assumed to be vertically constant throughout the
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derivation. Absent this generalization, the integral re-

sult below (B5) is identical to Smith’s result.

Excluding the Coriolis and buoyancy terms, (32) may

be written as

›

›t

ð0
21

ûaDd§1
›

›xb

ð0
21

(ûaûb 1 ûauSb 1 ûbuSa)Dd§1
›

›xb

ð0
21

SabDd§1

ð0
21

›VUa

›§
d§

52
›

›t

ð0
21

uSaDd§2D
›p̂

›xa
1

ð0
21

›ta
›§

d§ , (B1)

where p̂5 gĥ1 patm. Using MSa 5
Ð 0
21 uSaDd§5 kaE/s, divide the term

ð0
21

SabDd§5E
kakb

k2

cg

c
1 dabE

�
cg

c
2

1

2

�
5MSacgb1 dabJD , (B2)

as in (17) and where J[D21E[(cg/c)2 (1/2)] as defined by Smith. From (36) [or Smith’s (2.27)], we obtain

›

›t

ð0
21

uSaDd§52
›

›xb
[(cgb1 uAb)MSa]2MSb

›uAb

›xa
2 J

›D

›xa
1

ka
s

(Sin 2 Sdis) . (B3)

When converting from E to MSb, the term MSb›ka/›xb is generated resulting in the second and third term on the

right side of (B3). It is has been determined that uAb 5
Ð 0
21 rûb d§ (Mellor 2003), where

Ð 0
21 r d§5 1, and r is a

weighting function so that ûb is appropriately weighted near the surface.

Inserting (B2) and (B3) into (B1), one obtains

›

›t

ð0
21

ûaDd§1
›

›xb

ð0
21

(ûaûb1 ûauSb 1 ûbuSa)Dd§1

ð0
21

›VUa

›§
d§1D

›p̂

›xa
5

›

›xb
[(uAb)MSa]

1MSb

›uAb

›xa
1D

›J

›xa
1

ð0
21

›ta
›§

d§2

ð0
21

ka
s

(sin 2 sdis) d§ . (B4)

Following Smith, manipulation of the second term on the left side and the first term on the right side of (B4)

yields

›

›t

ð0
21

ûaDd§1
›

›xb

ð0
21

ûaûbDd§1

ð0
21

›Vûa
›§

d§1

ð0
21

D
›p̂

›xa
d§5

›

›xb

ð0
21

uSa(uAb 2 ûb)Dd§

1

ð0
21

uSb

 
›uAb

›xa
2

›ûa
›xb

!
D d§2

ð0
21

ûa

›uSbD

›xb
d§2

ð0
21

D
›J

›xa
d§1

ð0
21

ka
s

sdis d§ , (B5)

where, again following Smith,
Ð 0
21 (›ta/›§) d§5Ð 0

21 (kasin/s) d§ [and ta(0)5 kaSin/s]. Notice that uAb is

vertically constant, whereas ûb is not. However, if one

assumes that ûa is vertically constant on the right side

of (B5), then uAb 5 ûb; the first term on the right can-

cels, and (B5) is identical to Smith’s (2.28) and (2.29)

after noting that
Ð 0
21 ( )Dd§5

Ð ĥ
2h ( ) dz, D ffi H, andÐ 0

21 (›Vûa/›§) d§5 0. He uses subscripts i and j instead

of a and b, the last term in (B5) is denoted by kiD
W ,

and MSa 5
Ð 0
21 uSaDd§5 Smith’s MW

i .

The integrand of all terms can be written

›Dûa
›t

1
›Dûaûb

›xb
1

›Vûa
›§

1D
›p̂

›xa

5
›

›xb
[uSa(uAb2 ûb)D]1uSbD

 
›uAb

›xa
2
›ûa
›xb

!

2 ûa

›uSbD

›xb
2D

›J

›xa
1

ka
s

sdis . (B6)

Equation (B6) is a differential equation for the current

ûa. It is a sigma coordinate equation but can be trans-

formed to Cartesian coordinates (see appendix A of
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Mellor 2005). Aside from removing Coriolis and baro-

clinic terms—which can easily be reinstated—the termÐ 0
21 Sab(›Ua/›xb)Dd§ from (36) should have been in-

cluded, although there is some evidence that it is small.

It was not present in Smith’s derivation because he

employed the wave action equation instead of (36) in

which the term is subsumed but only if Ub(§)5 const.

(Mei 1983). It is also this writer’s contention that only

the pressure–slope portion of the total vertical stress di-

vergence should balance the wave generation term, that is,Ð 0
21 (›tPa/›§) d§5

Ð 0
21 (kasin/s) d§. Finally, it seems ap-

propriate that instead of J[D21E[(cg/c)2 (1/2)], the

vertically dependent form obtained from the correspond-

ing portion of (33) should be substituted for J.

It is now recognized that (B6) coincides with the

equations of Newberger and Allen (2007b) if the left

side of (B6) remains vertically dependent but velocities

on the right side are assumed be vertically constant.

Thus, the first term and the third term (for ›ĥ/›t5 0) are

nil, whereas the second and third term (for shallow

water, cg/c5 1) combine to yield their vertically con-

stant (Fx
b , F

y
b).

The left side of (B6) also corresponds to the equations

of McWilliams and Restrepo (1999; however, advective

terms are excluded), McWilliams et al. (2004), or

Ardhuin et al. (2008). [In the latter case, refer to Bennis

et al. (2011), which offers simplifications to the 2008

paper.] The right side agrees with all of the above au-

thors’ equations only if one approximates uAb 5 ûb or if

one assumes velocities are vertically constant in which

case the first term on the right side of (B6) vanishes and

the second term is a vortex force term. Also, Bennis

et al. (2011) have a term wS›ûa/›§ instead of the third

term on the right side of (B6). In the present paper and

in L-HS and Phillips, wS 5 0, as discussed in section 10.

Conversely, after vertical integration of the equation

of McWilliams and Restrepo (1999), Ardhuin et al.

(2008), or Bennis et al. (2011) and use of (B3), there

seems to be no way to bring them into agreement with

those of Phillips or Smith (2006).
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