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ABSTRACT

The paper focuses on the consequences of including surface and subsurface, wind-forced pressure–slope

momentum transfer into the oceanic water column, a transfer process that competes with now-conventional

turbulence transfer based on mixing coefficients. Horizontal homogeneity is stipulated as is customary

when introducing a new surface boundary layer model or significantly new vertical momentum transfer

physics to an existing model. An introduction to pressure–slope momentum transfer is first provided by

a phase-resolved, vertically dependent analytical model that excludes turbulence transfer. There follows

a discussion of phase averaging; an appendix is an important adjunct to the discussion. Finally, a coupled

wave–circulation model, which includes pressure–slope and turbulence momentum transfer, is presented

and numerically executed. The calculated temperatures compare well with measurements from ocean

weather station Papa.

1. Introduction

Previous to this paper, surface boundary layer models

(e.g., Mellor and Yamada 1982; Large et al. 1994) gen-

erally assumed that momentum transfer from surface

wind stress into the water column is due to turbulence

Reynolds stress. Here, we examine the finding of Mellor

[(2003), a corrected version can be found in ftp://aden.

princeton.edu/pub/glm/corrected2003] that waves cre-

ate a contribution as a result of the correlation of wind

pressure and wave slope, also called form drag, which is

projected into the water column and competes with

turbulence-supported stress. It is noted that form drag

also penetrates into the atmosphere, but by a small dis-

tance relative to atmospheric boundary layer heights; it

has played a role in drag coefficient parameterizations

(e.g., Hwang 2006).

To focus on vertical transfer processes, most surface

boundary layer models are initiated assuming horizontal

homogeneity wherein the model algorithm and the rel-

evant empiricism are introduced and tested against

available data. Because this paper examines a newelement

of surface wave boundary layer physics, horizontal ho-

mogeneity will also be assumed.

In section 2, a phase-resolved analytical solution of

a stationary, wind-forced wave field in the absence of

turbulence is developed. Surface wind pressure pene-

trates the water column. Then, in section 3, after phase

averaging the information of section 2, it is seen that

momentum is transferred into the water column entirely

because of wave pressure acting on sloping material

surfaces resulting in Stokes drift. When interpreted in

terms of surfaces of constant z rather than material sur-

faces, a nonzero wave correlation ~u ~w is obtained.

In section 4, a model, again specialized for horizontal

homogeneity but including waves, currents, and turbu-

lence, is presented and executed numerically. The inter-

play between pressure–slope- and turbulence-supported

momentum transfer is demonstrated. For the turbulence

portion, an augmentedMellor andYamada (1982)model

will be used. For the wave portion of the completemodel,

we will use the wave model developed by Mellor et al.

(2008, hereafter MDO). Because horizontal homoge-

neity is prescribed, elements such as wave radiation stress

terms are absent.

Comparisons with temperature data from station

Papa (Martin 1985) are in section 5. There is uncertainty

associated with the assumption of horizontal homoge-

neity because possible effects of advection are excluded.
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Of course, there are also uncertainties associated with

the empirical content of all models.

2. A simple phase-resolved wave model

In this section, an analytical solution is obtained for

a phase-resolved problem relevant to near-stationary

(fully developed) waves wherein surface forcing is bal-

anced by a simple momentum sink. The focus is on de-

termining the subsurface pressure distribution and the

effect of wind on wave properties.

For small wave slope, the linear equations of motion

are

›u

›x
1
›w

›z
5 0, (1)

›u

›t
1

›p

›x
52ru, and (2a)

›w

›t
1

›p

›z
52g2 rw , (2b)

where t is time; (x, z) is the horizontal and vertically

upward coordinates respectively; (u, w) are the velocity

components in the (x, z) directions; p is kinematic pres-

sure (dynamic pressure divided by density); g is the

gravity constant; and r is a simple, constant coefficient

for Rayleigh drag that, it will be seen, counterbalances

form drag. To simplify nomenclature and because mean

properties will be horizontally homogeneous, we let the

mean water level be nil.

From (2a) and (2b), one deduces irrotationality and,

therefore, (u,w)5 (›f/›x, ›f/›z). Also from (2)

›f

›t
1 gz1 p52rf . (3)

We seek solutions whereby the surface elevation is

h5 a cos(kx2st), and where a, s, and k are wave

amplitude, frequency, and wavenumber, respectively.

At the surface,

›f

›z
5

›h

›t
for z5 0. (4)

In (4), small elevation is assumed (or ka � 1) so that

f(h)5f(0)1fz(0)h1 � � � ffi f(0). At the bottom,

›f

›z
5 0 for z52h . (5)

After insertion of (u,w)5 (›f/›x, ›f/›z) into (1),

Laplace’s equation is obtained for which a solution

satisfying (4) and (5) is

f5
as

k

coshk(h1 z)

sinhkh
sinc and (6a)

c[ kx2st . (6b)

According to (3),

p(z)52gz1
as 2

k

coshk(h1 z)

sinhkh

�
cosc2

r

s
sinc

�
. (7)

It is assumed that r/s is small and that a possible cosc

component of the wind surface pressure is similarly

small;1 thus, from (7) for z5h and to lowest order in r/s,

one obtains the dispersion relation

s25 kg tanhkh . (8)

Let pw [2(r/s)ag sinc, so that (7) may be written

p52gz1 gFCCa cosc1 pwFCC , (9)

which uses (8) and the definition FCC [ coshk(h1 z)/

coshkh. For pw } r/s � 1, the flow is dominated by the

standard, linear problem for zero surface pressure [for

z5h the first two terms on the right-hand side of (9)

cancel]; the linear dispersion relation prevails and the

(small) pressure component of the wind pw is correlated

with the surface elevation slope ›h/›x52ka sinc.

3. Phase-averaged equations

The term pwFCC in (9) is the subsurface projection of

the surface wind pressure as in Mellor (2003). The ma-

terial surface (z5h) and subsurface departure from the

rest is ~s5 aFSS cosc (obtained from ›~s/›t5w5 ›f/›z),

where FSS [ sinhk(z1 h)/sinhkh.

Next, multiply (9) by the material slope ›~s/›x5
2kaFSS sinc. After phase averaging, one obtains

tP [ pwFCC

›s

›x
5 pw

›h

›x
FSSFCC (10)

for the wave pressure–slope stress throughout the wa-

ter column; at the surface, FSSFCC 5 1 and thus, (10)

conforms to the well-known surface form drag tP(0)5
pw›h/›x. The term, form drag, is actually a drag on the

atmospheric side of the air–sea interface; on the water

1 It is small. From (10), (14), and calculations in section 5 (or

from most any data source), one evaluates r/s5 (860)21CDU
2/

kE’O(1024). Originally, the problem was expanded in the small

parameter «5 r/s � 1, but this was subsequently deemed to overly

complicate the discussion.
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side it is a positive stress. In any event, form drag results

from a greater integrated pressure on the backward face

of a wave than on the forward face (e.g., Buckles et al.

1984); this is related to separated flow (the sheltering

effect) or to aerodynamic boundary layer behavior for

accelerating and decelerating velocities in attached flow.

For the present, horizontally homogeneous problem

and following Mellor (2003), the phase-averaged mo-

mentum equation obtained from (2a), as derived in ap-

pendix A, is

›uS
›t

5
›tP
›z

2 ruS . (11)

This may seem intuitive but, in fact, its derivation is not

too simple.

It can be shown and it is well known [in the intro-

duction to Mellor (2003) there is a derivation that can

serve as an introduction to the basic methods of that

paper and appendix A] that the Stokes drift is

uS 5
E

c

›FSSFCC

›z
, (12)

where E5 gh2 5 ga2/2 is the wave energy, and c is the

phase speed. After inserting (10) and (12) into (11), the

vertically dependent parts of both sides of (11) cancel

identically so that

›E

›t
5 cpw

›h

›x
2 rE . (13)

Alternately, if one multiplies (2a) by u, (2b) by w, adds

the two equations, integrates from z 5 2h to 0, phase

averages, and makes further manipulation, one obtains

(13) again. For the present problem of section 2, ›E/›t5 0

and (13) yields

E5
c

r
pw

›h

›x
. (14)

Thus, as might be anticipated, the wave energy is line-

arly proportional to the surface form drag and inversely

proportional to the Rayleigh drag coefficient.

Whereas the Rayleigh terms, the second terms on the

right of (11) and (12), are a convenient invention and

differ from reality as seen in section 4, the first terms are

derived from (1) and (2a) and (2b) exclusive of the

Rayleigh terms and are considered realistic. Note also

that here the momentum and energy equations are not

independent.

At this point, it is useful to note that measurements

taken at a fixed level instead of following a material

surface should yield

tP 5 pw
›h

›x
FSSFCC 52~u ~w . (15)

(Henceforth, wave properties will be denoted by the

superimposed symbol ;.) To arrive at (15), first note

that the average momentum flux across any surface is

given by F5L21
ÐL
0 (pn1 uur � n) ds, where ds is an el-

emental surface area whose normal unit vector is n. The

vector velocity on the surface is u whereas ur is velocity

relative to a moving surface. On a wave surface,

n52[12 (›~s/›x)2]1/2k1 ›~s/›xi and ur � n5 0. If L is a

wavelength, the x component of the momentum flux

is i � F5 tP 5 p›~s/›x as in (15). On the other hand, for a

fixed surface, n52k, ur � n52 ~w, and i � F5 tP 52~u ~w

as in (15).

4. A phase-averaged coupled wave–current model

The foregoing theoretical analysis introduced the idea

of momentum transfer into the water column through

pressure acting on material surfaces in the absence of

turbulence transfer. In the following, the gradient ›tP/›z

will compete with the vertical turbulence stress gradient;

the latter had been assumed to be the total stress in

previous ocean surface, boundary layer models. As

stated in the introduction, horizontal homogeneity is

stipulated. For a horizontally variable application of the

model see Mellor (2013).

a. The mean or total momentum equation

In this and the following subsections, the turbulence

closure model of Mellor and Yamada (1982) is modified

to include pressure–slope forcing and the inclusion of

wave properties in surface boundary conditions. An-

other paper is relevant: in Mellor (2001), an extensive

summary of the model is presented and a litany of prob-

lems is included, other than the surface boundary layer

problem, for which the model has been applied.

The momentum equation is

›Ua

›t
2 f«abzUb5

›tPa
›z

1
›tTa
›z

2 cRûa , (16)

where, as derived in Mellor (2003), Ua 5 ûa 1uSa; ûa
is the current; uSa is the Stokes drift; f is the Coriolis

parameter; and «abz is the permutation tensor (51 if
abz5xyz,521 if abz5yxz, or 50 if abz5xxz or yyz).

The subscript a or b denotes horizontal coordinates x or y,

whereas z is the vertical coordinate pointing upward

from the sea surface. In (16) the turbulence stress term is

tTa52u0aw0, where primes denote turbulence veloci-

ties. Note that turbulence is defined such that turbulent

fluctuations are uncorrelated with wave motions; for
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example, ~uaw05u0a ~w50. The Rayleigh-damping term

cRûa is necessary in one-dimensional calculations

(Pollard andMillard 1970) lest the ocean velocities grow

inexorably; it is a surrogate for missing three-dimensional

processes. This artificial growth was demonstrated ana-

lytically and numerically in Mellor (2001) and where the

value cR5(8days)21 was justified.

According to section 2, Mellor (2003), and Mellor

et al. (2008), the wind-driven stress is

tPa 5 ~pw
›~h

›xa
F5(kPz) , (17)

implemented here for the first time when modeling

surface boundary layers. In the following, we specialize

to deep water (kh � 1), wherein F5 is the spectral av-

erage of FCCFSS 5 exp(2kz) plotted in Fig. 1 and is one

of several averaged functions defined in Mellor et al.

(2008). As in sections 2 and 3, ~pw is surface wind pressure

correlated with the elevation slope ›~h/›xa.

The turbulence contribution to the momentum equa-

tion is

tTa5KM

›ûa
›z

, (18)

where KM is a mixing coefficient defined below. Note

that it is the current ûa 5Ua 2 uSa that is used in (18)

rather than Ua. This follows from the fact that attenu-

ation of waves and therefore Stokes drift is governed

by the wave energy equation [see (29) and (35)] rather

than the momentum equation. Also, in the case of swell,

waves and therefore Stokes drift attenuate very little

(Snodgrass et al. 1966).

The vertical boundary conditions for (16) are

tPa(0)5 ~pw
›~h

›xa
5 «CDPjdU10jdU10a and (19)

tTa(0)5 «CDT jdU10jdU10a . (20)

Here, dU10a is the difference between the 10-m wind

vector and the ocean surface velocity; dU10b 5 jdU10j
and « ffi 1/860 is the ratio of air to water density. We

define a form drag coefficient dependent on significant

wave height HS 5 4(ET /g)
1/2—where ET is total wave

energy—and inverse wave age, sPU10/g; sP is frequency

at the peak of the wave spectrum, U10 is the 10-m wind

speed; and k5 0:41 is the von K�arm�an constant. Thus,

CDP5

�
k

ln(10m/z0P)

�2
and (21a)

z0P 5 1:383 1024HS

�
sPU10

g

�2:66

(21b)

(Donelan et al. 1985, 1992; Hwang andWang 2004). For

turbulent flow over a smooth surface, the friction drag

coefficient is

CDT 5

�
k

ln(10m/z0T)

�2
and (22a)

z0T 5 0:18n/u* (22b)

(Schlicting 1979) and is appropriate to turbulent flow

with no waves and therefore involves the kinematic

viscosity n. Of the two determinations,CDP andCDT , the

maximum as calculated in (21) and (22) prevails; the

other is set to zero. In practice, the turbulence formula,

(21b), is only invoked for low wind speeds and has very

little influence on calculated results.

The switch from CDT to CDP or vice versa might seem

abrupt but in Schlicting (1979, Fig. 20.21) it is seen that,

for rough walls, an abrupt change is a plausible ap-

proximation. Given the current state of knowledge, the

approximation for wavy walls is appropriately simple

and is approximately justified by most drag coefficients

plotted as a function of wind speed (see Fig. 3, described

in greater detail below). However, the correct partition

between form drag and friction drag is an outstanding

research question (e.g., Janssen 1989; Donelan et al.

2012).

b. The temperature equation

The equation for potential temperature is

›T

›t
5
›Q

›z
1

›R

›z
, (23)

FIG. 1. NondimensionalF5(kPz) as used in (17), applicable to deep

water. The wave number at the peak frequency is given by kP. The

solid line is the spectral average of FCCFSS 5 exp(2kz), whereas the

dashed line is simply exp(2kPz). The max difference is about 25%.
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where R is the solar penetrative radiation flux. The

turbulence-based heat flux (pressure is absent in scalar

equations and so is pressure–slope transfer) is

Q5KH

›T

›z
, (24)

where KH is a mixing coefficient for heat flux defined

below.

c. The turbulence kinetic energy equation

The turbulence kinetic energy equation is

›q2

›t
5

›

›z

�
Kq

›q2

›z

�
1 2(tPa1 tTa)

�
›Ua

›z

�

2 2KH

g

r0

›r

›z
2

q3

L1

, (25)

q2 is twice the turbulence energy, and Kq is its mixing

coefficient. The second, third, and fourth terms on the

right-hand side are shear production, buoyancy pro-

duction, and dissipation, respectively;L1 5 16:6‘ and ‘ is

a length scale discussed below. It is noted that the shear

source term (tPa 1 tTa)›Ua/›z is derived by consider-

ation of the mean kinetic energy equation obtained by

multiplying (16) by Ua (Mellor 2005); the term appears

as a sink term that requires balance of a source term in

the turbulence kinetic energy equation and thus includes

tPa as well as the usual tTa.

The surface boundary condition for the turbulence

equation is as originally suggested by Craig and Banner

(1994), whereby a source of turbulence due to wave

breaking is injected at the surface as a surface boundary

condition as in

Kq

›q2

›z

����
z50

5

ðp
2p

SuS
dis
du , (26)

where SuSdis is obtained from the wave model described

in the next section; see Mellor and Blumberg (2004) for

numerical details. In those papers, a wavemodel was not

available and breaking wave energy was simply param-

eterized by au3*, where u* is the friction velocity and

a ffi 100. Until research provides a means of vertically

distributing
Ð p
2p SuSdis du into the subsurface layers of the

water column, (26) is regarded as an approximation.

Considering the length scale, an important aspect here

is that, near the surface, we set

‘5max(‘0, ‘z) , (27)

where ‘z is the conventional length scale for which there

are many prescriptions in the literature, reflecting a high

degree of empiricism, but, generally, ‘z ; kz as z/0.

Here, ‘z is obtained from a differential equation (Mellor

and Yamada 1982). An algebraic equation would un-

doubtedly work well if it is tuned to the ocean surface

layer case. It has been assumed by Terray et al. (1999)

that ‘0 }HS where the proportionality constant is a tun-

ing constant for which solutions are quite sensitive

(Mellor andBlumberg 2004). To best fit the data in Fig. 4

(described in greater detail below), we have set ‘0 5HS;

no significance is attached to the proportionality con-

stant of unity. In three-dimensional simulations where

internal waves, surface cyclonic divergences, or anticy-

clonic convergences are in play, mixing is enhanced

and the proportionality coefficient may have to be

decreased.

d. The mixing coefficients

The model is completed by

(KM,KH ,Kq)5 (SM, SH ,Sq)‘q , (28)

where the stability factors SM and SH are functions of

(r0q
2)21‘2g›r/›z as originally derived by Mellor and

Yamada (1982) and modified by Galperin et al. (1988).

We have in the past vacillated in specifying Sq, either

making it proportional to SH or setting it equal to a

constant. The resulting differences are small but here we

choose Sq 5 0:2.

From the above, it will be seen that wave information

is required. Specifically, the significant wave height and

wave age is needed in (21) and the vertical dependence

of the momentum pressure transfer in (17) requires the

peak wavenumber.

e. The wave model

We invoke the phase-averaged, nonlinear wave model

of MDO. The model is based on a parameterization of the

shape of the frequency spectrum according to Donelan

et al. (1985) so that one deals with the wave energy Eu

dependent onwave propagation direction u, the horizontal

coordinates, and time. It is, therefore, a relatively simple

model compared to third-generation models. However, it

has been shown inMDOto reproduce fetch- and duration-

limited data and to produce comparable performance to

SimulatedWavesNearshore (SWAN;Booij andHolthuijsen

1999) in comparison with buoy data during Hurricane

Katrina. It is well suited to present requirements in that

it is computationally efficient (requiring two orders of

magnitude less computational resource relative to third-

generation models) and is comparable to surface bound-

ary layer models in that details of both wave spectra and

turbulence spectra are avoided.
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The wave energy equation, greatly simplified by ex-

clusion of horizontal gradients, is

›Eu

›t
5 Su

in
2 Su

out
2SuS

dis
, (29)

whereEu is the energy of waves propagating in direction u.

Here, wave direction is the only independent variable;

advective and refractive terms—otherwise included in

MDO—disappear. Wave variables are distributed in the

range 2p, u#p. We next define a spreading function

fspr [

8><
>:

b

2
sech2[b(u2 uW)]; ju2 uW j#p/2

0; ju2 uW j.p/2

. (30)

The wind direction is uW and b5 2:2. Thus, fspr is at

a maximum in the wind direction and diminishes on ei-

ther side of the wind direction.

The wind source term Suin is the usual wind input for

waves propagating in a direction near the wind; as de-

termined in MDO, it is

Su
in
/u3*P 5 370 exp(20:33U10sP/g)fspr(u, uW) , (31a)

where u*P 5 jtPa(0)j1/2 is the water-side friction veloc-

ity. Recall that U10sP/g (5U10/cP for deep water, and cp
is the peak spectral phase speed) is the inverse wage age.

A second sink term

Su
out
/u3*P 5 370 exp(20:33U10sP/g)0:4fspr(u, uW 1p)

(31b)

accounts for waves propagating in directions opposite

to the wind direction. The factor, 0.4, is according to

Donelan (1999). Only positive Eu is permitted; there-

fore, after Eu is reduced to zero in the vicinity of

u5 uW 1p, (31b) is ineffective.

The surface wave dissipation is given by

SuS
dis
5 aSu

in
1 bEusP (32)

where a5 0.925 was determined empirically inMDOby

reference to fetch data and b5 0:183 1024 is deter-

mined by the limiting case ›Eu/›t5 0. The first term in

(32) represents the fact that the high-frequency part of

the spectrum is dissipated very nearly in situ and the

second part is dissipation of the middle- (s’sP) to low-

frequency part of the spectrum. This means, of course,

that overall wave growth only responds to (12 a)Suin 2
bEusP; nevertheless, the full dissipation is needed as in-

put to the turbulence kinetic energy equation as in (26).

The model crudely approximates swell by using a re-

duced b5 (0:183 1024)/5 when u*P 5 0.

Most of the wind input energy is dissipated in situ.

Aside from its wave age dependence, (31a) resembles

the dissipation suggested by Craig and Banner (1994)

after integration over all wave angles.

A u-dependent frequency equation, simplified for hori-

zontally homogeneous flow, is

›su

›t
52< and (33a)

<5sP(sP 2su)f
1/2
spr . (33b)

In regions of u that are wind driven ( fspr . 0), the source

term < has the effect of nudging (a term used, for ex-

ample, in data assimilation of various ocean properties)

su toward sP; where waves are not wind driven, fspr 5 0

and su is unchanged. The peak frequency is then pa-

rameterized by

U10sP/g5 (CsU
4
10/gETW)0:303 (34)

as determined byDonelan et al. (1985, 1992) andHwang

and Wang (2004). The constant Cs is 0:0022. Although

based mostly on moderate winds, (34) has also been

shown to conform to hurricane data by Young (2006).

Here, ETW 5
Ð
Eu du is the integral over wave angle but

limited to the wind-driven portion, where fspr . 0; ET is

the same integral but taken over all wave angles.

The Stokes drift for a monochromatic wave in deep

water is uSa 5 2ka(E/c) exp(2kz) where the wavenumber

vector is ka 5 k(cosu, sinu) and k2a 5 k2. Because wave

properties are distributed in the range 2p, u,p, an

average is

(uSx,uSy)5

ðp
2p

(cosu, sinu)
2ku
cu

Eu exp(2kuz) du . (35)

5. Station Papa data

We now appeal to the data from Weather Station

Papa (508N, 1458W) analyzed by Martin (1985) for the

year 1966. The wind stress is as described above but the

heat flux at the surface is that calculated byMartin using

climatological radiation and conventional bulk surface

formulas. The vertical distribution of ocean velocities

and attendant variables on the one-dimensional grid,

2200, z, 0, includes 40 evenly distributed grid points

except for the topmost 7 points that are logarithmically

distributed. The wave variables are on the grid2p, u#p
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and are divided into 24 equally spaced increments. The

time step is 5min.

A time series for wind speed and direction are plotted

in the top two panels in Fig. 2, and the calculated sig-

nificant wave height and mean wave propagation di-

rection are shown in the bottom panels for the month of

January when the winds are quite strong.

Figure 3 is a conventional plot of drag coefficient

versus wind speed sampled at 3-h intervals in January.

The scatter is due to the dependency ofCD on significant

wave height and wave age in (21); nevertheless, it is

somewhat remarkable that a complicated path through

the wave variables and (21) should closely adhere to the

simple CD(U10).

Figure 4 presents sample profiles of current ûx
and ûy and Stokes drift uSx and uSy components. The

total mean velocity components Ux and Uy are the sum

of the two. The narrow southward jet around z 5
2110 m—akin to the nocturnal jet in the atmosphere—is

the result of an upward progression of the interface from

unstable forced to stable unforced portions of the water

column.

In Fig. 5 are sample plots of tPa and tTa at day 30;

notice that tTa is nil at the surface but comparable to tPa
below the surface.

Figure 6 compares station Papa yearlong tempera-

ture data with calculations. The short-wave motion,

presumably internal waves, is missing; otherwise the

comparison is quite favorable. Finally, the station

Papamonthly-averaged surface temperature is compared

FIG. 2. Time series of the first 31 days of a yearlong simulation of weather station Papa for 1961. (top) Wind speed

(m s21) and direction (8) from Martin (1985) are shown. (bottom) Calculated significant wave height HS (m) and

mean wave propagation direction u5 umean (8) are shown.

FIG. 3.CD sampled at 3-h intervals for the first 31 days. The solid

line is from (22) and the dashed line is the linear relation

(0:751 0:067U10)10
23 from Garrett (1977).
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with data in Fig. 7 in the manner presented by Martin

(1985).

6. The generation of Stokes drift and Eulerian
current

To simplify understanding of the detailed physics of

the generation of Stokes drift uSa and current ûa, let

f 5 cR 5 0 and integrate (16) so that

›

›t
(MSa 1 M̂a)5 tPa(0) , (36)

where MSa [
Ð 0
2h uSa dz and M̂a [

Ð 0
2h ûa dz. As in sec-

tion 4, assume that form drag tPa(0) is the dominant

surface wind stress. For monochromatic waves, it can be

shown that E5ET 5 caMSa whereas for a spectrum,

following Terray et al. (1996), we let E5 caMSa, where

ca is a spectral average. Now, as in familiar numerical

implementations, conceptually time split the forcing and

dissipative processes. For the first time step, the forcing

process, the total energy (29) with no dissipation,

converts to ›caMSa/›t5Sin. Thus, according to the en-

ergy equation, only Stokes drift is created and from (36)

catPa 5 Sin. For the second time step, the dissipative

process is ›caMSa/›t52Sdis but ›(MSa 1 M̂a)/›t5 0.

Thus, the Stokes drift decreases and is converted into

current. Appendix B discusses the relation catPa 5 Sin in

more detail.

Reinstating f, a third time step can accommodate

changes due to the Coriolis term.

7. Summary

In this paper, momentum transfer into an oceanic

water column via pressure acting on material wave

surfaces is demonstrated by a phase-resolved analytical

model simplified by excluding currents, turbulence, and

horizontal variability. The results are phase averaged

and partially account for terms in a more complete

model.

There then followed a description of a phase-averaged

model complete with waves coupled to an ocean surface

boundary layermodel whereinmomentum and energy is

FIG. 4. Sample velocity (m s21) profiles at day 30 of the yearlong computation. The solid lines are the currents and the

dashed lines are Stokes drifts. (top) The eastward and (bottom) northward components are shown.
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transferred to and from waves and the underlying water

column.

We then compared with the data of Martin (1985),

a well-known and much-cited dataset. Other data are

included in Mellor (2001) and experience indicates that

a model that performs well with the Martin data also

does well generally. It is unfortunate that concomitant

surface wave data are not available to compare with the

calculated data. But as noted above, the wave model has

reproduced fetch- and duration-limited data and hurri-

cane buoy data so it is presumed that the calculated

wave properties are reasonable. However, the main fo-

cus of the paper is on coupling waves to surface boundary

layer dynamics and on the combined but separate role

of turbulence- and pressure–slope-supported stresses as

demonstrated in Fig. 5.

It is noted that there are no adjustable constants in

the Mellor–Yamada turbulence closure model, which

covers many different flow problems. However, with the

addition of surface gravity waves, an adjustable constant

is introduced in the relation ‘0 5HS, where, as stated

above, the constant is unity. The model has been run

excluding pressure–slope transfer reverting to the more

conventional turbulence transfer. Consequently, the sum-

mertime temperatures are reduced by about a degree.

Now, if ‘0 is adjusted so that ‘0 5 0:85HS, the compari-

son (not shown) between measured data and calcula-

tions is nearly the same as in Fig. 7. (Most of the year,

velocity profiles are nearly the same but do differ sig-

nificantly during summer months.) Therefore, the good

agreement in Fig. 7 does not justify inclusion of pressure–

slope per se. Justification derives from the simple fact

that pressure–slope transfer into the water column is the

logical continuation of form drag, which is nomenclature

for pressure–slope transfer at the surface. Otherwise,

form drag would be discontinuously continued into the

water column by turbulence transfer.

FIG. 5. Sample stress profiles at day 30 of the yearlong compu-

tation. The solid lines are the pressure transfer of momentum into

the water column according to (17); the dashed lines are the tur-

bulence transfers according to (18). (top) The eastward and (bot-

tom) northward components are shown.

FIG. 6. The yearlong temperatures (8C; contour interval is 18C) at station Papa. (top) The

measured and (bottom) calculated values are shown.
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Scientific progress does require improved physical de-

scription and understanding of oceanic processes when-

ever possible.

Acknowledgments. Two reviewers made important

suggestions that improved the paper.

APPENDIX A

Derivation of (11)

Despite the simplicity of (11), its derivation is rather

complicated but simpler than that in Mellor (2003) in that

currents are nil (û5 0). Thus, it can serve the purpose of

providing an introduction to the methodology of the 2003

paper; that paper of course contains more realism than

does the idealized Rayleigh drag as shown in section 2.

Here, (2a) is transformed according to

u(x, z, t)/u(x, §, t) , (A1)

where

z5 §1 ~s and (A2a)

~s5 a
sinhk(h1 §)

sinhkh
cosc , (A2b)

and u or p is represented by u. Surfaces of constant §1 ~s

are material surfaces, whereas surfaces of constant § are

fixed, time-independent (rest) surfaces. From the ex-

pression for the vertical velocity ~w below, one sees that ~s

derives from ›~s/›t5 ~w. At §5 0, z5 ~s(0)5h5 a cosc,

whereas at §52h, z52h. From (A2a) and (A2b),

useful relations are

z§ 5 11 ~s§ and (A3a)

~s§5 ka
coshk(h1 §)

sinhkh
cosc . (A3b)

Now, following Mellor (2003), derivatives of u and p

transform according to

›u

›t
/

›u

›t
2

›u

›§

zt
z§

and (A4a)

›p

›x
/

›p

›x
2

›p

›§

zx
z§

. (A4b)

so that (2a) may be transformed to

z§
›u

›t
2

›u

›§
zt 1 z§

›p

›x
2

›p

›§
zx52rz§u .

After rearranging

›uz§
›t

2
›uzt
›§

1
›pz§
›x

2
›pzx
›§

52rz§u . (A5)

The equations for wave velocity,

u5 kac
coshk(h1 z)

sinhkh
cosc and (A6a)

w5 kac
sinhk(h1 z)

sinhkh
sinc , (A6b)

are exact irrotational solutions (Mellor 2011) to (1) and

(2) in the region2h, z,h(x, t). Thus, recalling (A2a),

u5 [kac coshk(h1 §1 ~s)/sinhkh] cosc, one has

u5 ~u1
›~u

›§
~s and (A7a)

~u[ kac
coshk(h1 §)

sinhkh
cosc (A7b)

and also

w5 ~w1
› ~w

›§
~s and (A7c)

~w[ kac
sinhk(h1 §)

sinhkh
sinc (A7d)

plus terms higher order in ka. Similarly (9) becomes

p52gz1ga
coshk(h1 §1 ~s)

coshkh
cosc1pw

coshk(h1 §1 ~s)

coshkh

(A8)

or

p5 ~p1
›~p

›§
~s1 pw

coshk(h1 §)

coshkD
and (A9a)

FIG. 7. The yearlong surface temperatures (8C) averaged monthly.

The circles are measured and the solid lines are calculated values.
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~p52g§1 ga
coshk(h1 §)

coshkD
cosc . (A9b)

The phase average of (A5) is

›uz§
›t

2
›pzx
›§

52rz§u , (A10)

where, for horizontal homogeneity, the term ›pz§/›x5 0;

also, u and zt are uncorrelated uzt 5 0. Henceforth, the

terms, FCC and FSS, defined in sections 2 and 3, will be

used. Now from (A2), zx 52kaFSS sinc so that

pzx52pwFCCkaFSS sinc5pw
›h

›x
FCCFSS

because pw } sinc and ›h/›x5 ka sincwhereas the other

terms in (A9a) are not correlated. The other term in

(A10) is

z§u5 (11 s§)

0
@~u1

›~u

›§
~s

1
A5

›~u~s

›§
5

E

c

›

›§
FCCFSS 5 uS ,

where (8) and E5 ga2 are used. Therefore (A10)

becomes

›uS
›t

5
›tP
›§

2 ruS (A11)

as in (11).

The key to the above derivation is that phase av-

eraging ( )5L21
ÐL
0 ( ) dx is processed after the in-

dependent variables are transformed to x and the

fixed §.

APPENDIX B

The Relation catPa 5 Sin

Using (31a), (19), (21a), and (21b), one obtains

c

cP
5 370(«CD)

1/2Ae20:33A and (B1a)

u*a
cP

5C1/2
D A , (B1b)

whereA5U10sP/g is the inverse wave age and u*a is the

air side friction velocity. Here, (B1a) and (B1b) are

expressions reflecting different curve-fitted empirical

expressions. Terray et al. (1996) used measured spectra

and performed an integration over spectral frequency to

determine c. They plotted c/cP versus u*a/cP and the

variables in (B1) and Fig. B1 are chosen to conform to

their choice of variables. Here, CD is determined using

theGarrett relation cited in Fig. 3. The reader is referred

to their Fig. 6 and it will be seen that Fig. B1 is a rea-

sonable representation of their Fig. 6; the greatest dis-

crepancy is noted for small values of u*a/cP. The range of

5#U10 # 15 covers the range of their dataset and ap-

proximately brackets the scatter in their Fig. 6.
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