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ABSTRACT 

  The classic theory for the interaction of surface gravity waves and the general ocean 
circulation entails the so-called wave radiation stress terms in the phase-averaged momentum 
equation. The equations of motion are for the combined Eulerian current and Stokes drift. On the 
other hand, a more recent approach includes the so-called vortex force term in the momentum 
equation wherein the only wave property is Stokes drift. The equations of motion are for the 
Eulerian current. The idea has gained traction in the ocean science community, a fact that 
motivates this paper. A question is: can both theories be correct? This paper answers the question 
in the negative and presents arguments in favor of the wave radiation theory. The vortex force 
approach stems from an interesting mathematical construct, but it does stand up to physical or 
mathematical scrutiny as described in this paper. Although not the primary focus of the paper, 
some discussion of Langmuir circulation is included since the vortex force was first introduced 
as the basis of this oceanic cellular phenomenon. Finaly the paper explains the difference in the 
derivation of the radiation stress theory and the vortex force theory: the later theory entails errors 
related to its use of curl and reverse-curl (or uncurl) processes. 
 Key Points: 
Review of the two main theories of surface wave/ocean circulation. 
Arguments are presented favoring the wave radiation stress theory. 
Errors in the vortex force theory are explained. 

 1. Introduction 
  To treat the interaction of surface waves with the underlying circulation, a theory was 
introduced by Longuet-Higgins and Stewart (1962, 1964; henceforth L-HS) and extended by 
(Phillips 1977; henceforth Phillips). The theory applies to vertically integrated, phase-averaged 
equations of motion. The prognostic dependent variable was the combined Eulerian current and 
Stokes drift which responded to surface forcing but also to a “wave radiation stress” term in the 
momentum equation. Papers by Mellor (2003, 2015; henceforth Mellor) extended the L-HS 
theory to obtain vertically resolved equations. The combined Eulerian current and Stokes drift 
satisfied the non-divergent continuity equation; separately the current and Stokes drift are 
generally divergent. 
 In pursuit of a theory of Langmuir cells, observed on the ocean surface as long rows of 
convergent contaminants or as “windrows”, Craik and Leibovich (1976, henceforth CL) 
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developed a theory where stream-wise vorticity was forced by the curl of a so-called “vortex 
force”. The theory was extended by McWilliams and Retrepo (1999, henceforth MR) wherein 
the vorticity, when “uncurled”, devolved into a momentum equation for the Eulerian current 
alone and which was forced by the vortex force, an element of which was Stokes drift. The 
Eulerian current and Stokes drift velocities are separately non-divergent.  
 Whereas the motivation of CL was to offer a “rational model of Langmuir circulation”, 
MR applied the theory to oceanic circulation and, in particular, to determine its effect on large 
scale circulation. A later paper, McWilliams et al. (2004), extended MR to account for 
infragravity waves whose scales are intermediate between surface wave and current scales; the 
paper is quite complicated. However, in a subsequent paper (Uchiyama et al. 2010), the 
infragravity wave and current scales were combined therefore reverting to the two scale scheme 
of MR. 
 The vortex force term in the momentum equation is a major player in many papers that 
have appeared in the last decade or so. Some numerical ocean models incorporate the vortex 
force term in their algorithms (Uchiyama et al. 2010, Bennis et al. 2011, Kumar et al. 2012); it 
has also played a role in numerical turbulence simulations (McWilliams et al. 1997, Sullivan et 
al. 2004) and turbulence closure models. (Kantha and Clayson 2004, Harcourt 2013) 
 If the “radiation stress” and “vortex force” theories are both correct, then one should be 
able to derive one from the other, but apparently that cannot be done according to Mellor (2015) 
who invoked the paper by Smith (2006). This paper is written in support of the L-HS and Mellor 
theory whereas we show where and how the theory of MR and papers dependent on the vortex 
force are incorrect.  
 
Wave relations 
 To represent waves, all of the references cited above use the linear wave relations either 
directly or indirectly such that wave elevation, velocities and pressure are 

ψη cos~ a=                                                                         (1) 

ψαα cos
sinh

)(cosh~
kD

hzkacku +=  ,   ψsin
sinh

)(sinh~
kD

hzkkacw +=                               (2a, b) 

ψcos
sinh

)(cosh~ 2

kD
hzkkacp +=                                                    (2c) 

where αk  is the wave number vector and αkk = ; a is wave amplitude; kc /σ=  is phase speed; 

txk ωψ ββ −≡  and ββσω Auk−=  whereσ  is intrinsic frequency and βAu  is the Doppler 

velocity defined in Mellor (2003). Greek subscripts, βα or , denote horizontal components so 
that ),( yxx =α  are horizontal coordinates and )~,~(~

yx uuu =α  are horizontal velocity components; 

the vertical, particle following coordinate is z and the vertical wave velocity is w~ . Repeated 
subscripts denote summation; e.g., yuxuxu yx ∂∂+∂∂=∂∂ /// ββ . 
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 There will also be a need for vector nomenclature such that ),,(),( zyxzx == αx  and 

)~,~,~()~,~(~ wuuwu yx== αu .  

 It is noteworthy that (2) applies to the entire water column, hz −>>η , where ηηη ~ˆ += ; 
the mean elevation is η̂  and η~  is the instantaneous wave elevation. The mean water column 
depth is hD += η̂ . Wave amplitude, wave number and frequency are assumed to vary slowly, 
spatially relative to 1−k  and temporally relative to 1−σ (Phillips). Waves are taken to be 
monochromatic from which, it is assumed, spectra can be formed. 
 It should be understood that the wave energy equation must be added to the mix of 
equations to supply wave energy, 2/2gaE = , and therefore wave amplitude. 
 
Phase-averaging 
 Throughout this paper, phase-averaging is denoted by an over-bar such that 

=
n

d
n

π
ψ

π
2

0
)(

2
1)(                                                 (3a) 

where n is an integer equal or greater than one. It can also be reckoned by holding x, y and z  = 
const. (z denotes the vertical location of material surfaces subject to wave motion, z  is the 
phase-average of z). Thus, 

=
nT

dt
nT 0

)(1)( ,                                                    (3b) 

or holding  t and z = const. so that 

=
nL

dx
nL 0

)(1)(                                                        (3c) 

where here x is taken in the direction of wave propagation. T and L are wave period and wave 
length respectively. 
 
Stokes drift 
 Phillips and many others determine Stokes drift according to phase-averages of the 
Lagrangian wave velocity, 

z
uz

x
uxuuS ∂

∂
+

∂
∂

+= α

β

α
βαα

~
~

~~~ ,   
z
wz

x
wxwwS ∂

∂+
∂
∂+=

~~~~~
β

β   ,                      (4a, b) 

where tdtux
t

′′≡  )(~~
0 ββ  and tdtwz

t
′′≡  )(~~

0
. Without a change in nomenclature, let zz →  in αu~  

and w~  of (2a, b) and then insert the result into (4a, b) yielding Stokes drift,  

kD
hzkckaakuS 2sinh2
)(2cosh)( +

= αα      and      0=Sw                                  (5a, b) 

Thus, )0,,( SySxS uu=u  is generally divergent as in Phillips. 
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This paper 
 Section 2 is a review of the CL and MR theory. At first, I had difficulty grasping all the 

steps in the CL and MR analyses; however, their derivation is simplified in section 2 by omitting 

Coriolis and baroclinic terms; nevertheless the ingredients leading to the vortex force term in the 

momentum equation are retained. The review does not substantively change their analysis or 

final result. An alternative development is presented in section 3 using the same scaling as in 

section 2. Section 4 is a brief review of the L-HS theory and its vertically resolved counterpart as 

most recently set forth by Mellor (2015) which reviewed the L-HS and Phillips vertically 

integrated derivation and the Mellor vertically resolved derivation from the same integral 

continuity and momentum equations. 

Reasons for favoring the LH-S and Mellor theory are set forth in section 5. Langmuir 

circulation is discussed in sections 6 and 7. It is included because it first motivated the concept of 

the vortex force. Finally, section 8 explains why the radiation stress theory differs from the 

vortex force theory.  Section 9 is a summary of this paper’s findings.  

 

2. Review of the CL and MR theory 
 To aid comprehension, this review adds some intervening steps to the analysis of CL and 
MR. Although the Coriolis and baroclinic terms are omitted, their inclusion in the phase-
averaged momentum equation is straight forward and is the same in CL and MR and Mellor.  
 Adopting MR nomenclature, the continuity and momentum equations are 

0=•∇ q                                                                  (6) 
and 

qgqqq 2∇+−=∇+∇•+
∂
∂ νp

t
                                                    (7) 

or using an established vector identity (Hildebrand 1976) 

( ) qgqqqqq 22/)( ∇+−•+∇−×∇×=
∂
∂ νp

t
 .                                           (8) 

In the above, q is the velocity vector, p is kinematic pressure, g is the gravity vector and ν  is an 
eddy viscosity.  
 CL and MR establish an ordering scheme such that 

0
22 , νενεε =+= vuq w                                                         (9a, b) 

plus higher order terms. In (9), )(order ka≡ε  and ka is the wave slope. Note that ),( tw xu , 
representing wave motion, is taken to be a function of space and a fast time variable, t, such that 
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a phase average 0=wu  whereas ),,( sttxv is additionally a function of the slow time variable, st . 
After inserting (9) into (8), taking the curl of the result and finally dividing by 2ε , CL and MR 
obtain 

[ ] ωωvuωω 2
0

222 )( ∇+×+×∇=
∂
∂+

∂
∂ ν

tt
w

s

εεεε                                          (10) 

where 0=×∇=•∇ ww uu  and vω ×∇≡ . In (10), note that 0=×∇× )u(q w
 and has been 

deleted. [Initially, MR used the small parameters δγ and  to modify different parts of (10); 

subsequently they were related to ε  which here are incorporated ab initio.] Next, expand  

...2
2

10 +++= vvvv εε                                                       (11a) 

...2
2

10 +++= ωωωω εε                                                     (11b) 

 so that, evidently, 1100 and vωvω ×∇=×∇= , etc..  

 From (10) and (11), an equation of order 0ε is 

00 =
∂

∂
t

ω                                                                      (12) 

and of order ε  

( )0
1 ωuω ××∇=

∂
∂ w

t
                                                             (13) 

and of order 2ε  

0
2

0100
02 )()( ωωuωvωω

∇+××∇+××∇=
∂
∂

+
∂

∂ ν
tt

w

s

 .                                     (14) 

 From (12), ),(00 stxωω =  and, also ),(00 stxvv = . A time integral of (13) is  

)( 01 ωUω ××∇=                                                           (15) 

where,  ′′≡ tdtw )(uU  as obtained from (2a, b). ( U is used here and in Appendix B for different 

variables. The context in which they appear should make the distinction clear.) A phase average 

of (14) is 

0
2

0100
0 )()( ωωuωvω

∇+××∇+××∇=
∂
∂ ν

t
w

s

 .                                        (16) 

CL and MR engage in complicated tensor algebra (their Appendix A) to evaluate 1ω  from (15) 
and obtain 

01 ωuωu ×=× Sw                                                       (17) 

the now well-known vortex force where Su is the Stokes drift. A review of the derivation of (15) 
and (17) in this paper’s Appendix B indicates that (17) is missing a vertical component. 
Nevertheless, continuing with the MR analysis, (16) can be written  
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( ) 0
2

0000
0 )( ωωuωvω

∇+××∇+××∇=
∂
∂

ν
t

S

s

 .                                         (18) 

Now “uncurl” (18) to obtain 

0
2

0000
0 )( vgωuωvv

∇++Φ∇−×=×−
∂
∂

ν
t

S

s

                                          (19) 

where g is any constant vector and Φ  is any scalar function. However, to conform to the 
conventional momentum equation, let ),0,0( g−=g  be the gravity constant and now define 

2/)( 000 vv •+=Φ p  where 0p  is phase-averaged pressure. Because 
2/)( 000000 vvvvωv •∇+∇•−=×  (Hildebrand 1976), (19) can be written 

0
2

00000
0 vωugvvv

∇+×++−∇=∇•+
∂
∂ νp

t
S

s

                                          (20) 

This is Eq. (19) in MR. 
 A necessary addition to (20) is the continuity equation in the form 

00 =•∇ v                                                                 (21) 
which is obtained from (6), (9a) and (11a) to lowest order. 
 Henceforth, the subscripts, 0, will be removed. 

 
The boundary layer approximation 
 Applying the boundary layer approximation (also known as the hydrostatic 
approximation) to (20) yields 

α
α

α

β

α
β

α νω vuu
x
p

z
v

v
x
v

v
t
v S

x
S
yzz

s

2
0 ),( ∇+−+

∂
∂

−=
∂

∂
+

∂
∂

+
∂
∂ .                              (22a) 

Since the vertical component of the vortex force is small relative to g,  

   g
z

p
−=

∂
∂

                                                                        (22b) 

so that αα ηη xgpxpzgpp atmatm ∂+∂=∂∂−+= /)ˆ(/and)ˆ(  for insertion into (22a); atmp  is the 
atmospheric pressure and η̂  is the mean surface elevation. Finally, the continuity equation from 
(21) is 

0=
∂
∂

+
∂
∂

z
v

x
v z

β

β  .                                                              (23) 

Multiply both terms in (23) by αv  and add to (22a) to obtain the flux form of the momentum 
equation, 

α
α

α

β

αβα νω vuu
x
p

z
vv

x
vv

t
v S

x
S
yz

z

s

2),()()(
∇+−+

∂
∂

−=
∂

∂
+

∂
∂

+
∂
∂  .                              (24) 

The development in this section is an impressive display of mathematical acumen and 
manipulative skill. However, I do not think the development is correct. The reasons follow in 
sections 3, 5 and 7. 
 
3. Alternate Derivation 
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 The ordering scheme adopted by CL and MR is used here except that it is applied directly 
to the primitive equations of motion. Now, write again (6)  

0=•∇ q  ,                                                                   (25) 
For later convenience, add qq •∇  to (7) to obtain the flux form of the momentum equation and 
obtain 

( ) qgqqq 2∇+=∇+•∇+
∂
∂ νp

t
 .   

                              
            (26) 

Boundary conditions txqqz z ∂∂+∂∂== //areat ηηη ββ and at ββ xhqqhz z ∂∂−=−= /,  . 
 Adding pressure, the ordering scheme as in (9) is repeated 

vwvw
o

w ppp ηεεηηεενενεε 2222 ,,, +=+==+= vuq  .            (27a, b, c, d) 
Inserting (27) in (25) and (26) and collecting terms of order ε , 

   0=•∇ wu                                                                        (28) 

g
u

=∇+
∂

∂ w
w

p
t

                                                               (29) 

where ),0,0( g−=g . Boundary conditions twz ww ∂∂== /are,at ηη  and at 

ββ xhuwhz ww ∂∂−=−= /, . 
 The order 2ε  equations are 

0=•∇ v                                                                (30) 

( ) vuuv 2∇=∇+•∇+
∂
∂ νvww p

t
 .                                               (31) 

vww
z xuvz ηηη ββ ∂+∂∂== /,At and ββ xhvvhz z ∂∂−=−= /,at . The ordering scheme has the 

nice feature that (28), (29) – which vanished in section 2 - and boundary conditions immediately 
deliver the linearly wave solutions, (1) and (2). 
 Now reassemble the equations by combining the product of ε  and equation (28) and the 
product of 2ε  and equation (30) to give  

( ) 0ˆ~ =+•∇ uu                                                                     (32) 
where we define wuu ε=~  and vu 2ˆ ε≡ . Similarly add (29) and (31) to give 

( ) ( )( )[ ] ( ) uguuuuuu ˆ~ˆ~ˆ~ˆ~ˆ 2∇+=+∇+++•∇++
∂
∂ νpp
t

                                           (33) 

 A slight disadvantage of the ordering scheme in (27) is that, in the absence of waves, the 
conventional advective terms in (33) are not recovered. Therefore, consistent with (27), we have 
simply added higher order terms to (33) by replacing uuu ~ˆwith~ +  in the terms in square 
brackets. After further development below and phase-averaging, this will add an error of order 

4ε  relative to retained terms of order 2ε . By similar addition, the boundary conditions become 
txuuwz ∂∂+∂∂+== //)~ˆ(ˆ,at ηηη βββ  and βββ xhuuwhz ∂∂+−=−= /)~ˆ(ˆ,at . 

Note that the horizontal and vertical components of wwuu  or uu~~  after phase averaging 
become part of the radiation stress term in the following equation (35b). 
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4. The L-HS and Mellor theories 
 Although representation of the viscous term differs, (32) and (33) are the initial equations 

of L-HS and Mellor followed by further manipulation and phase-averaging. The L-HS theory, as 

recorded by Phillips, is obtained by vertical integration of (32) and (33) while incorporating 

boundary conditions after which the integrals are divided into wave portions (mean surface level 

to crest or trough levels) and the remainder portion and then phase-averaged. It is a mostly 

physical argument and, thus differs from the predominantly mathematical argument of CL and 

MR. The methodology is reviewed in Mellor (2015) and shown to be related to the vertically 

resolved equations of Mellor (2003). 

 The equations in Mellor (2003) were written in sigma coordinates, but, here, the 

equations have been transformed to Cartesian coordinates in order to compare with CL and MR; 

the transformation process is detailed in Mellor (2005).  

 In Mellor, properties were expanded about mean surfaces, z  which denotes phase-

averaged (resting) material surfaces. Then instantaneous material surfaces are denoted by 

szz ~+=  where the vertical deviation, [ ] ψcossinh/)(sinh~ kDhzkas += ; at η̂=z , the material 

surface elevation is ψη cos~~ as == . Next define )(~~ zzuuD =≡ αα , Now see that, to lowest order, 

the αu~  in (2a) can be written as szuutzu DD
~)/~(~),(~ ∂∂+= ααα  (The subscript, D, is suggested by 

the definition, hD +≡ η̂ , to denote the fact that hz −>>η̂ .) Similar expansions apply to the 

vertical wave velocity and pressure 

 The phase-averaged continuity equation is  
 

0=
∂

∂+
∂
∂

z
W

x
U

β

β                                                                (34) 

In Appendix A and as an example of the derivation process, the continuity equation is derived in 
a way somewhat different from Mellor but nevertheless consistent with that paper.  

In Mellor and in Appendix A, the term zsuu DS ∂∂= /)~~( αα  emerges which yields the same 

result for αSu  as in (5a). Furthermore, αSu  appears as an addition to the Eulerian current, αû , so 

that wWuuU S ˆandˆ ≡+≡ ααα  since by the same reckoning 0/~~ =∂∂= zwsw DS . 
 The phase-averaged momentum equation is 

( )αα
α

α
β

αβα

β

βαα ττη PTatmS z
pg

x
F

x
S

z
WU

x
UU

t
U

+
∂
∂++

∂
∂−=+

∂
∂

+
∂

∂
+

∂
∂

+
∂

∂ )ˆ(                    (35a) 

wherein the radiation stress term is  
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( )



 −
∂
∂+−= 2/~~~~~~ 22 sgsp
z

wuuS DDDD αβαββααβ δδ  .                                          (35b) 

The Kronecker delta otherwise0andif1 === βαδαβ . The system is closed after substituting 

(2a, b, c) (wherein zz → ) into (35b).  

Note that [ ] zSxDzDxxDDSFS ∂∂∂∂−+∂∂+∂∂≡ −− //)ˆ(/ˆ)/( 11
αββββαβα ηη  whereas in 

deep water, 0≅αSF . Albeit complicated, αSF  is necessary to obtain the simple integral equation 

of L-HS because β

η

αβ

η

αβαβ xdzSFdzxS
hh S ∂





∂=+∂∂  −−

/)/(
ˆˆ

and also to convert back to sigma 

coordinates where the term is also simple.  

 The boundary conditions are 

β
β

ηη
x

U
t

W
∂
∂+

∂
∂=

ˆˆ  at η̂=z       and      
β

β x
hUW

∂
∂−=   at hz −=                      (36a, b) 

Thus, equations (34) and (35a) are much like those without waves except for the addition of the 
radiation stress term and the fact that Stokes drift is included in the definition of αU . In Mellor 

(2015), it is established that, whereas, 22 )(kaOcS =αβ  is retained, terms of order (ka)4 are 
neglected. 
 In (35a), the terms, αα ττ PT and , represent vertical momentum transfer due to turbulence 
and pressure respectively; their relative roles are examined in Mellor (2005). 
 After αU  is determined and after wave properties are known, the Eulerian velocity may 
be obtained by simply subtracting Stokes drift obtained from (5a).  
 
5. Critique 
 Waves at the surface are indeed wavy and material surfaces in the interior are also wavy 
such that szz ~+= , a seemingly trivial statement were it not for the fact that it is intrinsic to the 
analysis of Mellor but does not play a role in the analysis of section 2.  
 
Fundamentals 
 Reverting to fundamentals, the Eulerian velocity is 

T

T

T
tTt )(ˆ)(ˆˆ xxu −+

≡                                                            (37a) 

whereas Stokes drift is 

P

P
S T

tTt )(~)(~ xxu −+
≡                                                         (37b) 
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where TT  is a time scale long relative to the characteristic turbulence scale and PT is one or more 
wave periods; both xx ~andˆ  are particle locations, but to describe the motion of a particle of fixed 
identity, we need the sum of xx ~andˆ . Therefore, set pT TTT ==  and xxx ~ˆ +=p  so that 

T
tTt pp

S

)()(
ˆ

xx
uu

−+
≡+  .                                                     (37c) 

Eq. (37c) is simple evidence that the Eulerian current and Stokes drift should be dynamically 
combined as in (34) and (35a). The equation will be useful in the boundary condition sub-section 
below. 
 
Continuity 
 In their Appendix A, MR derive their result that Su•∇ =0. I have tried to repeat the MR 
derivation in Appendix B, but do not obtain their non-divergent result. The determination in (4) 
is that 0=Sw  so that, in general, 0/ ≠∂∂ αα xuS  and 0/ˆ/ˆ ≠∂∂+∂∂ zwxu αα ; nevertheless, 

0/ˆ/)ˆ( =∂∂+∂+∂ zwxuu S βββ . Furthermore, a mean horizontal drift for a horizontally 
propagating wave is conceptually acceptable; a mean vertical drift is not acceptable. McWilliams 
et al. (2004) do recognize that 0=Sw , but allow for a vertical “pseudo-Stokes drift” here 

denoted by Sw  and defined by integrating ββ xuzw SS ∂−∂=∂∂ // . In view of (5b), I can assign no 

physical meaning to Sw .  
  In Phillips and Mellor, it is the combination of Eulerian current and Stokes drift that is 
non-divergent as in (34) and as derived in Appendix A.  
 
Momentum 
 Temporarily neglecting the expansion of αu~  about a mean state as in section 4, the 
horizontal component of the momentum flux in (33) can, after phase-averaging, be written 

βαβαββαα uuuuuuuu ~~ˆˆ)~ˆ)(~ˆ( +=++  wherein βαβα DD uuuu ~~~~ =  [+ terms of order (ka)4 ] is the first 

term in (35b). It is similar to a turbulent fluctuation term. It is hard to see how a theory of wave-
current interaction can avoid this term’s inclusion in the momentum equation as in (24).  
 In Appendix B, the vertical component of the vector equality in (17) is shown to contain 
an error such that the vertical component of the vortex force in (19) to (21) also contains an 
error. However, due to the boundary layer approximation, the vertical component is negligibly 
small in (24).  
 
Pressure 
 L-HS, Phillips and Mellor find that waves introduce a significant term in the pressure 
relation; such that 2~)ˆ( Datm wzgpp −−+= η and ααα η xwxgpxp Datm ∂∂−∂+∂=∂∂ /~/)ˆ(/ 2 . The 

addition of 2~
Dw  is not subtle; it is found in either of two ways: integrate the vertical component 

of the differential momentum equation from the free surface to an underlying surface (Mellor 
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2015) or apply the integral momentum equation to a control volume that envelopes the free 
surface and an underlying surface (Mellor 2011). Thus, 2~

Dw  joins βα DD uu ~~  and is the second term 

in (35b). As shown in section 8, the ratio of the term, ),( SxSyz uu −ω  in (24) to 

( ) ααββα δ xwuu DDD ∂−∂ /~~~ 2  in (35b) is of order 2)(ka  and can be neglected. 

 Pressure also contributes the last term in (35b) as derived in Mellor. 
 
Boundary conditions 
 If (24) is integrated from hz −=  to η̂=z , one obtains 

0)()ˆ()(
ˆ

)ˆ(
ˆ

=−−+
∂
∂−−

∂
∂−

∂
∂
− hww

x
hhv

x
vdzv

x h
ηηη

β
β

β
β

η
β

β

 .                          (38) 

 The boundary conditions cited in MR are 
        Swz M•∇== ,ˆat η  and hwhz ∇•−=−= v,at                          (39a, b) 

where dzuM
h

SS −=
η

αα

ˆ
. Eq. (39a) and (39b) are incorrect as indicated below. Inserting (39a, b) 

into (38) gives  

.0
ˆˆ

=
∂
∂−

∂
∂

+
∂
∂
−

β
β

β

βη
β

β

η
x

v
x

M
dzv

x

S

h
 

Of course, this result is incorrect. However, in a later applications paper by Uchiyama et al. 
(2010), (39a) is amended such that 

ηηη ˆ=∇•+
∂
∂+•∇= z

t
w S vM                                  (39a’) 

which, to this writer, seems hard to justify. However, then the integrated continuity equation 
becomes 

( ) 0
ˆˆ

=
∂
∂++

∂
∂
− t

dzuv
x h

S ηη
ββ

β

                                           (40) 

With a change in nomenclature and using (36), (40) may be properly obtained from (34) after 
vertical integration. Whereas (40) is correct (39a’) is, as shown next, incorrect. 
 Refer again to (37c). Thus, at the bottom, hz −= , 

ppppp hyxtTt Δ−Δ+Δ+=+ mjixx )()(  where i, j, m are unit vectors in the x, y, z directions. 
From (37c), Txuu pS /ˆ ααα Δ=+  and Thw p /ˆ Δ−=  (since we insist that 0=Sw ). Therefore, at 

hz −= , ααα xhuuw S ∂∂+−= /)ˆ(ˆ  after letting αα xhxh pp ∂∂→ΔΔ //  as in (36b); thus, (39b) 
cannot be correct. The same reasoning can be applied at the surface to show that 

ηηη ααα ˆat/ˆ)(/ˆˆ =∂∂+=∂∂− zxuutw S  so that (39a) or (39a’) is incorrect. 
 
Energy 
 Starting from (33) the wave energy equation can be derived as in Phillips where 

velocities are assumed to be vertically constant and Mellor (2003) for vertically resolved 

velocities. It is 

This article is protected by copyright. All rights reserved.



12 
 

[ ] disinhAg SSdz
x
U

SEuc
xt

E −=
∂
∂

++
∂
∂+

∂
∂

−
β

αη

αβαα
α

ˆ
)ˆ(                          (41) 

where αgc  is the group velocity, αAû  is an advective velocity and disin SS and  are wind source 

and wave dissipation terms. I see no way that the energy equation can be obtained from the 

vortex force formulation of section 2. Furthermore, in Mellor (2005) the mean energy ( 2/2
αU ) 

equation is derived from (33) and (35a) wherein the term dzxUS
h

)/(
ˆ

βα
η

αβ ∂∂−  also appears as a 

source/sink term and is transported to the same term in (41) as a sink/source term. This portion of 

a complete energy balance (Mellor 2005) is missing in the vortex force formulation rendering an 

energy balance unachievable. 

 

6. Langmuir circulation. 
 CL seek a stationary solution to (18) which produces vorticity in the stream direction and 
the cellular characteristic of Langmuir circulation (henceforth LC). Recall that the subscripts, 0 
have been deleted; then let  

( ) ωuuωωu ∇•−∇•=××∇ SSS  
 
 
and for the curl of the vortex force 

( ) ωuuωωu ∇•−∇•=××∇ SSS  
which, however, assumes the contentious 0=•∇ Su ! Nevertheless, inserting these expressions 
into (18) yields 

)()(2 SS uvωωuvω +∇•−∇•+=∇ν                                   (42) 
which is then written in a coordinate system (x,y,z) where x is aligned with )0,0,( SxS u=u  and, 
since a characteristic of LC’s is that the cells are long in one direction, all property variations in 
the x-direction are assumed to be nil. Thus, 

z
v

y
v

z
u

ω
y

u
ω x

z
x

y

S
x

z

S
x

yx ∂
∂

+
∂

∂
=

∂
∂

+
∂

∂
+∇ 002 ωωων                                  (43) 

 The system (43) is forced by S
xu , but, in order to obtain cell structure with periodicity in 

the y-direction, CL posit two intersecting waves with equal amplitude where one wave 
progressives in the direction ),( yx kk  and the other in the direction ),( yx kk −  where here yk  is a 
positive number. The potential function of such a wave field is 

[ ]
[ ] txkykace

tykxktykxkace

xyx
kz

yxyx
kz

σψψ

σσφφφ

−≡=

−−+−+=+= −+

,)cos()cos(2

)cos()cos(
                        (44) 

from which 
( ) ( ) ( )[ ]ykkykkykkacewvu yxyxyyxx

kz ~coscos,~sincos,~cossin2]~,~,~[ ψψψ −−=  .   (45) 
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The associated Stokes drift from (4a) using (45) and requiring considerable manipulation is 
   ( )[ ]ykkkcekau yx

kzS
x 2cos)/(1)(2 222 +=                                       (46) 

            A simpler formulation is obtained by assuming that perturbations of yv  and zv  are small 
relative to the y-average of xv , call it )(zU , so that zUy ∂∂= /ω  and (32) becomes  

( )( )yuzU S
x ∂∂∂∂−=∇ //4ψν  and the right side is known.  

 
7. Critique 
 The above LC theory in (42)and (43) depends on separate continuity equations, 

0=•∇ Su  and  0=•∇ v  and the vortex force term in the vorticity or momentum equation. 
Therefore, for this reasons and reasons stated in section 5, this LC theory is deemed to be 
incorrect.  
 Another direct approach is to refer back to (8) wherein one can obtain 

0)( 2 =∇+××∇ ωωq ν  
or 

02 =∇+∇•−∇• ωωqqω ν  
where qω ×∇≡ . For the x-component of vorticity and assuming all properties do not vary in the 
x-direction as in section 6, one finds that the first term on the left disappears so that 

02 =∇−∇• xx ωνωq  
In other words, the system only decays and cannot produce cells. If xqiq = , the solution is 
trivial. Cells can be produced by adding buoyancy gradients or curvature terms (Taylor 1923, 
Gortler 1957) or other body force terms. 
 Since the discovery of cellular phenomena in the ocean by Langmuir (1938), various 
attempts have been made to provide an underlying theory. For example, Garrett (1976) described 
a feedback mechanism whereby a disturbance or nascent jet in the x-component of velocity is 
amplified. Wave theory does dictate that waves encountering the jet will amplify and therefore 
might break and create additional Eulerian current. However, Craik (1977) states that “several 
aspects of his analysis are unacceptable” and proceeds to alternative analyses based on the vortex 
force as does Leibovich (1980).  
 I offer a suggestion: theory and experiment show that flow on concave walls can form 
cells in laminar flow and in turbulent flow (So and Mellor 1976). Waves have curvature, but the 
curvature alternates between convex stabilizing flow and concave destabilizing cellular flow. 
Does the concave portion dominate? Until more experimental or theoretical foundation is 
provided, the suggestion remains only one of many. 
  
8. Why do the two formulations differ? 
 The derivation of CL and MR in section 2 begins with the curl of (8) whereby the 
gradient of pressure and all of (29) drop out of contention. Upon uncurling,  Φ∇  where Φ  is 
any scalar, appears but the portion of )()2/( wwww uuuu •∇=•∇=Φ∇  , as in the wave portion 
of )2/( qq •∇ in (8), is not reinstated. Adding (29) and  )( wwuu•∇  to (19) comes close to (33) 
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in section 3. However, the vortex force term does not appear in (33). The vortex term is 
somehow buried in the complexity of section 2 and its dependent appendix B. Contrast this with 
the relative simplicity of section 3. 
 It is concluded that the vortex term does not exist. However, if one assumes that it does 
exist, it is possible to gage the contribution of 0ωuS ×  or ),( SxSyz uu −ω . Suppose the term were 
simply added to (35a). The vortex force term is of the order SuLu )/ˆ(  where L is the length scale 
of mean spatial variations. Next û  is of order Su  = order 2)(kac  [in fact, in some cases there is 
evidence that they very nearly cancel (Ursell 1950, Monismith et al. 2007, Smith 2006b)] so that 
the vortex force term is of order Lkac /)( 42 . However, quadratic terms in (35a, b) are order 

Lkac /)( 22 . Thus, the ratio of the vortex force to the wave radiation stress term is of order 2)(ka  
( 210−≈ ) so that the vortex force term can be discarded. 
 
9. Summary discussion 
 This paper contrasts the vertically resolved equations of CL and MR with that of Mellor 

which, upon vertical integration, agree with the equations of L-HS, Phillips and Smith (2006a).  

The continuity equation derived by MR involving only the Eulerian current disagrees with the 

results of L-HS, Phillips, Mellor and the simple derivation in Appendix A where the combined 

current and Stokes drift is required for volume conservation (or mass conservation after insertion 

of constant density). 

 The surface boundary conditions of MR and amended in Uchiyama et al. (2010) includes 

a strange term in (39a’) but otherwise involves only the current as does the bottom boundary 

condition. Instead, direct recourse to Eq. (37c) requires the combination of current and Stokes 

drift. In this paper and those of L-HS, Phillips and Mellor, it is recognized that the vertical 

component of Stokes drift is nil and avoids introduction of a vertical “pseudo Stokes drift”. 

 The MR version of the momentum equation is a prognostic equation for the current 

alone. It also substitutes the vortex force term in place of the wave radiation stress term and 

therefore neglects quadratic wave momentum; the latter is elementary according to the reasoning 

of L-HS, Phillips and Mellor.  

Although the reasoning is slightly more complex, pressure is maltreated by MR 

according to this paper. 

 It is shown that the vortex force formulation is incompatible with the established wave 
energy equation. 
            The papers by L-HS, Phillips and Mellor consider the flow field as a simple combination 

of currents and waves. The difference in the CL and MR results is due to the fact that terms drop 
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out after taking the curl of the basic primitive equations; the terms are not restored when the 

"uncurl" process is undertaken as discussed in section 8. Alternately, the scaling of CL and MR 

in (9) or (27) also reproduces the initial equations of L-HS, Phillips and Mellor when applied 

directly to the primitive equations of motion in which case the vortex force term does not appear. 

Even if were assumed that the vortex force term did exist, the quadratic terms are considerably 

larger than the vortex force term which is of an order that is generally neglected in most wave 

theories. 
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Appendix A: The continuity equation 
 The continuity equation can be derived by considering the flow on the faces of an 
elemental control volume zyx ΔΔΔ  where ( )zszz ∂∂+Δ=Δ /~1 such that 
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where )()( xfxxffx −Δ+=δ  and similar expressions apply to yδ  and zδ .Working out the 

phase-averaging and noting that 0~)/~(~ =∂∂+ szww DD , one obtains 
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Now divide by zyx ΔΔΔ  and let xxx ∂∂→Δ /)(/)(δ , etc. and obtain 

0
ˆ)~(

ˆ =
∂
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∂
∂

z
w

z
su

u
x
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β

 

 Using (2), it can be shown that zsuu DS ∂∂= /)~~( ββ  so that (34) is obtained after recalling the 

definitions, βββ SuuU +≡ ˆ  and wW ˆ≡ . 
 Derivation of the momentum equation is similar but more complicated for which 
reference is made to Mellor (2015). 
 
Appendix B: Review and critique of a non-divergence Stokes drift. 
 
               In their Appendix A, MR purport to show that 0=•∇ Su , or  

0=
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j
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                                                          (B1) 

where we used indices, i, j, m (reserving k for wave number). Recalling that dtuU w
ii = , MR 

write 
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The left side is nil [which, in MR, appears to have an indexing error but is corrected here as 
suggested by (B1) and as necessary to match the right side of (B2)]. Since 

)sin,cos,cos( ψψψ kkkaceu yx
kzw

i =  

one obtains 
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)cos,sin,sin(1 ψψψ kkkeakU yx
kz

i −−= −

. 

Working out the algebra, it is then found that  

)0,,(22
yx

kz

j

mw
j kkceka

x
Uu −−=
∂
∂

 and )0,,(22
yx

kz

j

w
m

j kkceka
x
uU ++=

∂
∂   .        (B3) 

Inserting into (B2), one obtains 0 = 0, a sensible result but a result that does not support the MR  
assertion of (B1).  
 However, as noted in section 4, a later paper by McWilliams et al. (2004) agrees that 

0=Sw  but introduces a vertical “pseudo-Stokes drift” which is here labeled Sw  and obtained 

from ββ xzduw
z

h

SS ∂




 ′−∂= − / .  

Derivation of Eq. (17) 
 A key step in section 3 is equation (17). First, to determine 1ω  appeal to a standard 
identity (Hildebrand 1976) and write (15) as 

)()()( 000001 UωωUωUUωωUω •∇−•∇+∇•−∇•=××∇= . 

Now the divergences of U  and 0ω  are nil. Furthermore, the ratio of the second term on the right 

relative to the first term is of order 1)( −kL  where L is the spatial scale of 0ω  and so the second 
term can be neglected. Thus, 

Uωω ∇•= 01   .                                                     (B4) 
Working out the vector algebra, it is found that 
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where mj,i,  are unit vectors in the x, y, z directions. Since 
( )ψψψ sincoscos kkkace yx

kzw mjiu ++=   .                                (B6) 

one obtains 
[ ])()( 00

22
1 zxzy

kzw kkceka ωω jiωu −=×                                         (B7) 

where many terms are nil since 0cossin =ψψ . It is noteworthy that the vertical component is 
nil. On the other hand 

    ( ) S
yx

kz
S wkkceka mjiu ++= 22

. 

However, as defined above, Sw  is order 1)( −kL  relative to the other stokes drift components and 
can be neglected. Since zyx 0000 ωωω mjiω ++=  one obtains 

[ ])()()( 0000
22

0 xyyxzxzy
kz

S kkkkceka ωωωω −+−=× mjiωu  . .            (B8) 

Comparing (B7) and (B8), we find that 
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)( 00
22

01 xyyx
kz

S
w kkceka ωω −−×=× mωuωu                                                (B9) 

Agreement is obtained with (17 ) only if the vertical component of (B8) or (B9) is ignored. 
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