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ABSTRACT

The effects of a strong current with horizontal shear on shallow water waves is studied. For jet-like currents,
the existence of trapped waves and the reciprocity of scattering coefficients are pointed out. Detailed consequences
of current dimensions and intensity on waves are analyzed for a top-hat current.

1. Introduction

The dynamical effects of a strong current on surface
waves are of interest in the refraction of swell by major
oceanic currents such as the Gulf Stream or the Ant-
arctic Circumpolar Current (Kenyon, 1971). In these
cases the wavelength is usually very short compared
to the sea depth and to the length scale of currents;
the WKB or geometrical optics approximation for
slowly varying media is applicable and has produced
many useful results. Comprehensive reviews of theories
of this type and their applications have been made by
Peregrine (1976) and more recently by Peregrine and
Jonsson (1983). In the case of an abruptly varying
current and arbitrary water depth, theoretical solutions
are much more difficult. Peregrine and Smith (1975)
have considered the three-dimensional problem of
time-independent waves in a jet-like current and gave
explicit results for a top-hat current bounded at the
sides and below by vortex sheets. Evans (1975) has
studied the scattering of deep water waves across two
regions of constant but different current velocities sep-
arated by a vortex sheet. In principle, existing numerical
methods via integral equations or finite elements, for
analyzing the scattering of gravity waves by abrupt
changes of depth, can be adapted for the scattering by
a jet-like stream or a large eddy whose horizontal di-
mension is comparable to the wavelength. However,
we are unaware of such explicit computations in the
published literature.

As in the similar case of scattering by topography,
much physical insight can be gained from the math-
ematically simpler problem of long waves in shallow
water. While the analysis is straightforward and is well-
known in related theories for varying depth, the physics
are quite different and do not seem to have been suf-
ficiently explored. In reality, strong currents can also
occur in shallow coastal regions where river discharges
or tidal flows are strong. For example, the mean dis-
charge velocity of the Connecticut River at ebb tide
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can be 0.5 m s™! at the mouth where the depth is on
the order of 2 m. The resulting jet is roughly 100 m
wide and 20 km long (Garvine, 1974). At the mouth
of Ishikari River in Hokaido, Japan, the depth is
roughly 5 m and width is 500 m; the river jet has a
mean discharge velocity as high as 1 m s™!, extending
several kilometers offshore (Kashiwamura and Yosh-
ida, 1978). In these cases, the river water is fresh and
stratification is also an important feature.

In this note we concentrate on the detailed effects
of jet-like currents on the propagation of shallow water
waves in a homogeneous sea. The current will be as-
sumed to be steady and parallel and its velocity, to
vary only transversely. The governing equation for the
wave motion is ultimately reduced to a second-order
ordinary differential equation with variable coefhicients.
For a top-hat current and constant depth, quantitative
effects of current width and strength on trapping and
scattering coefficients will be examined. For general
current profiles and colinear depth variation, we em-
ploy known arguments in quantum mechanics and
deduce some reciprocity relations and the necessary

- condition for wave trapping.

2. Linearized governing equations

We assume that the horizontal length scales of the
waves, the current and the depth variations are much
greater than the water depth. The classical equations
of Airy then apply

a
6_? +Q-VQ=—gVZ
, 2.1
0z 2.1
3—t—+V-[Q(Z+h)] =0
where Q refers to the horizontal components of the
depth-averaged velocity, Z the free surface displace-

ment, x = (x, y) the horizontal coordinates and ¢, time.
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Consider the special case where the depth variation is
one-dimensional [# = A(x)] and the current is steady
and jet-like [U = 0, V' = V(x)]. Then, from the time-
independent version of (2.1), the corresponding Z must
be constant everywhere and may be taken to be zero.

Let u(x, #) and {(x, £) be the velocity and free-surface
height respectively of a superimposed wave field, i.e.,

Q=[0Vx]+u z=¢ (2.2)

Assuming small amplitudes, the linearized equations
governing the disturbance must be

du du 14

—+ V— —e, = —gV 2.

3 V8y+u6x e, 2ve, (2.3a)
a¢ a¢  oduh av -
—+V—=—+—+h—=0. 2.
ot Vay ox ady (2.36)

We further assume simple harmonic dependence on
yand ¢, ie.,

(4, v, §) = [u(x), v(x), §(x)] exp(—iBy — iwt). (2.4)
It then follows from the momentum equation that
gt

(w+ BYV)
o = _[ Bet gV ]
w+ BV (w+ BV)?

“Substituting these into the continuity equation (2.3b),
we get

” é_’__ 2/3V’ ,
g‘-'-I:h w+ﬂV]§
(w+ﬂV)2_
+[ gh

Since (2.6) may be reduced to the one-dimensional
Schrodinger equation, knowledge in quantum me-
chanics can, therefore, be transferred to the problem
at hand.

We now treat a special case of a shear current with
a top-hat profile. Since the depth effect is relatively
well-known, we shall take # = constant. Let the current
distribution be

(2.5)

62]§‘= 0. (2.6)

' V=const>0, |x|<a
Vx) = { 2.7
0, x| > a,
then (2.6) becomes
w? 1
s“"+(ﬁ—l32)s‘=0, x| > a
\ ‘ 2.8)
&+ I:———(w +BYY _ ﬁ’]s‘ =0, Ixl<a
gh

We always assume the current to be in the positive y-
direction, ¥V > 0. Depending now on the magnitude
of w and B, a variety of physical situations arise.
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3. Trapped modes in a top-hat current
If
(w + BV)? ,_ @
—_— >— .
oh > B o’ 3.1

the free surface is exponential outside but wavelike
within the current:

¢ = Aen™*o, x <-—a
= Be'"™™ + Ce ™, |x]<a (3.2)
= De i), x>a
with
2 2
2_g2_ Y 2 _(wtBVY
Y1 B gh s Qg gh g

Eq. (3.2) clearly represents a wave trapped within the
current. The subscripts 1 and 2 designate regions out-
side and within the current, respectively. By requiring
continuity of { and 9{/dx at x = —a, we .get

A = Be ™% + Ce™, 3.3)
14 = iax(Be " — Ce'™*?), (34)
which may be combined, giving
0 = (v, — iay)Be ™% + (v, + iay)Ce™.  (3.5)
Similar requirements at x = a lead to
D = Be®* + Ce ', (3.6)
—y1D = iay[Be™® — Ce~ioa1), G7)

0=+ iaz)Bei"’\" +.(y1 — ip)Ce ™. (3.8)

From (3.5) and (3.8), an eigenvalue condition for w
is obtained
2y,

tan2aza = —5 5 3.9
L0 Y

Let

7t _ tans. (3.10)

o
From (3.9) we get

2 tanéd .
tan2ana = l—_m = tan26.
Hence,
& = nn/2 + aza. 3.11)

Taking the tangent of both sides of (3.11) we get

tanaza } Y1 {n = even

3.12
n = odd. ( )

—cotaya a

To examine the eigenvalues, it is convenient to adopt
the following dimensionless parameters
w k V2

K=—/—=-, 2=—, (3.13)

gVgh B gh
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where k = w/\[g_h, then (3.12) can be expressed as
tan{[(K + F)* — 1]'*Ba}
—cot{[(K + F)* — I]”"Ba}}
(1 _ KZ)I/Z
[(K+ F)y* - 1]'?"

In view of (3.1), K must fall within the range

(3.14)

1-F<K<1, (3.15)
as shown in Fig. 1. Introducing
=K+ Fy—1]'"
ie.,
K=(@#*+ 12 —F, (3.16)
then (3.15) becomes
0 < £ < (F?+2F)\7, 3.17)

while (3.14) becomes

tanfBa | _ g2 12 _ 22
_cotgﬁa} 1= [+ D2~ FR}'2. (3.18)
The roots may be examined graphically by plotting
both sides of the preceding equation as illustrated in
Fig. 2 for F = 0.5 and Ba = 2. Since as ¢ varies from
0 to (F? + 2F)"2, the right-hand side varies from + oo
to 0 monotonically, the first even mode, to be labeled
by n = 0, exists for any F > 0. As Ba(F? + 2F)'/?
passes the threshold mnx (m = 1, 2, 3, - - +) there are
m + 1 even modes. These modes will be labeled in
ascending order as &, &, . . ., £&2,; the corresponding
eigenvalues are of ko, ks, . . . , ka,n. Similarly, as Sa(F?
+ 2F)"2 passes the threshold (m — 1/2)n, there are m
odd modes £, &3¢ - + £5,,—; With the corresponding ei-
genvalues k,, k3« - « k;,,_;. The number of modes in-
creases as fa or F increases. The eigenvalues are listed
in Table 1 for Ba = = and 2.

To have some idea of the physical values, we take
h=5m g=982ms?2 then Vgh = 7.0 m s".
Consider the lowest mode n = 0 trapped in a current
of half-width ¢ = 100 m, then the period T = 15.6 s

2
(K+F) K2

|
t
I
|
|
|
|
|

ZI-F 0 -F
le e ol
T

. 1 .
scattering r no waves trapping scattering

K

F1G. 1. Regimes of wave trapping and scattering.
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F1G. 2. Graphic solution of eigenvalues £, for F = 0.5 and Sa
= 2x. The right-hand side of (3.18) is represented by curve T', while
tanfBa and —cot£Ba are represented respectively by the solid and
dashed lines.

with kh = 0.288 if F = 0.1 and T = 19.8 s with kA
= (.226 if F = 0.3, both for Ba = 2=.

To examine the free surface of these eigenmodes,
we first get from (3.5), after using (3.13) and (3.14)

E = e—imr

C

It then follows that for n even, B = Cand 4 = D, so
that

§ = 2B cosayx = 2B cos{[(K + F)* — 1]'?8x}
= 2B cos, Bx. (3.19)

Thus, the free surface is even in x. Since 0 < £,8a
< w/2, the eigenmode n = 0 has no node within the
width of the current. If = < £,8a < 3w/2 the eigenmode
n = 2 has two nodes symmetrically located within |x]
< a, etc. Similarly forn = odd, B= —Cand 4 = —D;
the free surface is odd in x

TABLE 1. Eigenvalues £, of the trapped modes.

F

fa=nx Ba =2
n 0.5 0.3 0.1 0.5 0.3 0.1
0 02113 02044 0.1820 0.3668 0.3451  0.2817
1 04234 0.4080 0.3551 0.7355 0.6768
2 0.6358 0.6083 1.0738
3 0.8464  0.7927
4 1.0470
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§ = 2iB sinaox = 2iB sin{[(K + F)* — 1]'*8x}
= 2iB sin§, Bx. (3.20)

If n/2 < £,8a < w, n = 1, there is one node at the
center x = 0. If 3n/2 < £,8a < 2w, n = 3, there are
3 nodes within |x| < g, etc. Thus, for the nth mode
there are n nodes. These results can also be established
qualitatively for a continuous J{x) by invoking the
oscillation theorem in ordinary differential equations.

4. Scattering of waves by a top-hat current

As‘is evident from (2.8), wave solutions are possible
outside the current if K? > 1 as marked in Fig. 1. If
B8 > 0, the incidence angle is 0 < 8 < 90° where

8 = sin~'(8/k) = sin"'(1/K), 4.1

i.e., waves are propagating against the current. Then
(K + F)> — 1 > 0 as well, so that the free surface
within the current is also wavelike. However, if
B8 < 0, (K < —1), the incidence angle is —90° < §
< 0, i.e., the waves propagate with the current. The
free surface within |x| < a is then wavelike if K < —1
— F and monotonic if —1 — F < K < —1 (see Fig. 1).
In both cases, the free surface is wavelike outside |x|
> a.

a. Wavelike response everywhere (K > 1 and K < —1
- F)
In these regimes of K, we have, from definitions,

2

a =g—“’—h - 82> 0,
(w + BV)? ;
2 _ _ Q2

gh

The solution with an incident wave from the left can
be expressed as

§—= eza|(x+a) + Re—za;(x+a)’ x < —a
= Ae' + Be e x| <a ¢, (4.3)
= Te™-9, x >a

where R and T are the reflection and transmission
coeflicients respectively. Matching at x = 4 then yields
four equations for the unknowns 7, R, A and B. We
give only the results

T = 4b
(1 + b)*e™ — (1 — by'e*=
(1 — B)e “Fea — griwa) [ 4.4)
= (1 + b)Ze—Ziaza _ ( 1 - b)z eZiaza
where |
b= aufer. 4.5)
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The squared magnitudes are

(176) = (s oy sv)
[R[2) ~ \(1 — ) sin®2a,a

X [4B% + (1 — )2 sin®2asa]"". (4.6)

It is easy to check that |T|> + |R]? = 1, in accordance
with a general result (5.11) to be deduced later. In
terms of the normalized variables we have

K*—1
2 =—-————
K+FP—-1° (4j7a)
_ 2 112 ka
aa = [(K + F) = 1] . (4.7b)

For a given incidence angle (i.e., K) and F, the coef-
ficients may be calculated as functions of ka. Sample
results for # > O are shown in Figs. 3a—c for F = 0.1,
0.3 and 0.5. As is intuitively expected, stronger current

"0.75 T T T a

0.501 T
IRI

0.25

0.50
IRI

0.25

0.50
IRI

0.25

100

ka

FIG. 3. Reflection coefficient |R| as a function of ka for various
angles of incidence # > 0°. The Froude number F is (a) 0.1, (b) 0.3
and (c) 0.5.
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(larger F) causes greater reflection and less transmis-
sion.

Note that for near glancing incidence 6 T 90°,
K!l1,then 210, |T| 10 and |R? T 1; the reflection
is complete. For nearly normal incidence 6 | 0, K
> 1then b1 1,|7T| 71 and [R| | 0; the transmission
is complete.

In Figs. 4a—c, sample results for 6 <0 and K < —1
— F are presented for F = 0.1, 0.3 and 0.5. To satisfy
(4.2) we must have

0] < 6% = sin"(—l—) . (4.8)

1+ F
The relevant curves are shown in solid lines. Note that
for10, K< —1—F, b 11, hence, |T| T 1 and
[Rl 1 0. A little algebra shows that as [6] T 6*, K + 1
+ F 10 and |T|? attains the finite limit

F*+2F !
7P =1 - s Gar |

As F or ka increases, the limiting |7T'|> decreases. The
corresponding |R|* may be inferred from energy con-
servation.

The dependence of |T|* and |R}> on the current
width ka is oscillatory through sin’a,a. For 2a,a
=nm,ie,n=0,1,2, ..., |R?>=0and |T}* =1 one
gets maximum transmission. For 2a,a = (n + 1/2)m,
minimum transmission and maximum reflection are
obtained, i.e.,

min|T|? = 46?%/(1 + b2 }

max|R?> = (1 — /(1 + ¥}
For 8 > 0, K > 1, b increases with K from O to 1;
hence, the minimum transmission increases from 0 to
1.For <0°and 0° < |6 < 0*, K< -1 —F, b
decreases with increasing |K| from oo to 1; the min-

imum transmission coefficient also increases from
0to 1.

4.9)

(4.10)

b. Monotonic response in an opposing current

We now turn to the next case —90° < 0 < —0*,
ie, -1 —-F< K< -1,

(w+ﬂV)2<ﬁz<gi

. 4.11
_ Let

(w + BVY
=—-p32 2=02 -+ ——2—  (4.12
al gh B 2 B gh ( )

The free surface is

g— — eial(x+a) + Re—im(x-i—a)’ x < —a

= Ae"* + Be ¥, Ixl<a [, 4.13)
= Teiat—a) x>a

FIG. 4. Reflection coefficient |R| as-a function of ka for various
angle of incidence # < 0°. The Froude number F is (a) 0.1, (b) 0.3
and (c) 0.5.
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where T and R can be obtained from (4.4) by replacing
iay by 7v,; thus,

(170) = (1 + 57 sapezya)
R}~ \(1 + b%? sinh®2y,a

X [40% + (1 + b»? sinh?2v,a] ™, (4.14)
where
p=2, (4.15)
72
In addition, we have
A T Fy2 ( lOll)
==+ ). 4.16
(B) 2¢ Y2 @19
In normalized variables, we have
k
ma="g [l — K+ FFI",
. K
b2 - (K2 — 1)”2 )
[1 — (K+ F)y}'”2 4.17)

Sample variations of |R| and |R|? are given as dashed
curves in Figs. 4a—c for F = 0.1, 0.3 and 0.5. In all
cases, reflection is large except for small ka. As
§— —90°, K1—1,5210,|7T|10and |[R| T 1. Near
K — —1 — F, (4.9) is recovered.

The free surface displacement above the current is
monotonic in x according to

o = 4b*[cosh?y,(x — a) + b? sinh?y,(x — a)]
46 + (1 + b?)? sinh*2v,a

(4.18)

At the limit K = =1 — F it can be shown that the
free surface over the current is linear in x giving

ia.x
= 1
g- (1 - ia.a) (4 9)
so that
max|{| = [{(—a)l = ’—la'a + 1|
la (4.20)
. 1 '
minlf = @) = |
o a

Finally, there are no waves for all x when —1 < K
<1—-F

5. Waves in a continuous shear current along a ridge
or trough

Let us first rewrite (2.6) as follows

(ag’y + (1 — Ba*§ =0, (5.1
where
gh
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We now assume that ' — 0 and & — A, as |x| — o
and follow the argument of Roseau (1976) for a one-
dimensional Schrodinger equation [see also Mei (1983)
for shallow water waves]. First, consider a general scat-
tering problem with { being the solution which has the
following asymptotic limits

A_e’* + B_e ™,
o~
e

iax + B+e—l'cr.x
Define Jost functions f~ and f., which are solutions
due to unit transmitted waves from x ~ —oo0 and +oo
respectively, as

X~ —
}. (5.3) -

X ™~ 0

?1- el + ;{{— e X~ —0o0
S a)~ | 77 - (5.4
eza.x’ X ~ 0,
(e, X~ —0o0
fis @)~ ¢y R (5.5)
' T ""‘x+7e"’"‘ X ~ 0.
+ +

Here, R_(R,) and T_(T) are the reflection and trans-
mission coefficients for incidence from the left (right).
Since f- and f, are linearly independent, { can be ex-
pressed as a linear combination of them. As a con-
sequence, we can write |

st

where the braces denote a column vector, brackets, a

matrix and
T- R
tm=[ ﬂ

(5.6)

5.7
R T, (5.7
is the scattering matrix.

By linear 1ndependence the Wronsklan of f and
f+ does not vanish and is equal to a constant. Using
(5.2) and (5.3) it can be shown that

T— = T+’

which is a reciprocity relation.
Applying Green’s formula to { and its conjugate {*
and using (5.3), it can be shown that

|A+|2-+ tB—lz = IA—lz + |B+|2,

(5.8)

5.9

which states energy conservation. From (5.6) it follows
that [$] is unitary, i.e.,

[S"[s*] = [1], (5.10)
where T denotes the transpose and
w=[5 7]
Using (5.7) we further obtain
IT.+ R =1, 5.11) -
T_R*+R.T*=0. (5.12)
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Combination of (5.12) and (5.8) yields
IR_| = |R,]. (5.13)

Now we examine the trapped waves which are similar
to the bound states in quantum mechanics (Sitenko,
1971; see also Mei, 1983). It can be shown that
fA(x; &) and f(x; —a) are also independent; hence,
fi(x; @) can be equated to a linear combination of
them. Differentiating this equation with respect to x
to get a second equation, we then find from the two
equations,

T, = =2ia/W[f(x a), fi(x; a)]

R, = WIf(x; —a), fuilx; )l/Wf(x; @), fi(x; @)},
(5.14)

where W(f_, f,) = £~ f'. — f.f = Wronskian. In the
complex a-plane, the poles of T, coincide with the
zeros of W[ f(x; a), f.(x; @)]; hence, they are also the
poles of R, and of [S]. Let the poles be denoted by
a,,n=1,23,..., then

gl X~ —

fi~ R. (5.15)
T,

Applying Green’s formula to £, and f* we get

ma,? [~ 1fiPdx

el x ~ oo,

= 2(Rea,)(Ima,,) fjo | filPax=0. (5.16)

Assuming that Ime,, > 0, we get from (5.16) that Rea,,
= (0, so that the poles lie on the positive imaginary
axis. The corresponding f. are clearly trapped modes,
being exponentially vanishing as |x| — oo.

Since for a trapped mode «, is pure imaginary, we
can define the corresponding eigenmode ¢, i.e., fi(x;
a,) to be a real function. Multiplying (5.1) by ¢ and
integrating, we get

f_w a¢’dx + f_w (1 = B2a)%dx =0. (5.17)
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This equality is possible if and only if 1 — 8%z = 1
— B2gh/(w + BV) changes sign at certain finite x. As
|x| = o0, h — h,, and V — 0; we must have

1-B%=1-B%h,/*<0  (518)
for exponential decay. Therefore,
B’gh
_-— .19
1 @+ V) >0 (5.19)
for some range of x. In other words, the inequality
(w + BV)? 2 w?
—_— >— 5.20
h B 2 (5.20)

is necessary for the existence of trapped waves.
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