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ABSTRACT

The dispersion of heavy suspensions in a wave boundary layer over a nonerodible bed is examined theoretically.
Focusing attention on the horizontal variation of the ambient wave pattern, an effective convection~diffusion
equation is derived by extending the theory of homogenization (multiple scales). For the model based on
constant eddy diffusivities, the effective velocity of horizontal convection and shear-enhanced dispersion tensor
are derived explicitly for very general wave patterns over a horizontal seabed. The convection velocity is found
to be related to Eulerian streaming inside the boundary layer, weighted by the mean concentration profile.
Particular examples are examined for the release of a finite cloud of suspension beneath gravity waves at various

locations relative to the wave pattern.

1. Introduction

Taylor’s (1953 ) pioneering work on dispersion in a
steady flow through a tube has been extended to os-
cillatory flows by many authors. For laminar flows, the
case of an oscillatory axial flow in a uniform tube was
first treated by Aris (1960) by the moment method.
Theories for the same geometry have been advanced
by Chatwin (1975) and Watson (1983 ) by other meth-
ods. Pedley and Kamm ( 1988 ) and Sharp et al. (1991)
have analyzed the additional effects of transverse cir-
culation, which exist in winding blood vessels. For
three-dimensional flows, Dill and Brenner (1982) have
developed a formal theory for dispersion in an oscil-
latory flow through a periodic porous medium.

Dispersion in oscillatory turbulent flows is a vital
problem related to coastal pollution. Bowden (1965)
gave the first theory for a horizontally uniform tidal
current based on constant and depth-dependent vertical
eddy viscosities. To simulate homogeneous estuary
flows, Holly et al. (1970) analyzed the period depen-
dency of the dispersion coefficient in an oscillatory two-
dimensional channel flow with a linear velocity profile.
The similar problem of dispersion in an alternating
current in a channel was also studied by Fukuoka
(1974). The effects of width and depth of an estuary
have been studied by Smith (1982 ) with a special focus
on the near field of the contaminant source. In these
works the basic flow is spatially uniform and the sus-
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pension is passive and neutrally buoyant. For spatially
nonuniform oscillating flows, Zimmerman (1986) and
Geyer and Signal (1992) have reviewed the dispersion
in tides.

Dispersion of heavy particles is of interest not only
to the physical process of sand or silt transport, but
also to biological processes in the sea. The convective
and diffusive transport by waves and current in coastal
waters is important to the birth and growth of plank-
tonic larvae (Denny 1988). Sayre (1968, 1969) and
Sumer (1974) investigated steady uniform open chan-
nel flows relevant to river morphology. For oscillatory
flows, Yasuda (1989) presented a theory on the tran-
sient process of dispersion in an oscillating, horizontally
uniform current with a Stokes boundary layer. He also
studied the initial phase of dispersion of particles re-
leased from the water surface. The important effect of
the fall velocity of the particles on dispersion in oscil-
latory flows and on both dispersion and convection in
steady flows was recognized by these authors. There
have also been numerical models that solve the regular
diffusion equation with finite fall velocity for transport
of sediments in turbulent channel flows (e.g., Kerssens
etal. 1977). In all of these studies, the flow is assumed
to be unaffected by the particles. Noh and Fernando
(1991), however, have accounted for the effect of sed-
iments on the turbulent energy in their study of the
vertical diffusion of sediments in a horizontally uniform
flow and the formation of a lutocline.

In coastal regions, transport of suspended particles
by waves is most effective near the bottom where there
is an oscillatory boundary layer. The dynamics of the
fluid flow itself in the boundary layer has been studied
extensively for laminar or pseudolaminar flows. In ad-
dition to the oscillatory velocity field, there is the steady
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Eulerian streaming induced by Reynolds stresses. The
corresponding Lagrangian drift can be used to infer
the motion of marked fluid particles (or dye). Such
information may be found in Longuet-Higgins (1953),
Hunt and Johns (1963), and Mei (1983). Models for
turbulent wave boundary layers based on depth-de-
pendent eddy viscosities have also been given by Ka-
jiura (1968) and Grant and Madsen (1979) with the
primary view of calculating the friction factor and its
effects on wave damping, and by Longuet-Higgins
(1958), Johns (1970), and Trowbridge and Madsen
(1984 ) for mass transport.

In this paper we shall examine the long-time dis-
persion of suspended particles in a wave boundary layer
with significant variations in the horizontal plane. The
basic flow is therefore three-dimensional. Attention will
be focused on small amplitude waves without ambient
current so that the mean Eulerian streaming induced
by waves is weaker than wave oscillations. The bed is
assumed to be nonerodible or effectively nonerodible,
and the particle cloud is released from an external
source. Thus, the theory is intended for the spreading
of fine contaminants or sewage effluent that is dumped
near the seabed, or to tiny clay particles, initially
brought to suspension during a transient period of rel-
atively strong storm waves. With sufficiently small fall
velocity, these particles can be expected to remain in
suspension throughout most of the wave cycle. There
can of course be larger or heavier particles, as well as
highly erodible beds where entrainment and resuspen-
sion are important during a significant part of a wave
cycle; but these bed processes involve additional un-
certainties. Although their inclusion in the present the-
ory is in principle possible by adding empirical hy-
potheses, they are not considered here.

We shall make use of the fact that the timescale of
horizontal diffusion is expected to be much longer than
the wave period, and employ the method of multiple
scales to find the effective convective-diffusion equa-
tion and the dispersivity (effective diffusivity) tensor.
The latter is the correlation between fluctuations of
velocity and sediment concentration, and can be cal-
culated once a turbulence model is chosen. Our math-
ematical procedure is a modification of the homoge-
nization theory ( Bensoussan et al. 1978) that has been
applied to the dispersion of a solute in a spatially pe-
riodic porous medium (Rubinstein and Mauri 1986;
Mauri 1991; Mei 1991, 1992). In this paper we shall
make the simplifying assumption of constant eddy dif-
fusivities to obtain analytical results that do not differ
substantially from a numerical theory based on an em-
pirical model of depth-dependent eddy diffusivities.
General and explicit formulas will be obtained for the
effective diffusion equation, the effective convection
velocity, and dispersivity tensor for waves of any spatial
pattern. Detailed examples will be worked out for
gravity waves. After calculating the dispersivity tensor,
which is in general space dependent, examples of dif-
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fusion from a local source will be studied. The depen-
dence of the convective diffusion on the wave pattern
and the source location will be examined.

2. Basic assumptions and effective convection—
diffusion equations

While in general a heavy suspended particle need
not follow the moving fluid in its surroundings, for
sufficiently small particles the velocity difference can
be negligible. By comparing the particle inertia with
the fluid drag force, Bagnold (1951) has estimated that
the difference in velocity between a spherical particle
and its surrounding fluid will be reduced from its initial
value Au by half within the following relaxation time

7=t (2.1)

where p denotes water density, p, the sphere density,
a the sphere radius, and C) the drag coefficient. The
velocities are the ensemble averages over turbulent
fluctuations, and the fluid drag on the particle is as-
sumed to be quadratic in Au. For wave motion of

‘characteristic frequency w, the ratio of timescales is

(2.2)

Taking for estimation @ = 0.01 ¢m which is typical of
fine sand or silt, Au = 10cm s, ps/p =2.5,Cp = 1,
and w = 1 ~ 0.01 rad s™! (typical of surface and in-
ternal waves), we get wr = 0.67 X 1072 ~ 0.67 X 10~*
which is very small. Therefore such a small suspended
particle acquires the ensemble-mean velocity of the

- neighboring fluid almost instantly. For still smaller

particles, Stokes drag formula may be used to define
the relaxation time similarly (Saffman 1962),

2 w a’p;
Wwr == ——

s 2.3
57 p (2.3)
which is also negligibly small.!
Here we shall assume the particles to be small enough
so that the particle velocity due to fluid oscillation is
essentially equal to the ensemble mean velocity of the

- local fluid. The fall velocity, however, is not ignored

as it is unrelated to wave motion and nonzero even if
the ambient fluid is completely calm.

For modeling turbulent wave boundary layers in the
sea, there have been numerical and semi-empirical

! Lumley (1978) also gave a criterion for a particle to be inertia-
free relative to turbulent fluctuations, if the particle size is much
smaller than the Kolmogorov length . = (v*//u’*)"*, where / is the
eddy size and u’ the velocity scale of turbulent fluctuations. Estimating
the boundary layer thickness 6 = O(v,/w)"/? and u’ = (0.1)wd in a
wave of amplitude A, it can be shown for waves with typical values
w=1rad s and w4 = 0.1 m s}, », = 1073 m? 57, that [, = 0.04
cm. Thus, particles much smaller than 40 um are inertia free even
relative to the turbulent fluctuations.
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models of various degrees of complexity (eddy viscos-
ity, mixing length, k—-e, second-order closure, etc.).
Despite the differences in details, models of time-in-
dependent eddy viscosity, depth-dependent or even
constant, do not give substantially different predictions
for the ensemble-averaged velocity profile. These
models have been extensively surveyed by Sleath
(1990). In this paper, we shall adopt the simplest model
of constant eddy diffusivity model, a common ap-
proximation in oceanography, in order to facilitate an-
alytical results. In addition, no distinction of horizontal
and vertical diffusivities will be made for lack of reliable
empirical information. In a parallel study, we have
employed a depth-dependent eddy diffusivity proposed
by Lundgren (1972) and reexamined the present prob-
lem. Similar results have been obtained after consid-
erable numerical work (Chian 1993). We note that
some experiments suggest that the diffusivity depends
on time as well, and this dependence may alter the
flow qualitatively (Trowbridge and Madsen 1984).
However, experimental data are not comprehensive
enough for constructing a reliable model.

Let C denote the volume concentration, —wj the fall
velocity of the suspended particles, and D the eddy
mass diffusivity. The diffusion equation for the con-
centration C of a very dilute sediment cloud can be
approximated by

aC ou;C 9
67 —a;-i—az[( wo + w)C]
9°C ¥C
- (Bx,- axi (9_27) ’ (24)

where [ = 1, 2 with (x;, x2) = (x, ) and (u;, u2) = (u,
v) representing the horizontal coordinates and the fluid
velocity components. The vertical coordinate and ve-
locity component are denoted by z and w. Equation
(2.4) is useful when C is sufficiently small so that the
presence of the particles does not materially alter the
fluid flow. (Two measures of the effects of non-neutrally
buoyzant suspensions in the supporting fluid are the
effective viscosity and buoyancy force. Both are neg-
ligible for C < 1073, say.)

At the sea bottom the boundary condition for C is
the least certain if the bed surface is erodible, and var-
ious assumptions have been made in the literature of
sediment transport. In a uniform and steady flow, the
concentration at the bed surface cannot be determined
theoretically and must be regarded as a measured
quantity. For steady but nonuniform flows, Sayre
(1969) proposed the following empirical relation:

3
D—C+(1 — a)yw,C + W =0,

Py (2.5)

to mode! resuspension and deposition, where « is the
bed absorbency coeflicient representing the probability
that a particle settling to the bed is deposited there and
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W the average rate of local entrainment. Direct mea-
surements of & and W are obviously difficult and none
is known to have been made. For wave boundary layers
it has also been proposed that the concentration flux
at the bed is an empirical (pickup) function of time,
representing the rate of resuspension (Staub et al.
1984). Smith (1977) introduced a criterion that the
bed concentration is proportional to the difference be-
tween bed shear stress and the critical shear stress at
which the sediments begin to move. The coefficient of
proportionality must again be found empirically but
reliable information is scarce. In addition, the criterion
is only appropriate for an erodible bed that has an un-
limited supply of sediments so that the bed concentra-
tion is in principle fixed. We shall consider only those
particles brought into suspension by causes external to
the flow in consideration, for example, by human
dumping, and which remain in suspension by turbu-
lence and the small fall velocity. The bed is otherwise
nonerodible under the sufficiently small amplitude
waves. Thus, the wave-induced flow must be suffi-
ciently strong so that particles placed in suspension by
an external source remain in suspension, but suffi-
ciently weak so that local resuspension from the bottom
does not occur. Accordingly, we shall take the simplest
assumption that there is no exchange of particies with
the seabed

0
D'£+WQC=O,

3z z=0.

(2.6)
This no-flux condition® has been used by Yasuda
(1989) for dispersion in tidal flows.

Outside the boundary layer we assume

C=0, z— .

(2.7)

In addition, the initial horizontal distribution of the
depth-averaged concentration is prescribed in some
source area. Thus, the physical problem is to seek the
long-time diffusion of a particle cloud from a localized
source.

In the present problem there are several characteristic
length scales in the vertical direction. The first is the
thickness of a steady concentration layer due to the
balance of downward sedimentation by gravity and
vertical diffusion,

D
d~—.
Wo

(2.8)

Associated with fluid oscillations at frequency w there
are two additional vertical length scales; that is, the
oscillatory boundary layer thicknesses

2 A mathematically similar but physically different boundary con-
dition applies for diffusion in seepage flows involving chemical re-
actions (Shapiro and Brenner 1988; Mauri 1991), where w, corre-
sponds to the chemical reaction rate.
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0 ~V2,/w and 6p ~ V2D/w (2.9)

corresponding, respectively, to oscillatory momentum
and mass diffusion. For generality, all three scales are
assumed to be comparable; that is,

gson) (2.10)
and
se=2e~(2Y - 001 (2.11)
°"D (50)— : '

where Sc is the Schmidt number. Invoking Reynolds
analogy, D = v,, and using v, ~ ku,0 as an estimate,
where « = 0.4 is von Karman’s constant (Kajiura
1968), d ~ ku.6/wp; (2.10) is seen to be consistent
with (2.7).

We now consider small amplitude oscillations of
high enough frequency so that both wave steepness,
kA (k = wavenumber) and the ratio of the oscillatory
boundary layer thickness to the wavelength, k6, are
small; that is,

e=kA<l, B=ki<l. (2.12a,b)

Assuming for generality that e = O(8), we may intro-
duce the following normalization:

xF =kx;, z¥=12z/8, u’ =ujwA,
w* = w/kéwAd, t* = wt. (2.13)
The diffusion equation (2.4) is rescaled to become
ac* Qur C* d
—— + — [(—Pe + ew*)C*
ar* ¥t g [(FPet ewt)CT]
3*Cc* ¥*C*
=Rt — 2.14
B axFoxt = 9z2 "’ ( )

where Pe = wyé/D is a Peclét number based on the
fall velocity. Equations (2.6) and (2.8) remain un-
changed. Having identified the orders we return to the
dimensional form (2.4) by inserting an ordering pa-
rameter e as follows:

aC ou,C 4
o € o, +6z[( wo + ew)C] .
¥*C 9*C
= 2 = 4. 2.4’
D(e Ax; 0x; 622) (2.47)

Clearly, there are two distinct timescales in the dif-
fusion process, one for vertical diffusion across the
boundary layer, O(w™') = O(8%/D), which is the same
as a wave period, and one for horizontal diffusion across
a wavelength, O(1/k?D). The ratio between the two
is O(k282%) = O(B?). In most natural flows of interest
B is much smaller than ¢. We shall, however, make a
generous assumption that O(e) = O(f). A consequence
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is that the horizontal diffusion is retained in the final
diffusion equation, as will be shown. If 8 < ¢, the same
term can be ignored. Under the assumption ¢ = O(8)
we shall introduce multiple-scale coordinates for time:
tand T = €%. The velocity and concentration are ex-
panded as follows:

: w = u” + e + 0(e?)
w=wh + ew® + O(e)
C=CPO+eCV+ 2CP + 0(%), (2.15)
where u!” and w™ are functions of x;, z, and ¢ and

C'" = C"™(x;, z, t, T). At leading order C®(x;, z,
T) is expected to represent the period average and de-
pends only on T'. The diffusion equation at O(1)is a
homogeneous differential equation in z

acC®» 9*°C®
Wo Py 57 O<z<o. (2.16)
The homogeneous boundary conditions are
aC®
wolCD+D——=0, z=0 (2.17)
0z
CO=0 z- . (2.18)
Thus, a nontrivial solution exists ’
C® = C(x;, T)F(z), (2.19)
where
w
F(z) = exp(~—DO%), (2.20)

and C is the concentration at the seabed. Recall that
in the classical case of uniform and steady flows, C is
indeterminate theoretically. Here nonuniformity and
nonstationarity will allow us to determine C.

At O(¢), C'V represents the perturbation due to the
oscillating velocity field and satisfies

ac) act) a*c)
- ~-D
ot "0 "2 92?2
a(uPcOy  Jw OO
- ) _ 8w ) (221)
[')x,- 74
and the boundary conditions
acH
weC D+ D——=0, z=0 (2.22)
0z
cCM=0, z-> . (2.23)
At O(e?), C? satisfies
aCc* ac® 9°Cc®
— Wop -D 2
ot 0z 0z
S 9C® gV awC  guP ¢
T T A, ez ox
WD C© 9:C®
- + 2.24
0z D 8xjaxj ( )
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and the boundary conditions

aC®
W()C(Z) + D = 0,
dz

(2.25)

C® =0, z-> . (2.26)

Our interest is in slow diffusion at leading order, and
attention will be focused on the governing equation
for the factor C(x;, T'), defined by (2.19).

Let us assume that the velocity field at leading order

u™, w1 is simple harmonic in time with the fre-
quency w. All forcing terms on the rhs of (2.21) are
then simple harmonic in the fast time ¢. Let the period
average (time average with respect to a wave period)
of C'" be denoted by C!. Then C!'? satisfies the ho-
mogeneous equation (2.16) also and the homogeneous
boundary conditions (2.22) and (2.23). Without loss
of generality we shall take C*? = 0 so that C*", which
corresponds to the departure from the zeroth-order
mean C'©, consists only of first harmonic fluctuations:

C(l) = %(C]le_iwt), (227)

where Cy, = C,(x;, z, T) and R denotes the real part
of its argument (for later use, ¥ denotes the imaginary
part). Averaging (2.24), (2.25), and (2.26) over the
wave period, we find that the time average C*? of C?
satisfies an inhomogeneous differential equation similar
to (2.16), and the boundary conditions (2.17) and
(2.18). Solution of the inhomogeneous boundary value
problem for C» leads to
<C(0)> + <a(2)c(0)>

92 C?)

ax;ax;

Mathematically, this is just the Fredholm alternative
or solvability condition for an inhomogeneous bound-
ary value problem, which possesses a nontrivial ho-
mogeneous solution (here C*?). 1t follows by using
(2.19) that

<>+

~5;<u§‘)c“>>+p (2.28)

[< —(2)F>C]

2

<u“>c“>> + Daa [C<F>] (2.29)
where ( f > represents depth 1ntegrat10n of ffromz=0
to z = oo. This gives the effective convection-diffusion
equation for C.

The present scheme is a modification of the usual
method of homogenization, which has been applied to
dispersion in porous media with a spatially periodic
structure on the microscale (Rubinstein and Mauri
1986; Mauri 1991; Mei 1991, 1992). We have simply
modified it for a time-periodic problem here.

In existing studies of steady flows, the convection
term is contributed by the leading-order velocity of the

MEI AND CHIAN

2483

steady flow. As is recalled in the next section, #‘®’ rep-
resents the second-order Eulerian streaming induced
by Reynolds stresses, hence the convective inertia.
Therefore the effective convection velocity in the hor-
1zontal plane is essentially the weighted depth average
of #¥ with the weight F(z). Now the first term on
the night-hand side of (2.29) is the result of convection
by the first-order oscillatory velocity, leading to an ap-
parent diffusion analogous to Taylor dispersion. The
last term represents horizontal diffusion due directly
to turbulence.

In the next sections we shall recall the known velocity
field 1!, 7% from past works; C(!is next solved and
combmed w1th u,(l for computing the correlations.
Specific examples for the release of a particle cloud
then follow.

3. Velocity field in the wave boundary layer

We restrict our attention to surface or internal gravity
waves whose length and periods are short enough so
that the earth rotation is negligible. For small ampli-
tudes linearized inviscid theory can be used to compute
the flow velocity above the seabed. To ensure no slip
at the bed, an oscillatory boundary layer of the Stokes
type must be added. At second order in wave steepness,
convective inertia in the boundary layer induces a mean
shear stress that drives a second-order mean current
(Eulerian streaming). For a horizontal seabed and
constant eddy viscosity, both first-order oscillation u("
and second-order mean drift #‘?) can be inferred from
Hunt and Johns (1963), see also Mei (1983). Let the
inviscid wave motion just above the boundary layer be
simple harmonic in time to leading order

Ui = R(Upe™™), (3.1)

where Uy; = Uy; (x;) is the spatial amplitude of U;. For
constant eddy viscosity, a straightforward power series
expansion in terms of ¢ = kA gives at first order the
Stokes solution

ut = R{Uy; Fi(z)e ™1,

w) = R 19U

z e—iwl
= o, w(Z)

(3.2)

with
Fi(z)=1—e*, FJ z)=1—e*—az,

(3.3a,b)

and

(3.4)

At second order we only need the time average with
respect to period 27/ w,
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1 Uy
ﬁ(z)(x,»,z)=—-—9‘€[F2Uo 0
w ox
Uy vy
+ F3Vy—=2 + F,U, 0]
ay ay
1 123
l_’(2)()@', zZ)y=—— éR[FzVo g
: I2) ay
vy Ug
+ FUp —— Vo—=1, (3.5)
ox ox
with
F, = ,_(1 - 3;) e~ 1+1)E_.1_+_£e~2$
4
1 )
+ 5([ + i)ée‘“””f + Z(l — i) (3.6a)
1 . i ) 1 1
= _gp—1¥iE D -V HDE —2£+__ 36
F; 5 ie 2 e ) e 1 (3.6b)
Fi= %(1 — 2i)et "D 4 L+ ife“"""g
— i e % + l (2 - 3i), (3.6c)
4 4
where £ = z/6.

4. The effective dispersion equation
a. Derivation

At first order, the concentration fluctuation C*V,
formally given by (2.27), must satisfy (2.21). By sub-
stituting (3.2) and (2.19) into the right-hand side of
(2.21) and extracting the coefficient of the first har-
monic part, we get

d*C 1 dcy,
—dz—;—' " d' +_—cn—Gl<z) (4.1)
with
_1 9C\ ap .
G, —D[(Uo, 8x{) Fi(2)
__C_ M —z/db
ad(axi )e Fw(z)]. (4.2)

The homogeneous solution to (4.1) is a linear com-
bination of e®? and ¢, where

i y
ﬁl,2=—§_g(1+(1 +AN4)1/4e 10/2)

0
= —5121-[1 F(1 +N“)"“cos§]

' 9
x—zl—du +NYYsinz (4.3)
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w\? 2V2Sc Wed O
(D) Pe * °Tp T M)
where

cosf = (1 + N4H)~1/2,

9 1 1/2
and cos > = [5(1 + cos0)} . (4.5)

It is easy to show that
4y1/4 8 1 ay1/2 12
(1 + N% cos§= 5[1+(1+N) ] > 1

(4.6)
so that

R(B;)>0 and R(B) <O0. (4.7)

Thus, for boundedness at z ~ oo, only €% is admissible
as a homogeneous solution. By the standard method
of variation of parameters, the inhomogeneous solution
can be found. In usual homogenization analyses, the
forcing terms and the resonance of the O(e) problems
are proportional to the gradient of the zeroth-order
solution. From (4.1) and (4.2), the forcing terms of
C,, involve both dC/dx; and C, hence the solution is

C“ = RQEBZZ + R;e‘z/d + R2€¥(l/d+a)z + R3Z€_z/d,

(4.8)
where
Ry = " +62d(aR2—R3)
d? aC
R T 81 + ) {U"fa_x,
2+ 8,d+ Brd ___]_B_Ug ]
d2
R2 = -

D(1 + Bd + ad)(1 + Bd + ad)

oC 1 Uy
Uy — — — ¢
( o an oad Bx, )

d Uy; A
D(1 + Bd)(1 + B-d) dx;

R; = (4.9)

Thus, the concentration fluctuation C'" is found in
terms of C and its horizontal gradient. Equations (3.2),

(3.5), and (2.27) may now be put in (2.29). After
some algebra we get the effective diffusion equation for
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1.4 — T T T ™
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
0.8

H

0.025

0.020 +

0.015

Re(Hy)

0.010

0.005 [ /

0.000
0

MEI AND CHIAN

03 - T T T — " T

02} 1

01

0.0
-0.1
-0.2
-0.3
-0.4
0.5

Re(Hz), Re(Hs)

0.5

04

03

Im(Hq)

02

0.1

0.0
0

F1G. 1. Coefficients Hy, H,, H;, and H, as functions of Peclét number Pe for Schmidt number Sc = 0.1, 1, and 10.
Note that H, is real and J(H3) = J(H)).

aC d

pXC 8 (o€
6xjax,- ax; \ Vox;)’
(4.10a)

where

‘II=—§RHU
(108 dy dy

vy vy
+ H,U
ay 270 ox

d aus vy
Us + HyVy—2 + HyUp °>

‘V = —I‘SR(HIVO
w

*

U
+ HyVy—>
ax

) (4.10b)
En= m[— | Us }2] E, = %[%(UﬁVo)]

H. H,
Ey = %[—wf(UoVX)], E, = %{f |V0|2]-

(4.10c)

Here U and V are the components of weighted depth-
average of Eulerian streaming (3.5) wh11e the tensor
Ej arises from the correlation tensor ('’ C™"Y., The
formulas deduced here are quite general for any small
amplitude wave field as long as the first-order inviscid

velocity Uy, Vo in the tangential direction is known at
the upper edge of the boundary layer. Expressions of
the complex coeflicients H,, H3, and H, and the real
coefficient H, are given in the appendix and plotted as
functions of Pe and Sc in Figs. la-d.

Introducing the flux vector F; defined by

. aC
ax;
we may write (4.10a) in conservation form
oC 8%,
— +—=0. 4.12
aT  ax; 0 ( )

b. Coefficient tensor E

Before presenting numerical results, some general
comments are warranted. Because H, is complex, the
tensor E;;, which is not of thermodynamic origin, is in
general not symmetric, that is, £; # E;;; but one may
rewrite E; as the sum of a symmetric and an antisym-
metric part

E;j=D;+ Ay, (4.13)
where
Dy =3 (Ey+ Ei) = D;; and
1
Ay =3 (By— Ep) = = Ay (4.14)
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Since

9°C 9*C

Ay = 4.15
jax;(')x}- ( )

s —— =0,
7 ¢9x,-6xj

the antisymmetric part A is not diffusive. The asso-
ciated term in (4.10a) may be rewritten as

9 oC\ 9A;dC
— (A=) ===
0x; ( ’ 3)9)

ox; ox;’
which is in effect a convective term. Thus, only the
symmetric part D should be identified as the disper-
sion tensor. Hence Eq. (4.10a) can be rewritten by
virtue of the antisymmetry of A as

aC 9 AAN\ -
Pufu T, 6]1, 4+ —Y
oT " ax; [( 0x; )C]

3 aC
=2 (D, + Ds;) = ,
i [( i Dé,,)axj], (4.172)

(4.16)

where from (4.10c) and (4.14)

R(H.
Dy = (w“)m(Ua‘,Uoj) (4.17b)
I(H.
Ay = ( D S (URUG Gy — 1), (4.17c)
Thus the effective convection velocity is
aA,;
U, + =4 (4.18)
an

which is due in part to Eulerian streaming resulting
from correlations of oscillating velocities and in part
to A resulting from correlations between oscillating
velocity and concentration. Further insight into the
property of the tensor A ; can be gained by considering
waves in water of constant depth. It follows from the
first-order theory that

ig an

o =~ w cosh(kh) a—x,

(Mei 1983) so that

on* dn

Uil oc 8x; dx;
i OX;

(4.19)
where # is the water depth and 7 is the spatial distri-

bution of the free surface defined by ¢ = n(x, y)e ™.
Let

7= A(x, y)e¥>», (4.20)

where both 4 and ¢ are real. Then 72 = ng is the
wavenumber vector associated with a progressive wave
component. Using (4.19), we have
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an* dn
‘)4'! 1
JOC\S(U()UOJ)OC\S<6 axj)
04? a4°
— ky — — ke :
oc o, Ky ox, pi (4.21)

If, for example, the propagation is along the x axis,
then %,, = (kp, 0) and

34 2

A
Yy o = ay

kpesji, (4.22)
where ¢;;; is the permutation symbol. Thus, the tensor
A ; exists only if the wave field has a progressive com-
ponent (V¢ # 0) and an energy gradient transverse to
the direction of propagation. This conclusion holds lo-
cally if %,, is a function of space. In particular, for either
a pure standing wave (¥ = constant) or a long-crested
progressive wave (no lateral gradient of energy), A,
= 0. Further, we see in the case of k, = constant that
the additional convection is

aA; 9 aAzk
€3ji.
ax, ax \ ay )"

Thus, the gradient of the energy gradient normal to
the direction of the propagating wave component gen-
erates a transverse convective velocity. This velocity is
weaker if the progressive wave is longer.

(4.23)

¢. Effects of particle size and wave pattern

First we note that the smaller the particles, the
smaller the parameter Pe = §/d = wyd/D. The physical
implications of the effect of Pe on dispersion are easiest
to see for long-crested waves propagating in the x di-
rection only, in which case the only nonzero compo-
nent in D;is Dy./(Uj/w) = R(H,). We see from Fig.
1c that the coefficient R(H,) is the greatest near Pe
= 0O(1) for all Sc and diminishes for either large or
small Pe. Thus, the longitudinal dispersion is relatively
small for either large or small Pe. This is reasonable
since for a fixed oscillatory boundary layer thickness
8, d increases with decreasing particle size. Smaller
particles with Pe < 1 do not tend to crowd near the
bottom of the boundary layer where the shear rate is
high, hence the longitudinal dispersion is small, as ex-
plained by Sumer (1974 ) for steady flows. On the other
hand, when 6/d > 1, most of the heavy particles are
concentrated close to the bottom where the velocity is
nearly zero. In the limit d/é —> 0, all particles are stuck
on the bottom; longitudinal dispersion must also be
small, as also noted by Yasuda (1989).

The effects of wave pattern (through U, and V,) on
convection velocity and dispersion are best examined
for specific examples as in the next sections. To help
understand later results we discuss here the special case
of dispersion in a one-dimensional pure standing wave.
Since Uy = 0 beneath an antinode, D,, and U vanish
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TABLE 1. The Peclét number Pe = wyd/D.

2a (m)
w (rad s 1074 1073
0.5 1.4 0.014
0.02 10 0.1

there by (4.11) and (4.17b). With R(H;) < 0 and
R(H,) > 0, we have at the same point
oU 3| Uy |? %D,
ax oax? T Tax2 T o

hence U must be positive on the left and negative on
the right of the antinode. It follows that U converges
toward the antinode. This is consistent with the known
fact that in a standing wave the horizontal Eulerian
streaming throughout most of the boundary layer depth
except very near the bottom converges to the antinodes
(Me1 1983). A particle cloud, wherever it may be ini-
tially, must be transported mostly toward the nearest
antinode. Note in Fig. la that there is a range of very
large Pe (heavy or large particles) where R(H,) > 0;
the mean convection velocity U; reverses sign. This is
because (i) U; is depth-integrated with the weight F,
which is significant only in a very thin layer near the
seabed if the fall velocity is relatively large, and (ii)
near the bed the Eulerian streaming converges toward
the nodes and diverges away from the antinodes (see
Mei 1983). Thus, for relatively heavy particles, con-
vection tends to inhibit the cloud from diffusing toward
the antinode. This range of Pe is, however, very small
where other physical effects neglected here may com-
plicate the present theory.

To have some quantitative ideas of the practical
range of the parameter Pe, we use the Stokes formula
for a sphere of radius a,

_2ga’ (p,—p
Wo = 9y ( 0 s

to estimate the fall velocity. For a fine quartz particle
or silt in water at 20°C, wy ~ 0.9 X 10%(2a)?, where
wp is in centimeters per second and g in centimeters.
In a wave tank of artificially roughened bottom, Jons-
son and Carlsen (1976) conducted wave experiments
where the orbital velocity U, is in the range 147 ~ 220
cm s~! and orbital amplitude A4 is 179 ~ 285 cm. From
the turbulence-average velocity profiles they found the
eddy viscosity to be as high as 100 cm?s~! in the
boundary layer. Let us take half this value for esti-
mation v, = 0.005 m? s™'. [ An alternate estimate based
on the semi-empirical theories of Kajiura (1968) and
Grant and Madsen (1979) yields similar order of mag-
nitude.] Also, we choose two frequencies with w = 0.5
rad s™! typical of surface gravity waves and w = 0.02
rad s™! typical of internal gravity waves. Table 1 lists

(4.24)
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the sample values of Pe for two particle diameters. It
can be seen that in these combinations of v, and w, Pe
can assume a wide range of values, and for both surface
and internal waves there is a range of particle sizes that
correspond to Pe = O( 1) where the dispersion coeffi-
cient is the largest.

d. Comparison of dispersivity and diffusivity

Equations (4.17a~c) may be normalized by defining
Uj, to be the maximum of the first-order velocity (U}
+ V'3)!/? and letting -

U, kU3
Uy = xi = kx;, t’=T°T,

A (4.25)

where primes denote dimensionless quantities. Then

aC
KI/— s
’ax,’-)

5 AL\ A 3
X4 2 (uy+ 28] - 2
at 6x,‘ a.Xj 6x,-

<

<L

W

FIG. 2. Evolution of an initially Gaussian cloud with variance
= (.05 in a progressive wave along the )’ axis (§ = «/2).
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FIG. 3. The same initial cloud as in Fig. 2 in a pure standing wave (6 = 0) with y. = 0 and x; at (a) 0, (b) n/2, and (c¢) =/4.

where
12
U; = w/"—UO (4.27a)
w
K= (D}j+ D'sy) (4.27b)
(D}, D') = (Dy, D)/(U§/w).  (4.27c)

For practical estimates of the relative magnitudes of
D; and D’, we note that, in steady channel or tube
flows the longitudinal dispersion coefficient is much
greater than the eddy diffusivity. To see whether this
is true in the oscillatory boundary layer here, we esti-
mate again from the measurements of Jonsson and
Carlson (1976) for an artificially roughened bed that
the representative eddy viscosity is v, = 50 cm?s™!
= 0.005 m?>s~!. The order of magnitude of D is
(RH,)U?/w. From Fig. 1c the largest value of R(H,)
is about 2.4 X 1072 occurring at Pe ~ 1. If we take U
= 1ms~!and w = 2x/10 (period = 10 sec) corre-
sponding to a swell of medium amplitude, the scale of
D,;;is 0.04 m* s 7', much greater than the eddy viscosity.
Being inversely proportional to w, the dispersion coef-

ficient increases with decreasing frequency (such as in-
ternal gravity waves with period = O(100 s); it can
hence still be much greater than the eddy diffusivity.

In summary, we emphasize that the spatial variation
of the wave field not only enhances diffusion through
the dispersion tensor D, but also advection through
the second term in the combination U; + (dA;/dx;).
This dual effect has been emphasized by Geyer and
Signal (1992) in their review of tidal dispersion. Our
theory is quite general so far since the wave pattern is
as yet unspecified. Details can vary significantly
through the inviscid free-stream velocity amplitudes
Uy, Vy outside the boundary layer. In general, one may
expect that the fate of a cloud of particles depends on
its initial size and location, and the variation of U, %V,
A, and D along its path. To gain more insight we
shall examine two examples for which the inviscid flow
fields are very simple.

5. Two-dimensional diffusion of a localized cloud in
bidirectional waves

Consider a system of short-crested waves as a result
of a plane wave of amplitude A4, frequency w, and
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=0
x;=0.251l:
yo=0
t'=2
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W
<0

FIG. 3. (Continued)

wavenumber k incident at an angle 0 from the x axis
toward, and reflected by, a sea wall along the y axis.
The free surface and the amplitudes of free stream ve-
locities are then given by

¢ = 2A, cos(k cosfx)eksindy—wn (5.1)
and
U, = 2iU, cos# sin(k cosfx)e™s%
Vo = 2Uj, sinf cos(k cosfx)e™ % (5.2)
where U, = VU3 + V2. Normalized according to

(4.25), the coefficients in the dispersion equation
(4.26) read

U’ = [2R(H,) cos’0 + (R(H3) — R(H,))
X sinfl sin(28)] sin(2x’ cosf)
YV’ =[23(H,) sin’g
+ J(H3) cosb sin(26)]2 cos?(x’ cosd)
D’ = 4R(H,) cos?d sin?(x’ cosh)
D, = 4R(H,) sin’6 cos?*(x’ cosf)
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Dy=D,=0
ALy = —A = J(Hs) sin(20) sin(2x’ cos)
AAL,
ay’ 0,
OA . /
I’ = 2J(H,)sin(20) cosf cos(2x’cosf). (5.3)

Note that, from (5.1), the free surface amplitude and
phase functions as defined in (4.20) are

A(x) = 24, cos(k cosbx)
Y(y) = k sinfy. (5.4)

Therefore, there is a progressive wave propagating in
the y direction with 7€,, = (0, k sinf), while the gradient
of the cross-wave energy gradient exists only in the x
direction. Hence, the additional convection is present
in the y direction only, agreeing with the more general
comments made in the previous section. Also evident
is that, when 6 = 0 (standing wave) or § = w/2 (pure
progressive wave along the wall), 751, = ( or 4 = const;
in either case the tensor A ; vanishes.

Let us examine the dispersion pattern involving the
combined effects of coefficients in (5.3) of an impul-
sively released Gaussian cloud centered at x;, y. with
a variance 0’2 = 0.05. Assuming Sc = M = 1, we have
R(H,) = —~0.122, J(H,) = J(H3) = 0.659, R(H,)
= 0.033, R(H;) = —0.155, R(H,) = 0.024, and J(H,)
= 0.234. Choosing D’ = 1073, the initial value problem
is solved numerically by a Peaceman-Rachford ADI
(alternating direction ) finite-difference method. Three
angles of incidence and various positions of the initial
source center have been considered.

For a plane progressive wave propagating along the
sea wall (the y axis) § = 7/2, so only V" and D, are
nonzero by (5.3) and are constants. As shown in Fig.
2, the cloud is simply convected along the direction of
wave propagation and becomes increasingly elongated
in y since Dy, /D’ = 24.

For a plane standing wave corresponding to normal
incidence toward the sea wall, 8§ = 0. The nonzero coef-
ficients are U " and D .., both being functions of x’.
Since now D, /D’ = 24, dispersion in x’ dominates.
The spatial dependencies of % “and D ;. cause the pat-
tern of spreading to depend on the location of release.
Indeed, if the initial cloud is located at x. =0, y. =0
where there is no convection and dispersion is the
weakest, the peak does not move but the rest of cloud
is convected inward. Hence the distribution becomes
more and more localized as shown in Fig. 3a. On the
other hand, if x, = = /2 (Fig. 3b), U’ diverges away
so the initial pulse is split in two toward x’ = 0 and =,
where the convection velocity converges and the dis-
persion is weak. For x. = w/4, most of the cloud is
slanted by convection toward x” = Q; only a small part
is transported to x” = =, see Fig. 3c.
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FIG. 4. The same initial cloud as in Fig. 2 in a plane wave incident at § = x/2 with y. = 0 and x/ cosf at (a) =/2 and (b) =/4.

Finally, for oblique incidence § = = /4, all nonzero
coefficients in (5.3) appear and are functions of x”. For
x. = 0 where dispersion and convection vanish in x’
but are the greatest in y’, the result is similar to Fig. 2
except that the convection speed in y’ is lower since
Y’ is now a projected component and the additional
convection is in the opposite direction as can be shown
from (5.3). For x/ cosf = = /2, the nonuniform con-

.14y o= ——— - — e
IANRSSSSST it o2z
NN
4 ANNNSNNIN LI Z 22T
RN NN AR o 4 h
4 S NN M A
NN Ny A
S S S N s e e rr 2t
LI S S O N ) P A A A
™ LBTEL LTIl
l;;/z;, ....... :::;:\t
VA A A A AN I T
22222000ty s
72222200 0 11332y
YOZ2222222 0 L SIIIRXINWY
A A 7 NN N NN\
000l FEEZ s T D T T S SIS
0.00 1.57 3.14
e

FIG. 5. Convection velocity field in a seiching lake of aspect ratio
§ = b/a = 0.5. In the figure, x" and )’ are normalized, respectively,
by a/x and b/x.

vection velocity causes the cloud to bifurcate toward
the lines x. cosf = 0 and = where stronger dispersion
and convection in y’ take over, as shown in Fig. 4a.
When x. cosf = n/4, most of the pulse is convected
to the left, with the front leading the rest in the shape
of an eel, as shown in Fig. 4b.

6. Two-dimensional dispersion in a seiching lake

Let us examine the dispersion in the bottom bound-
ary layer beneath a standing wave in a rectangular lake.
Let the basin have the depth #, width a, and length b.
The free surface displacement of the seiche mode is
assumed to be .
Ty ~iwt
=L priat,

b
where A4, is a constant. The amplitudes of the free
stream velocities are then given by

§‘=Aocoslr5—ccos (6.1)

_fmede 1 sin == cos =~
0 aw coshkh a b
ingA 1 X .
vy = 820 cos ZsinZY . (62)

bw coshkh a b



DECEMBER 1994 MEI AND CHIAN 2491

@)

Y s > e (b)
SITFHHIIIRS LR
AR AN
AR 20N
= AR N O
3 7T RN 3 AR
< 1:1/4,’:,:,’,"" ..,.'..., S S '."'....m\\\
- i OO
3 2 IR
> ® HIONY
S S
48 &% 'l'n"."l'i"m
dg s A NN s
s R Wit -
3 S SRR o~
s N T R R s
e R ~
R Ia Sy dug Sa o, S
o3 R o <
+.5 R PO e =
X 7 LTI, .
X 20 S
Fo EYranfic
© @
T T2 77 W
117 D
I A AR
- A SRR e o
AT SN at
TR 3 R T
£ TS SN
1S It - B R Rz
A SRR R
e} R LI -
S R o~
s
Co C.o =
L2
Fo S Fo T
FI1G. 6. Distributions of the components of the induced dispersivity tensor D} in the lake (a, b, ¢)
. . . p - . “ .J
and that of the principal component 2} of the diagonalized dispersivity tensor (d).
. . . _ 2 . 2
For internal gravity waves, only the coefficients of Uy e = R(HH(1 + s?)sin’x’ cos?y’ + D’

and Vj are different. Using 1= R(H)(1 + s72) cos2x’ sin?y’ + D’

U . 7!'ng' 1 1 (6 3)
0 @ Va2 + b2 coshkh ) w=D= % R(H)(s + s ") sin2x’ sin2y’. (6.7)

to normalize the velocity components and (a/, b/ )

to normalize (x, ), we get in dimensionless form The fields of the horizontal convection velocity and

the dispersivity tensor 2 ; are shown in Figs. 5 and 6a~

Ug = iVl + s? sinx’ cosy’, ¢, respectively. Note the horizontal convergence toward
Y P ;e the corners, suggesting upwelling there. The total dis-
Vo =iVl + 57 cosx’siny’, (6:4) persivity tensor Kj; = D/ + D’§; can be easily diago-
where s denotes the aspect ratio, nalized as follows. Let A be the eigenvalues defined by
=l (6.5) |Kj— N6y] =0, (6.8)
a then
The resulting coeflicients are, in dimensionless form,
| M =Lkt

‘Ll’=§ER[((l + s H, + (5 + s7)YH3) A 20 »
X cos?y’ — (s + s~ ') H, sin?y’] sin2x’ + V(K + Kp)? — 4(KuKjy — KiyKj) 1. (6.9)
o1 5 —1 2, The eigenvectors (a4, 8+ )and (a_, B_) are orthogonal
i 2 RUA + s75)H) + (s + 57) Hy) cos™x and represent the major (+) and minor (—) axes, re-

— (s + s H, sin®x]sin2y". (6.6) spectively, whose inclinations with the x axis are

In this case A ; vanishes since the tensor Ug; Uy is real, tanf, = B  _KutKp— A (6.10)

and K+ K= A
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Fi1G. 7. Dispersion of a cloud (as in Fig. 2 initially) released at x;, y; = /2, w/4 in a seiching lake of aspect ratio s = 0.5.

In the rectilinear coordinate system formed by these
axes, the dispersion tensor is diagonal with only two
nonzero components K, = A, and K’ = A_. Substi-
tuting (6.7) into (6.10), we get

{ tany’
tang, = - 2 (6.11)
S tanx
and
K.=D'+ 9. (6.12)

with
| Dy =R(HH[(] + s*)(sinx’ cosx)?
+ (1 + s7%)(cosx’siny’)?] (6.12a)
D-=0. | (6.12b)

We plot the convection velocity field in Fig. 5 and the
distribution of the coefficient D in Fig. 6d. For s
= 1/, the orientation of the major axis varies in space
in approximately the same way as the convection ve-
locity as shown in Fig. 5. In particular, 8, = 0 along

" ]
o -
t'=1
< <
L) o
b n
N ~
< <
o o
Q |§}
b2} ‘2
- ~—
< <
-~ -
e bt
< IS
a5

the north~south axis of the lake (x” = w/2) and along
the north and south coasts (y' = 0, 7), . = 7/2 along
the east-west axis (y” = 7 /2) and the east and west
coasts (x” = 0, =). Thus, the shear-induced dispersivity
D’ enhances spreading along the coast. For a square
lake, s = 1, the principal direction of a dispersion tensor
along the diagonal follows the diagonal. We now pre-
sent sample numerical results for the release of a
Gaussian cloud of unit height with ¢’2 = 0.05. The
dimensionless eddy diffusivity is taken to be D’ = 1073,
Since U} = 0 along the lake boundaries, x” = 0, 7; 0
<y'<mand Vyg=0alongy =0, 0 <x’ <, the
no-flux boundary condition #;n; = 0 implies

ac
ox;|

Evolution of C has been computed for various center
locations x., y.. In Fig. 7, the initial center is at x/,
yi=m/2, n/4 (south of the lake center). Since |6, |
vanishes at the initial center of release and remains
small in the region where D/ is significant, the cloud
is spread mainly in the x direction. Once reaching a

n,'=0‘

t'=5 t=10

1.5 20 25 30 35

FIG. 8. The same cloud as in Fig. 7 released at x., y. = 3#/8, 3x/8.
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FIG. 9. The same cloud as in Fig. 7 released at x;, y. = «/2, «/2.

diagonal, |0,| approaches tan™'(2) ~ 63.4° for s
= 1/5. Dispersion and convection help each other in
transporting the cloud toward the two corners at 0, 0
and =, 0 on the south side. If the initial cloud is released
at a point west of the lake center, say (x;, yo) = (w/
4, 7 /2), the cloud is split first by dispersion, and then
convected and diffused toward the corners on the west
side. Since the qualitative features are the same as in
the previous case, plots are omitted. For an initial cloud
released on a diagonal, the evolution is shown in Fig.
8. Dispersion is directed in the direction |0, | = 63.4°
> 45° away from the diagonal along which D is small,
hence convection prevails and brings the cloud back
toward the diagonal and then the corner, following a
curved path. Finally, if the initial cloud is released at
the lake center, it is split into four equal parts, drifting
and spreading toward all four corners, as shown in Fig.
9. In all examples, the suspension accumulates at the
corner(s) and approaches a steady limit there. This is
because at the corners D’ vanishes and only D' is ef-
fective. Weak outward diffusion through eddy viscosity
is balanced by inward convection.

7. Concluding remarks

We have presented a theory of dispersion in a wave
boundary layer, with a view to examining the effects
of horizontal variation of the wave pattern on the dis-
persion process. For small amplitude waves, the fluc-
tuating part of the velocity field is much greater than
the steady mean; therefore, it is possible to apply a
perturbation method and achieve Reynolds averaging
without any difficulty in closure. The correlations be-
tween concentration and velocity oscillations are cal-
culated explicitly, under the simplifying assumption of
constant eddy viscosity and mass diffusivity. It is found
that in general, correlation between oscillating veloc-
ities, that is, Eulerian streaming, contributes to steady
convection, whereas correlation between oscillating

fluid velocity and concentration contributes to both
dispersion and convection. Examples are discussed for
dispersion from a localized cloud under a bidirectional
wave or a seiche in a lake. The spreading pattern in
general depends strongly on the location of release due
to the spatial dependence of the dispersivities and the
convection velocity. The cloud tends to accrete at
points toward which the Eulerian streaming converges
horizontally and where dispersivity is weak.

It should be pointed out that the present model is
based on two underlying assumptions: (i) constant
eddy diffusivity and (ii) negligible deposition or re-
suspension. A more realistic turbulence closure
model amounting to time-dependent eddy diffusivity
and/or erodible bottom may change the results sig-
nificantly.

In summary, our general theory and specific ex-
amples serve to demonstrate that the detailed horizon-
tal variation of convection velocity and dispersion ten-
sor, which depend on the complexity of the wave pat-
tern, must be the crucial part of any pollutant transport
model. Indeed a numerical model that depends on em-
pirical estimates of the dispersion tensor cannot be fully
reliable if it is calibrated against field measurements at
only a few stations. To modify this theory for sediment
diffusion over an erodible bed, consideration of resus-
pension at the bed and more complex modeling of tur-
bulence are necessary. While empirical hypotheses on
the bottom boundary condition have been proposed,
the real challenge remains to be the better understand-
ing of the physics of resuspension, sediment deposition
and entrainment at the seabed.
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APPENDIX and define the following symbols
Explicit Formulas for Coefficients H,, H,, H;, H4 A, 1 i
We first recall 2
Pe = wpd/D = 6/d (A.1) With
I‘ 1
Pe I 2

It can be shown that
1 —3i i
2(Pe+1—1i) -2(Pe+1+1i)

F~2 = f er_ndn = Pe[
0

1+i  (1+0 31 -
4(Pe + 2) 2(Pe+l——i)2] 4 (A:3)
- o Pe B I
. F3—fo Fedn = 5 T T 1 ape+ 2 (A.6)
. © 1—2i (1 + 1) i 23§
= "dn = P - - , A7
Fa fo Faedn e[2(Pe+l—i) 2(Pe + 1 - i) 4(Pe+2)] 4 (A7)
where 7 = z/d. Note that F; is real. Further,
o aC aC Uy Vo) - '
f ulC,dz=ilsR BUH U =+ Vo—=|+BUs=+22 , (A.8)
0 w 0x ay ox ay
where .
_Se | 2Pe
' Pe2| Ay (1 + A1 +i— A Pe][(1 +A4,)Pe+1—i][(1+A;)Pe+1—i]
N (L+1i) L . (1+i)Pe’
[Pe+1+i1(1+A )1 +A4y) [Pe+1—il[(1+A4,)Pe+1—il[(1+A4;,)Pe+1—i](2+Pe)
(A.9)
and
oS U+h _ Pe?
27 Pe2| A1 +i—AyPe] | (1 +A)[(1+A)Pe+1—i][(1+A4)Pe+1—i]
B 1 +(2+A,+A2)(1+z’)—-i(l+A1)(1,+A2)Pe
(1 +A4)%(1+4)] . [14 i+ Pel(1+ A4)%(1 + 4,)?
+ iPe*
[Pe+1—i)(2+Pe)[(1+A)Pe+1—i][(1+A4)Pe+1—i]
[1+i42Pe](1+1)
. (A.10
[l + i+ Pe]?(1 + A)(1+ A4,) ( )
The integral ‘ by V §. Finally,
‘ °___ H =F,+B}, H,=F;,
f U]Cle ‘ ' : ~2 i g ’
H3=F4+B2,' H4=“B[. (A.ll)

is of similar form as (A.8) except that Ug is replaced Note that H, is real and JH, = 3Hj.
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