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ABSTRACT 

Medina, J.R. and Hudspeth, R.T., 1990. A review of  the analyses of  ocean wave groups. Coastal Eng., 
14: 515-542. 

The most common parameters and functions used to characterize wave groups in linear seas are 
reviewed and interrelated in a unified manner. A three-axes representation of  run lengths is used to 
characterize wave groups using exponential and Markov chain approximations. A relationship be- 
tween four parameters (Qp, Qe, x 2, and p2) and the correlation coefficient between consecutive wave 
heights [ rHH ( 1 ) ] is demonstrated. The wave-height function method is reviewed in some detail in 
order to relate the run length theory with envelope theories. The theoretical estimates used to dem- 
onstrate the relationships between the various parameters must be considered as only first-order trends 
to parameter estimates computed from real wave data due to the statistical variability in these esti- 
mates when computed from real wave data. 

I N T R O D U C T I O N  

The tendency of  ocean waves to appear in groups is receiving more atten- 
tion from coastal and ocean engineers. There is a general agreement that wave 
grouping characteristics affect the stability of  some types of maritime struc- 
tures. Table 1 is a list of references in which wave groups were used to analyze 
various coastal phenomena and engineering problems. 

In spite of  the evidence that wave groups are important in a variety of coastal 
and ocean applications, our ability to incorporate the effects of  wave groups 
into current design methods is limited. The difficulty of including the effects 
of  wave groups into engineering design is due in part to the variety of  theories 
and parameters used to characterize wave groups. 

Table 2 summarizes some of  the parameters and functions from various 
methodologies that are used to analyze and to characterize wave groups. It is 
obvious from Table 2 that the variety of  parameters and functions from the 
various methodologies makes it difficult to incorporate the wave group con- 
cept into engineering design in a consistent manner. Here we attempt to iden- 
tify the similarities and relationships among the various parameters, func- 
tions, and methodologies most commonly used to analyze wave groups. 

0378-3839/90/$03.50 © 1990 Elsevier Science Publishers B.V. 



516 J.R. MEDINA AND R.T. HUDSPETH 

NOMENCLATU RE 

A(t) 
AF(t) 
Ax(r) 
a,[=A(ti)] 
B 
C 
Ce 
E [ . ]  
E 

f 
fc( = 1 ~2AT) 
fm 
GF 
H(t) 
Hm~d 
Hrms 
H~ 
Hi~3 
Hi 
h 
lo(.) 

K 
k( ToffU= To2/g) 
,Lh(m) 
2Lh(m) 
,lh{ ,l'~} [ ,/~; ] 

flh{ fl'h} [ 21'~ l 

LVTS(t) 
Mpq 
mn 
P(.) 
p(.)  
p(. , .)  
Qc 
Qp 
q(.) 
Rx(r) 
gm 
rHH(m) 
rTT(m) 
/'HT ( m )  

envelope function 
analytical function 
envelope of the function x 
discrete value of envelope function 
rectangular spectrum bandwidth 
jump parameter 
constant of proportionality in Eq. 47 
expected value 
complete elliptical integral of the second kind 
frequency 
cut-off frequency 
frequency of the mth wave component 
Groupiness Factor (SI WEH) 
wave height function 
median wave height 
root-mean-square wave height 
significant wave height 
average of highest one-third waves in a record 
ith discrete wave height 
threshold level 
modified Bessel function of the first kind of order zero 
imaginary number 
complete elliptical integral of the first kind 
parameter defined in Eq. 15 
length of the mth run of high waves above threshold level, h 
length of the mth total run of waves above threshold level, h 
length of a run of high waves computed using the envelope and normal- 
ized by T{by To,} [by To2] 
length of a total run of waves computed using the envelope and normal- 
ized by T {by To1} [by To2] 
Local Variance Time Series 
pqth moment defined in Eq. 24 
nth spectral moment 
cumulative distribution function (c.d.f.) 
probability density function (p.d.f.) 
joint probability density function 
dimensionless spectral peakedness parameter defined in Eq. 41 
dimensionless spectral peakedness parameter defined in Eq. 1 
marginal probability density function 
autocorrelation function of the variable x 
amplitude of the mth wave component 
correlation coefficient between successive wave height with lag m 
correlation coefficient between successive wave periods with lag m 
correlation coefficient between successive wave heights and periods with 
lag m 



ANALYSES OF OCEAN WAVE GROUPS 517 

SIWEH(t )  
sA f )  
Tol ( = mo/ml ) 
To~(= m~o/m~) 
Tswn 
Tp(=f~-') 
T. 
t 

]/3(4) 
y 

r.  of ) 
AT 
~2 

q(t)[f l( t)] 
Om 
O(t)+O 
K 

1) 2 

P 
~r~(.) 

l "~ h 

27~h 

2 ~n~s  

t2(t) 
(~){(:)} 

Smoothed Instantaneous Wave Energy History 
one-sided variance spectrum of the variable x 
mean orbital period 
mean zero upcrossing period 
zero uprcrossing period of S IWEH 
period of spectral peak frequency 
temporal spectral peakedness parameter 
time 
cosine (sine) transform of S~(f) 
peak enhancement factor for Goda-JONSWAP spectrum 
envelope spectral density function (unit variance) 
sampling time interval of squared wave height function 
Vanmarcke (1972) dimensionless spectral bandwidth parameter 
water surface elevation [Hilbert Transform] 
random phase angle of the ruth wave component 
instantaneous phase angle 
correlation parameter defined in Eq. (19) 
Longuet-Higgins (1957) dimensionless spectral band-width parameter 
Kimura correlation parameter 
variance 
exceedance time interval of envelope above threshold level h/2 
time interval between consecutive upcrossings of envelope above thresh- 
old level h/2 
mean duration of a total run of waves 
local radian frequency function 
average value of (-) {Hilbert Transform of (.)} 

A previous review by Rye (1982)  of  the different wave group parameters  
and methodologies led to a conclusion that wave groups measured from field 
data compared  quite well with those obta ined from numerical  simulations 
derived from linear algorithms. The validity of  the linear hypothesis was also 
obta ined by Goda  (1983)  and Elgar et al. ( 1984, 1985) from their analyses 
of  real ocean waves measured in water depths greater than 10 meters. Field 
observations from Battjes and Vledder (1984)  also support  the linear hy- 
pothesis. Therefore, nonlinear wave -wave  interaction models  will not be in- 
cluded in this comparison of  methods  used to analyze wave groups in linear, 
random seas. 

The parameters  and functions listed in Table 2 that are used in the various 
methodologies will first be identified and interrelated where possible. Next, 
three methods  of  analyses of  wave groups which incorporate most  of  these 
parameters  and functions will be reviewed in some detail. These three meth- 
ods of  analyses are: ( 1 ) wave height function; (2)  three-axes representation 
of  run lengths; and (3)  correlation coefficient between successive wave 
heights. 
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REVIEW O F  WAVE G R O U P  M E T H O D O L O G I E S  

Four decades ago, Tucker (1950) identified the presence of  waves in the 
surf zone with periods between 1 and 5 min. and suggested that these long 
waves were generated by wave groups. Although Tucker (1950) noted the 
importance of wave groups in the analysis of harbor resonance, wave groupi- 
ness did not receive much real attention until the seminal study by Goda 
(1970). 

In this seminal study, Goda (1970) used linear numerical simulations to 
demonstrate that ocean waves in a random field are not completely randomly 
distributed. Instead, real ocean waves demonstrate a tendency to appear in 
groups in a manner  that depends on the peakedness of the spectrum. He in- 
troduced the concepts of  a length of  a run of  high waves and of  a length of a 
total run of waves as well as a peakedness parameter, Qp. The methods and 
parameters introduced by Goda (1970) have been the most widely used in 
the subsequent studies listed in Table 2. 

Run lengths (Goda, 1970) 

The length of a run of  high waves, ~Lh, is defined as the number  of consec- 
utive wave heights that are higher than a specified threshold, h, value (e.g., 
h = H~s,  Hs,/7, Hmed .... ). The length of  a total run of waves, 2Lh, is the total 
number  of wave heights that occur between the time of  the first exceedance 
above the specified threshold value and the t ime of the first re-exceedance 
above the same specified threshold value. 

Figure 1 illustrates the procedure used to determine the run lengths from a 
sequence of wave heights. In Fig. 1, h is the specified threshold wave height; 
~Lh (m) is the mth length of a run of  high waves; and 2Lh (m)  is the mth length 
of a total run of waves. 

Assuming that the wave heights are uncorrelated and Rayleigh distributed, 
Goda (1970) derived a probability density function (p.d.f.) for ~Lh and 2Lb. 
However, numerical simulations based on an assumption of  linear superpo- 
sition demonstrated that if a random sea r/(t) was a realization from an er- 
godic Gaussian stochastic process, the corresponding p.d.f.'s for iLh and 2Lh 
were not in agreement with the Goda p.d.f.'s. Therefore, the results from his 
numerical simulations for a variety of  spectral shapes showed that the as- 
sumption of  linear superposition for random seas was not compatible with 
the assumption that the wave heights were uncorrelated. 

High values of iLh and 2L h a re  associated with larger wave groups. There- 
fore, parameters like the average run lengths, ~/Sh and 2/Sh, and the sample 
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TABLE 2 

Parameters and functions from various methodologies used to characterize wave groups 

Methodologies References 

Three Correlation Markov H2(t) H(t) Run 
axes function chains LVTS Envelope length 

SIWEH 

× 
× 

× Goda, 1970 
× Nolte and Hsu, 1972 
× × Ewing, 1973 

× Rye, 1974 
× × Goda, 1976 
× Arham and Ezraty, 1978 

× Funke and Mansard, 1979 
× Kimura, 1980 

× × × × Rye, 1982 
× × × Goda, 1983 
X × × Battjes and Vledder, 1984 

× × Elgar et al., 1984 
× × × Longuet-Higgins, 1984 

× Thompson and Seelig, 1984 
× × × Mase and Iwagaki, 1986 

X × Medina and Hudspeth, 1987 
× × × Hudspeth and Medina, 1988 

× × × × × This paper, 1990 

p.d.f.'s, p (lLh) and p (2Lh), have been widely used to characterize wave groups 
in ocean wave records. Also a variety of threshold levels, h, have been used 
( h  = U s ,  H m e d , / ~  . . . .  ) .  

The numerical experiments of  Goda (1970) indicated that the character- 
istics of wave groups in irregular wave trains were correlated with spectral 
peakedness. The dimensionless spectral peakedness parameter introduced by 
Goda (1970)  was: 

2f ~ fS~( f )d f  
Qp = [f yS~(f)df] z (1) 

Apparently related to the concept of run lengths for engineering applica- 
tions is the concept of  wave jumps (Bruun, 1985 ). A wave jump is defined as 
a small wave height (Hi<C/-], C < I )  followed by a big wave height 
(//i+ ~ > Hs). Burchart ( 1981 ) correlated the probability of occurrence of wave 

jumps with values of  the wave jump parameter C using both field data from 
storms and laboratory data. Because linear sea states having peaked spectra 
produce highly correlated wave heights, the probability that a wave jump will 
occur decreases as the mean run lengths increases. 

The p.d.f.'s for the mean run lengths defined by Goda (1970) consistently 
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(Table 2, continued) 

Parameters and functions 

ll- 2[ Q~ Ifh ~ RH(mT) rTa-(m) rrrr GF SH2(f) x T s w n  (ao,flo) 
1£ 2£ Qp v rnu(m) E(f) p (a,,fll) 

X X X X 

X X X 

X X 

X X X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X 

X 

X 

X 

X X 

X X X X 

X X X X X X 

X X X X X 

X X 

X 

X X X X 

X X 

× X X X 

X X X X 

× × X X X 

X X X X X X X X X X X 

( a )  i 
n ( t )  ^ 

L/ L/ v Y _ L  ' V V L/ = 

(b) 

(c) 
~Lh(1) : 2_~ ,ILh~2)=l ILh(3)> 3 

I~ 2 Lh(1) : 5 T'2Lh(2~: 2~_2Lh(3)>. 3 

i 

Fig. 1. Representation of (a) wave record, (b) sequence of wave heights, and (c) run lengths. 

underestimated the mean run lengths computed from both field data and nu- 
merical simulations. This result lead Kimura (1980)  to further refine the Goda 
model. 
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Markov chain hypothes& (Kimura, 1980) 

Observing from field data that there was a positive correlation between suc- 
cessive wave heights, Kimura (1980) elaborated the mean run length concept 
for sequences of discrete wave heights that are Rayleigh distributed. To ana- 
lyze the statistical properties of the run lengths, Kimura (1980) introduced a 
Markov chain hypothesis for a sequence of wave heights. He estimated p.d.f.'s 
for ~Lh and 2Lh as functions of a single correlation parameter, p. The joint 
p.d.f., p(H1,H2), for two successive wave heights, HI =Hi and H2=Hi+ 1, is 
given by: 

4H1H2 [ 1 {H21 + H 2 ~ ] r  [ 4H, H2p ] 
P( HI 'H2 ) - ( I -4p2)Hr4s exp-L ( l -4p2) lk "~r2ms .}J'°L(l~~ms/ 

(2) 

where p=  a correlation parameter, Hrms = the root-mean-square value of wave 
heights, and Io (") = the modified Bessel function of the first kind of order 
zero. The correlation coefficient between consecutive wave heights is given 
by: 

E -  [ ( 1-4#2)K/2] - (zt/4) 
rHH( 1 ) -- (3) 

1 -  (z~/4) 

where K and E are the complete elliptic integrals of the first and second kinds, 
respectively, with parameter (2p) (cf., Abramowitz and Stegun, 1968, p. 590 ). 

The probability P1 that H2 does not exceed h when H1 is below the thresh- 
old height, h; and the probability P2 that H2 does exceed the threshold level h 
when H1 also exceeds h, may be defined as follows: 

f g f ~) p( H~ ,Hz )dH, dtt2 
PI - fhoq(H~)dH t (4) 

f~ f~p(H~ ,H2 )dH~ dH2 
e2 - f ~ q( H~ )dHt (5) 

where q(H) =the marginal p.d.f, for wave heights given by the Rayleigh dis- 
tribution. Kimura (1980) gives the p.d.f.'s and expected values for tLh and 
:Lh as: 

p(ILh)=p~'L"--Z)( 1 -Pz)  (6) 

1 
E [ I L h ] - - -  (7) 

I - P 2  

p(2Lh)_(1--Pl)(1--P2) (:Lh--l) p(2Lh--1)) ( 8 )  
(PI -/°2) (P1 -2 



ANALYSES OF OCEAN WAVE GROUPS 523 

1 1 
E [ 2 L h ] - - -  + (9) 

( l - P 1 )  ( 1 - / ' 2 )  

The run length model of Goda (1970) is equivalent to the elaborated model 
of Kimura (1980) when p=0 ,  or, equivalently, when the spectrum is ex- 
tremely broad-banded. Because of the relationship between the correlation 
parameter, p and the correlation coefficient between consecutive wave heights, 
rnH( 1 ), given by Eq. 3; the p.d.f.'s p ( iL)  and p(EL) depend on only one sin- 
gle parameter; viz., rHH ( 1 ) .  Equations 2-9 are functions of the correlation 
parameter p which may be computed either in the frequency or time domains. 

Goda ( 1983 ) found rHH ( 1 ) ,  computed in the time domain, to be an excel- 
lent parameter to describe the run lengths from an analysis of long-travelled 
swell waves. He also found that the long-travelled swell data agreed quite well 
with the estimations from the Markov chain approximation of Kimura 
(1980). Battjes and Vledder ( 1984 ) observed that the distribution of lengths 
of runs exceeding h=H~/3 in records from the North Sea also agreed quite 
well with the Markov chain approximation of Kimura (1980). They sug- 
gested using the parameter x2= (2p) 2 derived from the variance spectrum 
S , ( f )  to characterize the wave groups. 

Earlier, Rye (1974) had identified the correlation coefficient run( 1 ) as 
being useful for analyzing wave groups. 

Correlation coefficient for succeeding waves (Rye, 1974) 

Rye (1974) identified the presence of wave groups in real ocean wave rec- 
ords using correlation coefficients computed from time series of wave heights 
and wave periods. However, only the correlation coefficient FHH ( 1 ) appears 
to have received much attention (cf., Rye, 1982 for a review of correlation 
coefficients). The correlation coefficient for succeeding wave heights is given 
by: 

1 1 M-m 
- -  ( H, - I ~ )  ( H,+~ - I 1 )  ( 1 0 )  rHn(m)=rHH(O ) (M-m) i~--__l 

for wave periods by: 

1 1 M-m 
rTT(m)=rTT(O-----------) (M--m) i=1 ~ (Ti -T)(Ti+m-T)  (11) 

and for both wave heights and wave periods by: 

1 1 M-m 
rHT(m)--tr(H)a( T) (M-m) i~=l (H~-ti) ( Ti+m- T) (12) 

where (Hi, Ti) are the wave height and the wave period, respectively, of the 
ith wave in a record; and M is total number of waves in the record. The vari- 
ances are given by rnH ( 0 ) = tr 2 (H) and rTw ( 0 ) = tr 2 (T).  

The correlation coefficient between succeeding wave heights, run (m),  can 
be related to the autocorrelation function of the envelope or the wave height 
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function. From the relationships between Hi, A (t) and H(t) illustrated in 
Fig. 2, we may deduce that: 

RA(m] p) -----Ria (m T) ~ rHH (m) (13) 

where 7 ~ is a mean period; RA ('r) is the autocorrelation function of the wave 
envelope, A (t); and RH (z) is the autocorrelation function of the wave height 
function, H( t ) .  However, the estimations of the correlation coefficients based 
on the envelope of the autocorrelation, RA (m 7~), and based on the sequence 
of discrete waves, rrm (m),  may show significant differences. These differ- 
ences depend on the selection of mean period (To~, To2, Tp... ); on the defini- 
tion of discrete wave from continuous records (zero up crossing...); and on 
the spectral shape. 

The envelope function, A (t), had been analyzed earlier by Rice ( 1954 ) in 
his classic treatise on random noise. 

Envelope and wave height function (Rice, 1954) 

Nolte and Hsu ( 1972 ) observed that consecutive high waves in a group of 
waves can excite extreme forces in the mooring lines of large floating vessels. 
Using the analysis of groups based on the envelope concept (vide Fig. 2), 
they defined the average time duration for groups above a threshold level h 
as a basic parameter which controls the grouping characteristics. 

Assuming a narrow-banded process and the results given by Rice (1954), 
Nolte and Hsu ( 1972 ) calculated the average duration time of excursion above 
a threshold level, a = h/2 from: 

1 fh ~ \2v/~zr. / (14/ 

where: 

1 
k2-f2 2_f2 (15) 
where f 22 = m2/mo; f =  m l/mo; mn = nth spectral moment; and Hs is the sig- 
nificant wave height. 

Equation 14 may also be expressed in terms of dimensionless spectral 
bandwidth parameters according to: 

H~/h ( l / v ) ( ~ / h )  
l Ir}, -- ~V~hl -- 2 pX//~-- 2X/~ (16) 

and: 

~h HJh (1/g)  (x/8mo/h) 
(17) 
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where 1/2= (momz-m 2 )/m~ is the dimensionless spectral bandwidth pa- 
rameter defined by Longuet-Higgins (1957, 1984); 52= 1 - (mE~morn2) is 
the dimensionless spectral bandwidth parameter defined by Vanmarcke 
(1972, 1983); To~ =mo/mt; To2=~o/m2; and Hs=4v/~o.  

Note that both ~/-~ and ~/-~ can be considered as variables analogous to the 
mean length of a run of high waves, ~/Sh. In addition, the parameter k, in Eq. 
15, may be expressed as k=  Tol/v= To2/5. 

Battjes and Vledder (1984) and Longuet-Higgins (1984) have identified 
similarities between the Markov chain approximation from the Kimura 
(1980) theory and the statistical properties of the envelope function given by 
Rice (1954). The joint p.d.f, between successive values of the envelope func- 
tion, p(al,a2) given by Rice (1954) is: 

a,a2 [ a,a2] ( 1 8 )  
p(a, ,a2) =too2( 1 _ x2)exP-k2mo(1 mo J 

where a~ =A(tl  ) and az=A(t~ +z) ,  and: 

x= x/(#~+#24) (19) 
mo 

]-~3 = f ~ S, (f)cos [ 27r ( f - f o l ) r ] d f  (20) 

1/4  = f TS,(f)sin [2~z(f-fo~ ) r ] d f  (21) 

and Io (") is the modified Bessel function of the first kind of order zero de- 
fined by (cf., Abramowitz and Stegun, 1968, p. 376): 

Io(z) = l f ~ e x p ( z  cos 0)d0 (22) 
7C 

Longuet-Higgins (1984) assumed that z= mo/m~ = To~ and defined a cor- 
relation coefficient between successive wave heights by: 

h/2 

- h / 2  

q(t), A(t) 

/ ' J  ~ _ , , ~ z A ( t ) ~ ' ~  
/~#t[~- "7" 1 \  ~ /  \ ~ /  i \ t >  
• q(t) , 

, 

i 

2"Th(j-1) i 2"¢'h( l ) = '~= (j-l)-I - -  ( j ) ( j *1) 

Fig. 2. Representation off envelope, A (t); wave height function, H(t); discrete wave heights, 
Hk; and duration of runs of waves defined from the envelope; ~Zh(i) and 2Zh(i). 
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M11 
RA (To1) - ~  (23) 

where: 

M p q  " -  f~f~ (az - a)P (a2 - -  a)qP(al ,a:)da~ da2 (24) 

This correlation coefficient may be computed by: 

E -  [ ( 1 - x2)K/2 ] - (zt/4) 
RA (To1) - ( 2 5 )  

1 -  (x /4)  

where K and E are the complete elliptic integrals of the first and second kind, 
respectively, with parameter x. Equation 25 is identical to Eq. 3 from Kimura 
(1980) for x=2p. 

For narrow-banded processes, Longuet-Higgins (1984) found that: 

x2~, 1 - 4rc=v 2 (26) 

while Eq. 25 has the approximation: 

RA(Tol)~,~c2; 0 < x 2 < l  (27) 

Defining a wave height function as H(I)=2A (t) and a threshold level as 
h = 2a, then a change of variables given by: 

p(hl ,hz)dhl dh2 =p(al ,a2)dal da2 (28) 

yields: 

P( hl ,h2 ) = lP( al ,a2) (29) 

P(h~'hz)=16mg(1-x2)exp-  8 ) Io ( l _ x 2 ) 4 m o j  (30) 

Equation 30 is equal to Eq. 2 derived by Kimura (1980) when x=2p, and 
//rms; 

Defining ~lh and 2lh as the length of a run of high waves and the length of a 
total run of waves computed from the envelope function at a level a=h/2, 
Longuet-Higgins ( 1984 ) found the following estimates for E[ ~lh ] and E[2lh ]: 

1 x / ( l + v 2 ) ( - ~ )  (31, E[llh]=E[ll2a]~f~ p 

which can be rewritten as: 

Et,thl / (32) 

and: 
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1 J(l+ls2)fx/"m-oo~ f a 2 "~ 
E[2lh] =E[212a ] ,~ X /~  P t--~.jexpltfm--~mo) (33) 

which reduces to: 

E [ 2 l ~ ] = E [ l l h ] e x p  ~ (34) 

since [ ( l + v  2 ) l / 2 / v ] = l / 6 a n d h = 2 a .  
Note the similarity between E[l lh]  in Eq. 32 and l/-g in Eq. 17. If Toi is 

defined to be the mean wave period, then Eq. 32 may also be transformed to 
Eq. 16. 

Rice (1954) demonstrated that the envelope and the square of the enve- 
lope have different p.d.f.'s but similar stochastic properties. Therefore, the 
square of the envelope or wave height function may be used to analyze wave 
groups. 

~12(t) f i l ters a n d  H2(t) 

Medina and Hudspeth (1987) and Hudspeth and Medina (1988) identi- 
fied the following similarities between the Smoothed Instantaneous Wave En- 
ergy History (SIWEH) ( Funke and Mansard, 1979 ); the Local Variance Time 
Series ( L V T S )  (Thompson and Seelig, 1984); and the squared wave height 
function [/_/2(t) ] defined from the envelope of the record: 

H2(t) Aa(t) 
S I W E H (  t) ~ L V T S (  t) ~ - -  - - -  ( 35 ) 

8 2 

Hudspeth and Medina ( 1988 ) observed that the squared wave height func- 
tion, H2(t) ,  defined on the basis of a time series and its Hilbert transform 
isolates exactly the low frequency components of the squared water surface 
elevation, r/2 (t), for a linear stochastic model. In contrast, the S I W E H  re- 
quires an arbitrary low-pass filter in order to isolate the low frequency contri- 
butions. They also found that for linear waves the expected value of the Grou- 
piness Factor (GF)  as defined by Funke and Mansard should be 
approximately equal to unity independent of the shape of the spectrum. This 
implies that the Groupiness Factor is not an appropriate parameter to char- 
acterize run lengths. 

Rye ( 1982 ) introduced a more appropriate parameter which was later ver- 
ified by Goda ( 1983 ). This parameter was the mean zero-upcrossing period 
o f S I W E H ,  7~SWH, defined by: 

- [ "Xf 1 I 
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in which I is the total number of zero upcrossings of the mean level in the 
SIWEH; and To= 1/fp is the period of the peak frequency of the spectrum. 

The relationship between SIWEH(t) and H2(t) given in Eq. 35 implies 
that ~rSWH may be related to the mean length of the total run of waves at the 
threshold level h=nrms. From Fig. 2 and Eqs. 35 and 36 we find, 
approximately: 

Tsw ~2~H~m~ ~ [Tol'~ - Tp -2l"~"'~-T~p) (37) 

where 2 fnrr.s is the mean duration of a total run of waves; and 2/n~, is the 
length of the total run of waves using the envelope or wave height function at 
level Hrms. 

Rice (1954), Bendat and Piersol (1986), and Medina and Hudspeth 
( 1987 ) give the following approximations for the spectra of H(t) and H2(t); 

S.(f)  ~ ( 8 -  21r)moF~(f) (38a) 

SH2(f) ~64m2oF,(f) (38b) 

where the envelope spectral density function (unit variance) is defined by: 

F,~(f) =~of  ~ S,( x + f)S~( x )dx (39) 

where a2[H(t) ] = ( 8 -  2rr)mo and a 2 [H2 (t) ] =64 m 2. 
Medina and Hudspeth (1987) demonstrated that the envelope spectral 

density function (unit variance ), F, Or), given in Eq. 39 is usually a monoton- 
ically decreasing function with a maximum value at f=  0. This maximum value 
is closely related to the grouping characteristics and to the variability of the 
variance of the process since: 

r,(O) =4T~=QeTo~ (40) 

where T~ is a temporal spectral peakedness parameter introduced by Medina 
et al. (1985 ); and Qe is a dimensionless spectral peakedness parameter pro- 
posed by Medina and Hudspeth (1987). The Qe parameter is defined as: 

Oe = ~ o  f ~S2(f)d f (41) 

This peakedness parameter is similar to the Goda peakedness parameter, 
Qp, and is also related to parameters introduced by Tucker (1963 ) and by 
Blackman and Tukey ( 1959 ). Equations 38-41 were used by Medina ( 1990 ) 
to analyze the group-induced inshore long waves from the field data pub- 
lished by Nelson et al. ( 1988 ). 

Finally, the envelope of the autocorrelation function has also been used to 
analyze wave groups. Although it is not obvious, the envelope of the autocor- 
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relation function is mathematically related to the spectrum of the squared 
wave height function (see Bendat and Piersol, 1986). For this reason, it should 
be reasonable to use the envelope of the autocorrelation function to analyze 
wave groups. Rye (1982) intuitively tried to correlate wave grouping char- 
acteristics with some features of the autocorrelation function. 

Envelope of the autocorrelation function (Rye, 1982) 

Figure 3 illustrates the spectrum, the autocorrelation function and the cor- 
responding envelope for a rectangular and for a Goda-JONSWAP spectra 
(7=3.3). Because the rectangular-shaped spectrum demonstrates a local 
maximum in the envelope of the autocorrelation function at z= 1.5/B where 
B is rectangular spectral bandwidth, Rye (1982) attempted to analyze wave 
groups using the envelope of the autocorrelation function. 

Note that in Fig. 3b the envelope of the autocorrelation function for the 

I Sx (f) 

l T 

RxC") (o) 

1t 
' •  AR,l('r) 

I I 

Fig. 3. Envelopes of autocorrelation functions from (a) rectangular spectrum and (b) Goda- 
JONSWAP spectrum. 
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Goda-JONSWAP spectrum decreases monotonically. Because of this mono- 
tonic behavior and because of the statistical variability in real ocean wave 
records, Rye was not successful in using the local maxima of envelope of the 
autocorrelation function to characterize wave groups. 

However, it will be shown in the following that the envelope of the autocor- 
relation function is related to the spectrum of the wave height function. 
Therefore, the envelope of the autocorrelation function may be used to char- 
acterize wave groups. 

WAVE HEIGHT FUNCTION ANALYSIS 

Assuming that the sea surface elevation at a point is an ergodic Gaussian 
stochastic process having a variance spectrum S , ( f ) ,  a realization may be 
approximated by: 

M 

q ( t ) =  ~ RmCOS(27~fmt+Om) (42) 
m = l  

where M is the total number of wave components in the realization; Rm, fro, 
and 0,, are the amplitude, the frequency, and a random phase angle, respec- 
tively, of the ruth wave component. The random phase angle is uniformly 
distributed in the interval U[0,2n]. The Hilbert transform, O(t), of q(t) 
(Bendat and Pierson, 1986 ), is given by: 

M 

O(t)= ~ Rmsin(2~Zfmt+Om) (43) 
m =  1 

and the analytical function by: 

AF( t) =q( t )  +jfl( t) =A( t)exp{j[ O( t) +O ]} (44) 

w h e r e j = ~ - 1 ;  A(t) is the envelope function; and [ 0 ( t ) + ~ ]  is the instan- 
taneous phase angle defined by: 

A(t) = , v / ~ ( t )  +02( t )  (45a) 

F0(t) ] O(t) + q~ = arctan/-Tzv,, / (45b) 
Lq~t)J 

In the complex plane, Hudspeth and Medina (1988 ) identified AF(t) as 
an orbital movement consisting of a vertical displacement of a point floating 
in the sea surface r/(t) and a horizontal displacement r~ (t). An instantaneous 
wave height, H(t)=2A(t),  and a local radian frequency, I2( t )=dO(t ) /d t ,  
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were defined. The statistical properties of  these two functions were evaluated 
and related to characteristics of  wave groups. 

From the definition of  H2( t )  and its spectrum, S~2 ( f ) ,  the inverse of  the 
mean frequency of SH2 ( f )  can be interpreted as the average mean period, 
2 ZHrms, of H 2 (t) which can be normalized by the mean wave period, To i, to 
obtain the average length of  a total run of  waves at a threshold level h--Hrms 
(vide Eq. 37). 

Figure 4 illustrates different envelope spectral density functions (unit var- 
iance) normalized by 6 T~. The normalized mean period, 2 f n r m s / 6 T , ,  o f H  2 (t) 
is equal to unity in Fig. 4 for the rectangular spectrum. Therefore, for the 
rectangular spectrum the average length of  a total run of waves at h = n r m  s 

may be approximated by: 

~ 6T~ 
2 "rms To, =3Qe (46) 

On the other hand, the normalized envelope spectral density functions for 
the Goda-JONSWAP spectra in Fig. 4 have normalized mean periods, 2 ~mm, / 
6T~, which are smaller than unity. As a consequence, the expected length of a 
total run of  waves at h=nrms is lower than for the rectangular spectrum. 
Therefore, the expected length of  a total run of  waves for real wave spectral 
will be proportional to the estimate for a rectangular spectrum according to: 

2/-Hrms -" 3Oe Ce (47) 

where Ce is a constant of  proportionality that is a function of  the spectral 
shape and the cut-off frequency f~= 1~2AT where AT is the sampling t ime 
interval of  the squared-wave height nfunction. 

In order to compare estimates of  run lengths given by Eq. 47 with observa- 

I (l/6Tv) Cl/2Tv) (1/1 v) 
i i i i i 

0.6-~\  fl.0 . . . .  

T . . . .  

0.2 

-.Z.~ _.... 
0 ~ ~ , - ~ " - - " - ' 2  '__-,~ .2"~_ ~ - 

o 2 4 ~-- 
f.(6Tu) 

Fig. 4. Normalized envelope spectral density functions (unit variance ) for rectangular and Goda- 
JONSWAP spectra. 
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tions of run lengths computed from discrete waves, the value of L1Tshould be 
approximately equal to Tol because discrete wave heights should be compa- 
rable with values ofH(t)  discretized at this time interval. 

Figure 5 illustrates the effect of spectral shape (y= 1.0, 3.3 and 10.0) and 
of sampling time intervals (AT= T, and T~/2 ) on the constant ofproportion- 
alities, C~, for the Goda-JONSWAP spectrum. 

The similarity between the spectral peakedness parameters, Qp and Q~, de- 
fined by Eqs. 1 and 41 appears to be useful for comparing methods for wave 
group analyses. For the Goda-JONSWAP spectra, the ratio Qp/Qe,,~ 0.87 with 
a slight tendency to increase with increasing values of y. 

The envelope spectral density function (unit variance) F, (f) used in Eqs. 
38 and 39 suggests the possibility of using the Fourier transform of F, (f) to 
characterize wave groups. The Fourier transform ofF~ (f) is the square of the 
envelope of the autocorrelation function of the stochastic process (Bendat 
and Piersol, 1986). 

Figure 6 illustrates the Wiener-Khinchine relations for (a) waves and (b) 
envelopes. Figure 6a shows the unit variance spectrum, S,7(f)/mo, the corre- 
sponding autocorrelation function, R~ (T), and its envelope, AR, (T); and the 
Hilbert transform of the autocorrelation function/~, (z). Similarly, Fig. 6b 
shows the envelope spectral density function (unit variance), F,(f) ;  its Four- 
ier transform, A,~, (z) =RH: (z); as well as the square of the autocorrelation 
function, R 2 (z), and the square of its Hilbert transform, _~2 (3). Note that 
the autocorrelation function of the squared envelope, Rm (z), is the square 
of the envelope of the autocorrelation function, A 2 (z). 

Even though Rye (1982) was unable to find any useful properties (i.e., no 
local maxima) in the envelope of the autocorrelation function, A.~, (z), the 

1.S] r 

AT ,T v AT ,TIt / 2 

j,.° 1 
;CGooA.joNswAp, 

7,100 ) 0'6 i 

O2 

Lol - 
To~/2aT 

Fig. 5. Dependence of Ce on spectral shape (7) and on sampling time interval (AT) for Goda- 
JONSWAP spectrum. 
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4T v 

/ 

r.tfl 

(a) 

(b) 

Fig. 6. Wiener-Khinchine relations for (a) waves and (b) envelopes. 

I 1 ~ ' /  A R ('r) 

-lk' 

following analysis appears to support the hypothesis that the square of the 
envelope of the autocorrelation function, A2, (z), should contain the basic 
properties of the characteristics of the wave groups in a stochastic process. 
Note that by Eqs. 38a, b,/'~ (f) is also an approximation for the spectral den- 
sity function (unit variance) of the wave height function, H(t). Its Fourier 
transform, A 2 (~), should be an approximation for the autocorrelation func- 
tion of the envelope, RA (z). Therefore, according to Eqs. 13, 25, and 27, we 
find: 

A2.(z)  ~RA (T) = R H ( z )  ~RH2 ('C) (48) 

and: 

AZ,(Tol ) ~K2= (2p) 2 (49) 

where K is the parameter defined in Eq. 19 used by Longuet-Higgins 1984 in 
Eq. 25; and 2p is the parameter used by Kimura 1980 in Eq. 3. The parameter, 
K, used by Battjes and Vledder (1984) in a formula similar to Eq. 25 was 
defined using the envelope of the autocorrelation function, A m (z), and To2 
instead of To~ as the mean period. 

Figure 7 illustrates the Wiener-Khinchine relations for the envelope spec- 

T 
i_ 
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Fig. "7. Wiener -Kh inch ine  relations for envelopes f rom G o d a - J O N S W A P  spectra. 

tra for different values of  7 for the Goda-JONSWAP spectra. The envelope 
spectral density functions (unit variance) have been normalized by T0~. In 
principle, the square of the envelope of  the autocorrelation function in Fig. 
7b, RH2 (r/T0~) =A~,  (r/To~), could be used in Eq. 49 to estimate the param- 
eters x or p. 

STATISTICS OF RUN LENGTHS 

Two simple approximations have been used to define the p.d.f.'s for the 
length of run of  high waves and the total run of waves: viz. ( 1 ) the exponen- 
tial, and (2) the Markov chain. The first approximation is based on the in- 
dependence between crossings of the wave height function at a given thresh- 
old level. The second is based on a Markov chain hypothesis for the discrete 
wave heights as given by Eqs. 6-9. 
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Exponential approximation 

535 

The exponential approximation may be derived from a Poisson distribu- 
tion (cf., Longuet-Higgins, 1984). Assuming that successive upcrossings of 
H( t )  at a given threshold level are uncorrelated (which is reasonable for nar- 
row-banded processes and for large 2 [h ), then: 

[21h/(ETh/m) ] 

1 _p(f lh) =)imoo[1 - 1 ] - (50) 

where P(2lh) is the probability that the length of a total run of waves is less 
than 2lh; 21-h =E[2lh] is the mean length of a total run of waves; and (2 [h/m) 
is a small subinterval of 2[h which has a very low probability ( =  1/m) of 
detecting an upcrossing. In the limit as m-~ ~ :  

1--P(2lh) = e x p -  (2z-~h) (51) 

and, therefore: 

1 2lh" 
p(elh) = ( ~ ) e x p - -  ( ~ )  (52) 

in which p (2lh) is the probability density function of the length of a total run 
of waves. 

With similar assumptions, analogous approximations for P(~l~) and p ( ~lh ) 
are given by: 

P( , lh ) = l --exp--~-~h ] (53) 

p ( , l h ) =  e x p - - \ , ~  ] (54) 

If the wave height function is Rayleigh distributed, then a ratio between the 
average run lengths is given by: 

1 f h2"  
1 } = 1 _ p ( h )  = exP 8- mo) 

(55) 

where 2 Fh and ~ [h are the average values for the length of a total run of waves 
and of a run of high waves at a threshold level h, respectively; and P(h ) is the 
cumulative distribution function (c.d.f.) of the wave heights. Note that Eq. 
55 is equivalent to Eq. 34. 
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Three-axes representation 
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Both the exponential (Eqs. 51-55 ) and the Markov Chain approximations 
(Eqs. 6-9) yield p.d.f.'s for llh and zlh that require knowing only the average 
lengths of runs, 1 Fh and 2 Fh. Therefore, estimates for the pairs of parameters 
[1Fh, :ih ] at different threshold levels (e.g., h=Hmed, I~, Hrm~, H~ .... ) com- 
puted from physical data provide the only information needed to compute 
the statistics of run lengths. 

Hudspeth and Medina (1988 ) introduced a three-axes representation for 
average length of runs of waves to describe the characteristics of wave groups. 
Using the following change of variables: 

u = l n ( 8 ~ m o )  (56a) 

v-- ln(l~)  (56b) 

w = lnIln(L~-hh)] (56c) 

the exponential approximation will exhibit straight lines given by w= 2u and 
by v= a o - u  for the average length of runs of waves. High values of ao corre- 
spond to long runs of waves. 

Figure 8 illustrates a three-axes representation for the average length of runs 
for the exponential approximation. Fitting straight lines given by 
v(u) =ao-floU and by w(u)=al  +fllU to the observed pairs of parameters 
[l 6, 2ih] using Eqs. 52 and 54 or Eqs. 6 and 9, will yield approximate prob- 
abilistic descriptions for the run lengths at any threshold level. 

/ 
/ 

/ 
U / 

/ / i 
/ J 

/ / , 

Fig. 8. Three-axes representation of run lengths from the exponential approximation. 



ANALYSES OF OCEAN WAVE GROUPS 537 

Hudspeth and Medina (1988) and Medina and Hudspeth (1988) ana- 
lyzed the three-axes representation for the average length of run of discrete 
waves and the envelope using both physical and numerically simulated data. 
They concluded that run lengths computed from discrete wave sequences did 
not agree very well with run lengths computed from the envelope. The enve- 
lope or wave height function produced higher run lengths when longer sam- 
pling time intervals of the envelope, AT, were used. Neither changes in the 
sampling time interval nor filtering of the data produced results that were 
equivalent at all threshold levels. 

On the other hand, analysis of real data records using very long time series 
(hours) are required to sufficiently reduce the variability in the estimates of 
the parameters [l Fh and l/h ] (envelope), or [lib and E/•h] (discrete waves) 
in order to obtain reliable statistics for mean run lengths. 

CORRELATION BETWEEN SUCCESSIVE WAVE HEIGHTS 

Analyzing wave groups in long-travelled swell waves, Goda (1983) con- 
cluded that the correlation coefficient between consecutive wave heights, 
rnH ( 1 ), is a better parameter to define the length of runs of wave heights than 
is the spectral peakedness parameter, Qv. On the other hand, he noted that 
rHH ( 1 ) is probably correlated with Qv and could, therefore, be considered as 
an internal parameter to describe the phenomenon of wave grouping. We 
demonstrate this correlation later in Fig. 11. 

If F~(f) is approximately the spectral density function of the wave height 
function, then its Wiener-Khinchine transform illustrated in Fig. 7b should 
be approximately the autocorrelation function of the wave height function. 
Therefore, a correlation between successive wave heights could be estimated 

1.0- 

0.5. 

rHM(m) 

~ rn=l 

m=2 ~ m=3 

, ~ "V 

;.o a,o ~'.3 ~.o -;'.o ~o.o 

Fig. 9. Effect of spectral shape on the correlation coefficient between successive wave heights 
for Goda-JONSWAP spectra. 
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"~Rg..(T/TTt~oRH (T/T01) Observations T +G [rHH(~13 1.0 

IGT = T01/16\\ \~\ I 

o r . . . .  
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Fig. 10. Effect of sampling time interval (4T) on estimates of correlation between successive 
wave heights and comparison with swell data (Goda, 1983). 
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Fig. 11. Five wave group parameters compared with theory using two cut-off frequencies (Goda- 
JONSWAP spectra) and with swell data (Goda, 1983). 

from this Wiener -Khinchine  transform. Figure 9 represents estimations of  
rHu(m)  from Goda-JONSWAP spectra using Eq. 48 and values from the 
Wiener -Khinchine  t ransform pairs illustrated in Fig. 7. 

It appears reasonable that values of  run ( 1 ) computed  from discrete waves 
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should be approximately equivalent to values ofrHn ( 1 ) computed from wave 
height envelopes discretized at A T=  To 1. Figure 10 compares three sets of val- 
ues for rHH (m) computed from long-travelled swell waves by Goda ( 1983 ) 
with theoretical estimates for RH (z/Tol ) computed from Goda-JONSWAP 
spectra using two different values of AT (viz., A T= Tol / 16 and A T= Tol ). 

Five of the parameters listed in Table 2 to characterize wave groups may be 
related to each other in a simple manner. Figure 11 illustrates this simple 
theoretical relationship using Eqs. 3, 13, and 48 and the Wiener-Khinchine 
pairs shown in Fig. 7. These theoretical relationships were computed from 
Goda-JONSWAP spectra for six values of the peak enhancement factor, ?, 
using two different values for the cut-off frequency given by f ~ ~ = 2AT for 
AT= To~ and To~/16. The first quadrant [ rHn ( 1 ) vs. Qp ] compares the obser- 
vations of long-travelled swell waves and the numerical simulations from Ki- 
mura that were reported by Goda (1983) with theoretical estimates com- 
puted using two cut-off frequencies (viz., AT= To l and To~ / 16. The second 
quadrant [ Qp vs. Qe] demonstrates the ratio Qp/Qe ~ 0.87 computed from 
Eqs. 1 and 41, and for Goda-JONSWAP spectra. The third quadrant [ Q~ vs. 
x 2 = (2p) 2 ] illustrates theoretically using Eq. 49 the relationship between these 
two parameters as a function of the two cut-off frequencies for the envelope 
spectra. Finally, the fourth quadrant [/(7 2 ~--- ( 2 p )  2 vs. rnH ( 1 ) ] represents the 
relationship defined in Eq. 3. 

Of course, estimates of the five parameters that are related theoretically in 
Fig. 11 will be less correlated when computed from real ocean wave data due 
to the statistical variability of the functions used to estimate these parameters. 

SUMMARY AND CONCLUSIONS 

The parameters and functions derived from the most commonly used 
methodologies to characterize wave groups in linear waves have been re- 
viewed and interrelated in a unified manner. The run length methodology 
and the exponential and Markov chain approximations have been interre- 
lated in a three-axes representation of run lengths. A second interrelationship 
was made for the envelope theory; for the wave height function theory; for 
the r/2 (t) filter theories; and for the correlation function theories. Finally, the 
correlation coefficient between consecutive wave heights [rnH ( 1 ) ] was shown 
to be correlated with the spectral peakedness parameters (Qp and Qe). 

The wave height function method was reviewed in some detail in order to 
demonstrate the relationship between the run lengths theory and the envelope 
theories. A three-axes representation demonstrated that run lengths com- 
puted from a discrete wave height method did not agree with run lengths com- 
puted from a continuous envelope. 

Four parameters (Qp, Qe, tea, and p2) used to characterize wave groups 
were compared with the correlation coefficient [ rHH ( 1 ) ] in order to demon- 



540 J.R. MEDINA AND R.T. HUDSPETH 

strate that these parameters are interrelated. Therefore, because of this inter- 
relationship, only one of the parameters or the correlation coefficient is re- 
quired in order to evaluate wave groupiness. 

Finally, run lengths and any of the wave group parameters are estimates 
from a linear random process, and are, therefore, subject to a statistical vari- 
ability. Very long data records are required in order to reduce to an acceptable 
level the statistical variability of estimates of these parameters and functions. 
The theoretical estimates provided in this review must be interpreted as first- 
order trends to the estimates computed from real data. 
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