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ABSTRACT

Large-eddy simulations are made for the canonical Ekman layer problem of a steady wind above a uni-

formly rotating, constant-density ocean. The focus is on the influence of surface gravity waves: namely, the

wave-averaged Stokes-Coriolis and Stokes-vortex forces and parameterized wave breaking for momentum

and energy injection. The wave effects are substantial: the boundary layer is deeper, the turbulence is

stronger, and eddy momentum flux is dominated by breakers and Langmuir circulations with a vertical

structure inconsistent with both the conventional logarithmic layer and eddy viscosity relations. The surface

particle mean drift is dominated by Stokes velocity with Langmuir circulations playing a minor role. Impli-

cations are assessed for parameterization of the mean velocity profile in the Ekman layer with wave effects by

exploring several parameterization ideas. The authors find that the K-profile parameterization (KPP) eddy

viscosity is skillful for the interior of the Ekman layer with wave-enhanced magnitude and depth scales.

Furthermore, this parameterization form is also apt in the breaker and Stokes layers near the surface when it is

expressed as a Lagrangian eddy viscosity (i.e., turbulent Reynolds stress proportional to vertical shear of the

Lagrangian mean flow, inclusive of Stokes drift) with a derived eddy-viscosity shape and with a diagnosed

vertical profile of a misalignment angle between Reynolds stress and Lagrangian mean shear.

1. Introduction

The Ekman layer is the quintessential oceanic surface

turbulent boundary layer. Its canonical formulation is

a steady surface wind stress, t 5 r
o
u*

2 (u
*

the oceanic

‘‘friction velocity’’), on top of an ocean with uniform

density ro and uniform rotation rate f (Coriolis fre-

quency) aligned with the vertical direction. The analytic

steady solution with constant eddy viscosity ko has a

surface current to the right of the stress direction (with

f . 0) and a further rightward spiral decay over a depth

interval ;
ffiffiffiffiffiffiffiffiffi
ko/f

p
. With a turbulent boundary layer pa-

rameterization, for example, K-profile parameterization

(KPP) (Large et al. 1994; McWilliams and Huckle 2006),

k(z) has a convex shape and a magnitude ;u*
2/f —hence,

a depth scale ;u
*

/f. Large-eddy simulation (LES)—with

an explicit calculation of the turbulent eddies, their

Reynolds stress, and the mean current—provides a val-

idation standard for parameterizations to be used in

large-scale circulation models (Zikanov et al. 2003).

The same winds that cause the Ekman layer also cause

surface gravity waves, either in local equilibrium with the

wind or in disequilibrium due to a transient history or re-

mote propagation. The combination of wind and waves

has a significant impact on the (wavy) Ekman layer, most

importantly through the generation of turbulent Langmuir

circulations (LCs) and modification of the Coriolis force

through the wave-averaged Stokes drift profile ust(z) act-

ing as ‘‘vortex forces’’ (Skyllingstad and Denbo 1995;

McWilliams et al. 1997; plus many subsequent studies re-

viewed in Sullivan and McWilliams 2010). Furthermore,

especially for high winds and waves, the momentum

transmission from atmospheric winds to oceanic currents

by surface drag occurs primarily through isolated impulses

associated with wind-generated surface waves when they

break and penetrate into the ocean, rather than through

a uniform t at the surface; this is represented in a sto-

chastic breaker model (Sullivan et al. 2007).
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This paper reports on LES solutions of the Ekman

layer problem, which is a simpler boundary layer

configuration than most prior studies that include

a depth-limiting stable density stratification and sur-

face buoyancy flux.1 We contrast the Ekman layer

without wave effects to the wavy layer with both

Stokes drift and breaker impulse forcing, in various

combinations to distinguish particular influences. The

primary focus is on how the coherent structures,

LCs, and breaker-induced circulations relate to the

turbulent Reynolds stress—hence, the mean current

profile—to be able to assess the requirements for a

successful parameterization of the wavy Ekman layer.

Because we do not include buoyancy effects, non-

stationarity, or other types of currents nor do we

survey a variety of different wave wind regimes, our

results only provide an idealized case study rather

than a more comprehensive characterization of wave

effects in the surface boundary layer. Nevertheless,

for this case it demonstrates their importance and

salient characteristics.

2. Problem setup

The LES code solves the wave-averaged dynamical

equations in Sullivan and McWilliams (2010) with

forcing options among a uniform mean surface stress

tx, fields of stochastic breaker acceleration A(x, t) and

subgrid-scale energy injection rate W(x, t) or mean

breaker vertical profiles, hAi(z) and hWi(z). (Mean

refers to time and horizontal averages, denoted by

angle brackets; z is the vertical coordinate.) The forc-

ing options are normalized to give the same mean

vertically integrated force; that is,
Ð
hAi dz 5 t x/r

o
5 u*

2.

The LES model includes a subgrid-scale parameteri-

zation scheme that generalizes the turbulent kinetic

energy balance and eddy viscosity model in Moeng

(1984) with the additional Stokes drift and breaker

work effects in Sullivan and McWilliams (2010).

We focus on a particular situation where the forcing

is aligned with x̂ (east), and the wind speed at 10-m

height is Ua 5 15 m s21 [implying a surface stress of

0.35 N m22; hence, velocity u
*

5 (jtxj/ro)1/2 5 1.9 3

1022 m s21]. The wave elevation spectrum [deter-

mining the Stokes drift profile ust(z)] and breaker

spectrum (determining A and W ) are empirically

consistent with equilibrium for this wind for a wave age

of cp/u
*a 5 19 (cp is the phase speed of the wave ele-

vation spectrum peak and u
*a 5

ffiffiffiffiffiffiffiffiffiffiffi
r

o
/r

a

p
u* is the

atmospheric friction velocity).2 The profiles of hAi(z)

and ust(z) are shown in Fig. 1. Both are surface in-

tensified and have characteristic vertical length scales

(defined, somewhat arbitrarily, as the depth where the

amplitude has decreased to 10% of its surface value) of

hb 5 1.4 m and hst 5 13 m, respectively. Both of these

are much smaller than the turbulent boundary layer

depth ho; the ordering hb � hst � ho is typical in the

ocean. For full wave elevation and breaker spectra, as

used here, there is no uniquely correct vertical scale

definition, and we use these estimates only as a rough

guide for the vertical profiles shown below. We will see

that the flow structure and dynamical balances are

distinctive in three sublayers within the overall Ekman

layer, which we designate as the breaker, Stokes, and

interior shear layers. We choose a midlatitude Coriolis

frequency, f 5 1024 s21: hence, an Ekman boundary

layer dimensional depth scale of u
*
/f 5 190 m. The

domain size is Lx 3 Ly 3 Lz 5 500 m 3 500 m 3

300 m, large enough to encompass the Ekman layer

and its energetic turbulent eddies. The horizontal grid

cell size is dx 5 dy 5 1.7 m, and the vertical grid is

nonuniform in the vertical with a minimum cell size

dz 5 0.42 m near the surface and maximum of dz 5 5 m

at the bottom where the flow is nearly quiescent. Solu-

tions are spun up from rest to a statistical equilibrium

state after about one inertial period, 2p/f. The solution

analyses are made over a subsequent interval of several

inertial periods, with temporally filtering to exclude the

inertial oscillation in the horizontally averaged current

at each vertical level. All our analysis results are pre-

sented in nondimensional form using appropriate fac-

tors of u
*

and f.

In this paper we distinguish among different wave

effects by defining six different cases, all of which have

the same mean momentum forcing (i.e., the same u
*
).

The case without any wave effects is designated as Nt,

where N denotes the exclusion of Stokes drift influences

and t denotes a surface-stress boundary condition; this is

the classical Ekman problem. The case with fullest wave

effects is SB, where S denotes the inclusion of Stokes

drift and B denotes stochastic breaker forcing; we view

1 Polton et al. (2005) and Polton and Belcher (2007) also analyze

simulations of an unstratified Ekman layer with Stokes drift.

2 This age is somewhat young compared to full wind–wave

equilibrium, with cp/u
*a 5 30. Younger waves have relatively

fewer, larger breakers, and we make this choice to allow better

resolution for a given spatial grid. Our conclusion in section 5 is

that the details of the A and W profiles are only important within

the breaker layer, so the age choice is not determinative overall.

See Sullivan et al. (2007) for details about how the elevation and

breaker spectra are specified from measurements and related to ust,

A, and W consistent with conservation of momentum and energy in

the air–wave–water system.
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this case as the most complete representation of wave

effects. Intermediate partial wave-effect cases are St

and NB. In addition, to understand the importance of

the transient breaker forcing, we define cases NhBi and

ShBi in which the four-dimensional (4D) fields of ac-

celeration and energy-injection rate are replaced by

their 1D mean profiles: hAi(z) and hWi(z).

3. Solution analysis

a. Bulk statistics

Table 1 gives several bulk statistics for the six cases.

These include the mean boundary layer depth ho; the

depth-integrated value of the turbulent kinetic energy3

profile,

e(z) 5 0:5hu92i 1 hesi (1)

[i.e., the sum of the large-eddy velocity-fluctuation

energy and the local subgrid-scale kinetic energy den-

sity es as parameterized in LES; the superscript prime

denotes a fluctuation about the horizontal average

and the superscript s refers to a (x, t) local variable

in the subgrid-scale energy model]; and the total

depth-integrated energy injection rate,4
Ð

E tot dz, asso-

ciated with either surface stress, txhui(0)/ro, or breaker

forcing,
Ð
hAu 1 Wi dz. The velocity component u is the

x velocity in the direction of the wind and waves, and

y, w are the transverse and vertical velocities in the

y, z directions. All quantities in the table are listed

nondimensionally.

We immediately see several important wave effects.

Stokes drift and vortex forces make the turbulent

Ekman layer about twice as deep, independent of how

the momentum forcing occurs. This effect would be

much smaller in the more commonly analyzed situation

with a stable pycnocline limiting the boundary layer

depth. Vortex forces also increase the kinetic energy,Ð
e dz, again by about a factor of 2. The injection rateÐ
E tot dz is largest with breaker forcing, mainly because

W is large, and this enhancement has a similar magni-

tude with either stochastic or mean breaker forcing and

with either ust present or not; the injection rate is slightly

smaller in hBi cases than B cases because the fluctuation

FIG. 1. Normalized profiles of (left) Stokes velocity ust(z) and (right) mean breaker acceleration hAi(z). The

dimensional length scales are hst 5 13.2 m and hb 5 1.4 m, each defined as the depth at which the profile is 10% of its

maximum at the shallowest grid level in the model.

3 This is distinct from the mean kinetic energy profile,

e(z) 5 0:5hu?i
2. See section 3c and appendix A.

4
Ð

Etot dz is the breaker and stress injection for the combined

mean and turbulent energies, etot 5 e 1 e. It is the sum of the work

associated with the mean flow,
Ð

E dz 5 txhui(0)/ro 1
Ð
hAihuidz,

plus the integral of E defined in (8) associated with breaker fluc-

tuations A9 and subgrid-scale energy injection W. This separation is

relevant to the separate mean e and turbulent e balances. See

section 3c and appendix A for the full energy balances.
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correlation effect, hA9u9i, is absent. There is also a no-

ticeable difference in Etot between the stress forcing

cases with and without Stokes drift (i.e., St and Nt, re-

spectively); we will see in section 3b that the St case

injection rate is smaller than the Nt case because hui(0)

is much reduced through the effect of the Stokes–Coriolis

vortex force.5 The enhanced boundary layer depth is

consistent with the idea that, when Stokes drift is im-

portant, the relevant turbulent velocity scale is a com-

posite one,

u
*com 5 u*

2/3u1/3
st o. (2)

This scale is derived by assuming that Stokes–Reynolds

stress production in the turbulent kinetic energy (TKE)

balance (i.e., Pst ; u*
2ust/hst in section 3c) enters into a

dominant balance with dissipation rate � ; u3
*com/hst.

Because ust(z) is more than 10 times larger than u
*

near the surface6 (Fig. 1), the estimate u
*com/f for ho is

more than twice as deep with Stokes drift, consistent

with Table 1. The relevance of u
*com to the TKE bal-

ance has been previously validated in stratification-

limited Ekman layers (Harcourt and D’Asaro 2008;

Grant and Belcher 2009; Kukulka et al. 2010) where

ho does not satisfy the Ekman scaling relation.7 Also,

Ð
e increases by about a factor of 2 with ust present, but

this does not scale well with a bulk estimate using the

composite velocity scale, u3
*com/f (10 times larger). The

enhanced Etot is consistent with the idea of breaker in-

jection of TKE and a local production–dissipation TKE

balance (Craig and Banner 1994), and it is also consis-

tent with measurements of enhanced � near the surface

(Terray et al. 1996). Remarkably, there is not a direct

relation between Etot and the turbulent energy
Ð

e dz

itself. Breaker forcing strongly enhances energy input,

hence dissipation, yet it does not increase e greatly. Nor

does Etot increase only because ust is present, as would

be suggested by the increase in u
*com (cf. cases Nt and

St). This demonstrates a degree of decoupling between e

itself and the energy cycle throughput rates, Etot and �, so

that the conventional turbulent scaling of �; e3/2/h, for

some turbulent length scale h, does not hold across the

various combinations with ust and B. Furthermore,

because eddy viscosity is commonly estimated as k ;

e1/2h, this result also raises a question about how to

express the idea that breaker energy injection leads to

enhanced turbulent mixing near the surface. The in-

crease of e with ust does support the idea of enhanced

mixing by the LCs sustained by the vortex force;

however, the increase in
Ð

e dz is not by as much as

a simple scaling estimate ;u3
*com/f , and the diagnosed

value of k (section 3d) increases by far more than e1/2h

does. In summary, Stokes drift effects increase the

boundary layer depth and turbulent energy, and

breakers increase the energy cycle rate, but these en-

hancements are not collectively well represented by

simple bulk scaling estimates, even with the composite

velocity scale u
*com in (2).

b. Mean velocity and momentum balance

The mean momentum balance is

0 5 f hyi 2 ›zhuwi 1 hAi

0 5 2f (hui 1 ust) 2 ›zhywi, (3)

with an associated surface condition of hu?wi5 2r21
o txx̂

at z 5 0 (i.e., it is zero in the B cases). These balances

contain the mean Coriolis and Stokes-Coriolis force,

the mean breaker acceleration hAi, and the divergence

of the total horizontal turbulent Reynolds stress,

hu?wi 5 hu9?w9i 1 hts
?zi. (4)

ts
ij is the local subgrid-scale stress tensor as evaluated

in the LES parameterization model. The index nota-

tion is i and j for all three spatial directions, ? for

a horizontal vector component, and z for a vertical

TABLE 1. The six cases used in this study. The depth ho is defined

as the depth at which the magnitude of the turbulent stress is 10%

of its surface value. The third column is the total kinetic energy per

unit area. The fourth and fifth columns are the total energy input

rate
Ð

E tot dz for t and B cases, respectively.

Case ho f/u
*

Ð
e dz fu23

* r21
o txhui(0)u23

*

Ð
hAu 1 Widz u23

*

Nt 0.46 0.98 14

NhBi 0.45 1.24 242

NB 0.46 1.14 265

St 1.06 2.26 0.8

ShBi 1.06 2.49 234

SB 0.94 2.10 261

5 In case St the small wind stress injection is not the dominant energy

source, which rather are Stokes-Coriolis and Stokes production con-

versions with the surface waves (section 3c and appendix A).
6 For a full wave spectrum, the choice of ust o is somewhat del-

icate because ust(z) near the surface is sensitive to the spectrum

shape. So, we prefer to view this scaling estimate for u
*com quali-

tatively rather than precisely. Similarly, the turbulent Langmuir

number, Lat 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

st o
/u*

q
, is an useful indicator of the wind wave

dynamical regime (McWilliams et al. 1997), but it too depends on

ust o. From Fig. 1 we see that Lat is a bit smaller than 0.3 in our S

cases, close to a local wind wave equilibrium value.
7 Harcourt and D’Asaro (2008) propose a modified form of

u
*com with different vertical weighting of ust(z) for use in scaling

the variance of w under more general circumstances. Kukulka et al.

(2010) propose another modification when hui(0)/ust o is not small

(unlike in our S cases).
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one. The vertical integrals of (3) relate the mean

transport to the Stokes transport and the mean wind

stress in t cases (or its integral equivalent
Ð
hAi dz in B

cases),

ð
hui dz 5 2

ð
ust dz,

ð
hyi dz 5 2

tx

rof
. (5)

These relations are independent of the profiles of tur-

bulent Reynolds stress.

The mean horizontal velocity profiles, hu?i(z) 5 (hui,
hyi) (z), have the familiar Ekman spiral structure of

decaying amplitude and rotating clockwise with in-

creasing depth (Fig. 2). The profiles for the different

cases are primarily distinguished by Stokes drift effects,

FIG. 2. Mean horizontal velocity profiles: (top) directional components normalized by u
*

and (bottom) magnitude

and angle relative to east. Inset plots show detail near the surface. The two thick tick marks in the insets indicate

nondimensional hst and hb. All cases in Table 1 are included. The line color convention is Nt (cyan), NhBi (magenta),

NB (blue), St (green), ShBi (red), and SB (black).

NOVEMBER 2012 M C W I L L I A M S E T A L . 1797



with the forcing mechanism secondary. Compared to

an Ekman layer without waves, Stokes drift causes the

boundary layer depth ho to be deeper (Table 1); hence,

the mean velocity magnitude is diminished near the

surface to satisfy the transport constraint (5). Stokes

drift further diminishes the downwind velocity near

the surface. This effect is a consequence of the Stokes-

Coriolis force (Huang 1979): that is, the second term in

the y-momentum balance in (3). It adds an anti-Stokes

component to the x transport in (5) and makes the

surface current angle uu(0) more nearly southward,

2p/2. The reduced value of hui(0) with ust leads to the

reduced energy injection rate Etot in case St with stress

forcing (Table 1); in the cases with breaker forcing, Etot

is dominated by the subgrid-scale injection hWi, hence

is not sensitive to hui(0). Near the surface hui(z) has

downwind, down-wave shear. Without ust, this extends

over the whole upper half of the layer, and it is espe-

cially large within a thin layer with stress forcing (as

expected from Monin–Obukhov similarity, with hui; 1/z)

controlled in the LES by the subgrid-scale mixing.

Breaker forcing limits the strength of the near-surface

shear over a vertical scale of hb. With ust, the positive x

shear is confined within the breaker layer hb. Just

below in the Stokes layer, the x shear is up-wave over

most of the Stokes depth scale hst in accord with the

anti-Stokes tendency in (3). Even with wave effects,

›zhyi(z) does not have strong features on the scales of

hb and hst. With breaker forcing its surface boundary

condition of zero, shear is approached within a thin

layer controlled by subgrid-scale mixing. The magni-

tude of ›zhyi(z) is diminished with ust because ho is

bigger while the y transport is the same. Overall, the

oscillations with depth of the velocity component

profiles (i.e., Ekman spiral) are less evident with ust

even in the interior shear layer (cf. appendix B). In

both components breaker forcing and ust cause re-

duced mean shear near the surface compared to sur-

face stress forcing, and more so in the transient B cases

than in the mean hBi cases, consistent with enhanced

vertical momentum mixing by wave-induced breakers

and LCs and the absence of a Monin–Obukhov simi-

larity layer.

The Reynolds stress profiles, hu?wi(z) (Fig. 3), are

grossly similar among the different cases except within

the breaker layer near the surface. As with the mean

velocity in Fig. 2, we plot the Reynolds stress as its

magnitude jhu?wij and angle u2uw. The latter is in the

direction opposite to 2hu?wi to facilitate comparison

with the mean shear ›zhu?i, which can be compared

within the framework of an eddy viscosity assumption

of proportionality between Reynolds stress and mean

shear (section 3d).

The Reynolds stress angle profiles show monotonic

clockwise rotation with depth by a total amount Du2uw ’

2p before the stress magnitude becomes very small.

So, the main intercase difference is due to the larger

vertical scale ho with ust. hence a slower rotation rate. In

all cases, the bulk rotation rate is du2uw/dz ’ 20.7p/ho.

The Ekman spiral has a simpler manifestation in Reynolds

stress than in mean velocity, where the anti-Stokes ten-

dency partly obscures the rotation. Here hu?wi(0) 5

›zhu?i(0) 5 0 with breaker forcing, whereas the latter

quantity is nonzero and equal to 2u*
2 in the x direction

with stress forcing. The different surface boundary

conditions for surface stress and breaker forcing are

accommodated within the thin breaker layer hb without

otherwise much difference in the interior; that is, 2›zhuwi
stays positive to the surface with eastward stress forcing

while

2›zhuwi’ 2hAi , 0 (6)

with breaker forcing. Notice in particular the opposite

signs between downwind Reynolds stress and mean

shear within the Stokes layer (top-left panels in Figs. 2

and 3), with ›zhui , 0 while 2huwi . 0, which is in-

consistent with downgradient momentum flux; this

presages the invalidity of conventional eddy viscosity

parameterization in the Stokes layer (section 4). With-

out the Stokes-Coriolis and vortex forces, the flux is

downgradient in the upper ocean and even throughout

the interior shear layer (section 4). In both the upper

ocean in no-wave cases and in Stokes layers, hyi, 0 (mean

flow to the right of the surface wind) and ›zhyi , 0;

hence, 2›zhywi . 0 and 2hywi . 0 because of zero

transverse Reynolds stress at the surface. These hyi and

hywi profiles are qualitatively similar in shape with or

without waves, with the transverse Reynolds stress di-

vergence in (3) balanced in the upper part of the layer by

either fhui or fust in N or S cases, respectively.

c. Velocity variance and energy balance

Many previous studies show that the Stokes drift

vortex force increases e and alters the anisotropic

partition of variance among the fluctuation velocity

components by reducing the downwind component u9

and increasing the transverse and vertical components

(y9, w9) as expected from the idealized geometry of

LCs as longitudinal roll cells. In these aspects, we also

see two groupings based on whether ust is included

(S cases) or not (N cases) (Fig. 4). The cases with dif-

ferent forcing specifications have more complicated

distinctions: t forcing enhances u9 variance and di-

minishes (y9, w9) variance near the surface without ust

(N cases) and vice versa with ust (S cases); e is much
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larger in the surface layer with breaker forcing than

with stress forcing, and it is largest with hBi forcing,

mainly because of a subgrid-scale e enhancement near

the surface; and the forcing-induced differences are

mostly confined to a thin layer of several times hb. The

maximum for hw92i(z) occurs near the surface near the

base of the Stokes layer but outside the primary in-

fluence of subgrid-scale mixing and breaker forcing. It

is much stronger in S cases as an expression of LCs that

have peak intensity in the Stokes layer (section 3e).

The case St is anomalous in having the shallowest

depth for the maximum, and it also has the largest

surface extremum for hy92i; vortex force acts almost

singularly in generating small-scale LCs near the sur-

face, unless limited by the extra mixing associated with

breaker forcing.

FIG. 3. Mean profiles of turbulent vertical Reynolds stress: (top) directional components and (bottom) magnitude

(normalized by u2
*) and angle u2uw (radians counterclockwise from east). Plotting conventions as in Fig. 2. The angle

curve is truncated below where the stress magnitude is less than 2% of its near-surface value.
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We decompose the profile of kinetic energy into three

pieces: the mean-current kinetic energy (MKE),

e(z) 5 0:5hu?i
2(z), and the total turbulent kinetic energy

(TKE), e(z) in (1), which contains both large-eddy and

subgrid-scale components. Energy balance relations are

derived by averaging the product of the momentum

equation and the velocity and adding this to an average

of the subgrid-scale model that is expressed ab initio as

an energy balance.

There are separate balance relations for e and e. For

completeness, we record the mean energy balance in ap-

pendix A, but we focus here on the balance relation for the

turbulent energy e(z) in statistical equilibrium; namely,

›te(z) 5 0 5 E 1 Pu 1 Pst 1 T 2 �. (7)

The individual right side terms are transient breaker or

surface wind stress work; the Reynolds stress productions

FIG. 4. Large-eddy fluctuation velocity component variances and e profiles (including the subgrid-scale energy)

normalized by u2
*. The e plot is logarithmic. Plotting conventions are otherwise as in Fig. 2.
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from mean shear and Stokes shear; the vertical transport;

and the viscous dissipation rate, respectively. The mean

wind stress hti or mean breaker acceleration hAi(z) is an

energy source for e, not for turbulent e directly; the con-

nection to the latter is made by a conversion through the

shear productionPu, which is thus a sink for e and a source

for e (appendix A). We assume a steady wind here, which

therefore does not provide a direct source for e. The

transient and subgrid-scale breaker work for e is

E 5 hA9u9 1 Wi. (8)

The shear and Stokes production terms are

Pu 5 2hu?wi›zhu?i

Pst 5 2huwi›zust, (9)

where the total horizontal Reynolds stress is defined in

(4). The transport term is

T 5 2›z w9

�
1

2
u92 1

5

3
es 1 p9/ro

�� ��

1 hu9it
s9
izi 2 2hks›zesi

�
(10)

in which p is the dynamic pressure.8 Index summation

over i is implied in the next-to-last term. Finally, the

viscous dissipation term occurs entirely through the

subgrid-scale model,

�(z) 5 h�si. (11)

The quantities stress ts, energy es, dissipation rate �s, and

eddy viscosity ks are local fields calculated in the subgrid-

scale model (section 2).

The TKE balance without wave effects (Fig. 5, right)

is a familiar story of Pu ’ �, with T much weaker and

acting to spread e downward from the more energetic

upper part to the lower part of the Ekman layer; the

crossover depth from negative to positive T is around

10% of ho. The story is quite different with wave effects

(Fig. 5, left). Breaker energy injection E now happens

within the Ekman layer instead of just at the surface by

wind stress work, albeit confined to the thin breaker

layer hb, and this influence is so strong that the entirety

of the underlying Stokes and interior shear layers are

supplied by the downward energy flux from the breaker

layer, T . 0. Dissipation � is much increased in the

surface layer primarily to balance the large E, but T is

also much increased. The transport again carries energy

downward into the interior of the Ekman layer, but now

T is positive even in the Stokes layer and at least part of

the breaker layer: that is, at all depths where we trust its

discrete diagnostic accuracy (see Fig. 5 caption).9 The

negative T values necessary for its zero depth integral

are only in the top two grid cells (not plotted). Stokes

production Pst is much larger than Pu but is necessarily

restricted to the Stokes layer. Within the interior shear

layer Pu is an energy source, but small compared to

transport and dissipation. Within the breaker layer, in-

jection and transport approximately balance dissipation;

over the Stokes and interior shear regions of the wavy

Ekman layer, Stokes production and transport balance

dissipation. The differing character of the TKE balance

with depth may explain why the simple scaling estimate

based on Stokes production, u
*com in (2), is not uni-

formly successful in accounting for wave effects (section

3a). Nevertheless, the importance of Stokes production,

rather than shear production, gives support for the La-

grangian eddy viscosity proposed in sections 3d and 4.

In summary, the TKE balance without waves has

shear production as its source, passed through the MKE

budget from mean surface-stress wind work. In contrast,

the TKE balance with waves has primarily breaker en-

ergy injection and secondarily Stokes production as its

sources, both of which are conversions from the wave

field; in this case the energy conversion from MKE

though Pu is much less important. The associated MKE

balances are further summarized in appendix A.

d. Eddy viscosity profiles

We diagnose the scalar eddy viscosity magnitude im-

plied by the Reynolds stress and mean shear,

k 5
jhu?wij
j›zhu?ij

, (12)

as well as directional angle defined by

8 In LES with waves, the large-eddy pressure is

p 5
p

ro

1
2

3
es 1

1

2
[(u 1 u?st)

2
2 u2

?st]

(Sullivan et al. 2007). The first two terms contribute to T in (10),

and the third term combines with the vortex force to yield Pst and

cancel any net contribution to T .

9 An implication of the diagnosed transport profile is that there

probably is finescale structure on a scale of perhaps 10 cm or less

near the surface, which is not well resolved in our present solutions.

Besides the discretization accuracy limitation that could be ame-

liorated with finer grid resolution, we would question the physical

validity of our subgrid-scale and breaker parameterization schemes

in a surface microscale realm.
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u
k

5 u
2uw 2 uu

z

, (13)

which represents the local misalignment of the stress and

shear. The usual conception of local eddy viscosity as-

sumes that the Reynolds stress hu?wi is oppositely

aligned with the mean shear ›zhu?i, hence that uk 5 0.

In an Ekman layer without wave effects in case Nt,

k(z) has a convex profile that extends over the whole of

ho (and even somewhat beyond), and uk(z) is small

(Fig. 6).

These characteristics are supportive of a full-turbulence

[a.k.a. Reynolds-averaged Navier–Stokes (RANS)] eddy-

viscosity parameterization scheme such as KPP, and the

skill of this turbulence model is assessed in section 4. In

fact, uk(z) is slightly positive except at the boundary

layer edges10, but not to such a degree that an eddy-

viscous KPP solution is inaccurate (section 4).

With wave effects in case SB, k(z) is much larger and

extends deeper. Both features are qualitatively consis-

tent with Ekman layer scalings of ho ; u
*com/f and

k ; u
*comho ; u2

*com/f using the composite velocity

scale u
*com in (2). However, the k enhancement is by

nearly a factor of 10 in Fig. 6, while the enhancement

of (u
*com/u

*
)2 is not even half as large, so there is a

quantitative discrepancy. A much bigger discrepancy

is a large positive spike of uk in the Stokes layer and a

broader, but lesser, maximum in the interior of the Ekman

layer. This presents a significant challenge to a conven-

tional eddy viscosity RANS parameterization.

In anticipation of the RANS parameterization dis-

cussion in section 4, we define alternative eddy vis-

cosity profiles relative to the Lagrangian mean flow,11

huL
?i5 hu?i1 u

st
:

kL 5
jhu?wij
j›zhuL

?ij
, uL

k 5 u
2uw 2 uuL

z
. (14)

Without ust (e.g., in case Nt), these quantities are the

same as (12). They are plotted for case SB in Fig. 6. Near

the surface kL is smaller than k because the Lagrangian

FIG. 5. TKE balances for cases (left) SB and (right) Nt normalized by u2
*f on a split log–log scale, where the sign of

the axis quantities is listed explicitly. Individual terms in (7)–(11) are breaker work E (magenta), shear productionPu

(red), Stokes production Pst (blue), transport T (green), and viscous dissipation 2� (black). Tick marks indicate z 5

2hst and 2hb in (left). The top two grid cells are excluded where the discretization accuracy of the TKE diagnosis is

dubious as judged from the residual of rhs terms in (7).

10 The small value of uk(z) is robustly nonzero with respect to

computational parameters and statistical averaging accuracy in

case Nt. We do not have an explanation.

11 This is the short-time mean velocity averaged over an en-

semble of parcels that move with x�5 u(x) 1 u?st
(x) from random

initial locations and release times x(t0).
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shear is larger, but it still is much larger than k without

wave effects.12 The kL has a depth structure that is

smoothly distributed over the Ekman layer ho as a

whole, and it has an evident suppression within the

Stokes and breaker layers, for example, compared to

a linear interpolation between the midlayer peak and

the surface, which is characteristic of surface layer sim-

ilarity with k ; u
*
hoz when there are no wave effects.

Furthermore, uL
k (z) has a very different structure than uk

with a small negative lobe through the Stokes layer.13

This suggests that an eddy viscosity parameterization

based on huL
?i might have more utility in the surface

layer than an Eulerian one. In the interior of the Ekman

layer where ust ’ 0, both the conventional and La-

grangian eddy viscosity quantities are the same. So, the

interior behavior of u
k

’ uL
k . 0 is also an issue for an

eddy viscosity model. These ideas are assessed in section

4. The explanation is a slower rotation with depth of the

LCs than the mean shear (section 3e).

e. Langmuir circulations

The turbulent eddies in a LES solution with vortex

force have an organized LC structure, reminiscent of the

well-organized longitudinal patterns often seen in sur-

factants in lakes and the ocean. Without ust the eddy

patterns are quite different from LCs. Figure 7 shows

turbulent LCs in the vertical velocity field in case SB.

They have smaller horizontal and vertical scales near the

surface, and their longitudinal axis rotates clockwise

with depth as part of the Ekman spiral. The w extrema

are asymmetric with larger downward speeds than up-

ward. This asymmetry is measured by the skewness

profile, shown in Fig. 8,

Sk[w] 5
hw3i(z)

w2h i3/2
(z)

. (15)

The effect of the vortex force (S cases) is to make

Sk[w] ’ 20.8 except within the breaker layer where it

decreases toward zero. In contrast, the N cases have

generally weaker skewness, especially in the upper half of

the layer. The eddy patterns are more complex than the

idealized roll cells of linear instability theory (Leibovich

1983). In particular, the largest w , 0 values occur more in

FIG. 6. Normalized eddy viscosity magnitude k and angle uk for cases SB (solid) and Nt (dashed). Also shown are the

Lagrangian eddy viscosity and angle for the SB case (dashed–dotted). The curves are truncated with depth as in Fig. 3.

12 The enhancement of k near the surface is expected from

a model of TKE injection by wave breaking (Craig and Banner

1994). Our solutions indicate it is an ill-determined quantity be-

cause the mean shear ›zhui is weak near the surface. In contrast, kL

is well determined; see (23).
13 We explain uL

k , 0 in the Stokes layer by noting the Reynolds

stress balance (3) if we assume is u?st is larger than hu?i,

huwi’ u2
* 2 f

ð0

z
hyi dz9 . 0

hywi’ 2 f

ð0

z
ust dz9 , 0:

hywi decreases rapidly and u2uw rotates clockwise rapidly, while

u
uL

z
rotates clockwise more slowly; both effects are because ust is rela-

tively large.
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isolated horizontal patches than along lines, although the

elongated structure is evident at a lower amplitude.

To educe the typical structure of a LC, a composite

average of many individual events is employed. The

vertical column is divided into 14 zones with central

depths zc to aggregate LCs with similar vertical struc-

ture; the zc are nonuniformly spaced to capture the finer

scales near the surface. To detect a LC, a trigger crite-

rion is defined to identify its central location. A nor-

malized vertical velocity, wy 5 w(x, y, z)/rms[w](z), is

used to enable detection across a broad depth range

because the magnitude of w varies widely (Fig. 4). The

trigger criterion is that wy is a local minimum with

wy , 2wycr. Many snapshot 3D volumes are sampled,

each temporally separated to ensure independent

events. Within a snapshot volume the detected wy extrema

are sorted by their magnitude, largest first. When an event

is detected, a 3D local volume of size L(zc)
2 �H(zc) is then

used to ‘‘black out’’ any other nearby events to avoid re-

dundant captures.14 All detected events in a given zone

are then averaged together to produce a 3D composite

spatial pattern in uc(x, y, z) and a total detection number

per volume nc(z) (i.e., per unit time). The horizontal mean

is subtracted before calculating the composite fields.

Pattern recognition is inherently a fuzzy analysis

procedure with potentially ambiguous event detections.

So we deliberately choose conservatively large values for

wycr, Lc, and Hc. This errs on the side of undercounting the

LC population by including only the strongest events

based on a presumption that they will have the cleanest

spatial structure. We also test that the results are not

highly sensitive to the detection parameter choices, except

in the total event number. The results shown here are for

wycr 5 4 for all zc and for blackout exclusion sizes that

increase linearly with depth, Lc 5 Hc 5 2.5 m 2 0.3zc, to

match the increasing LC size (Fig. 7); for example, at the

deepest zc 5 20.95u
*
/f 5 2177 m, Lc 5 0.29u

*
/f 5

53 m. The LC detection results in Figs. 9–11 are based

on 80 temporal snapshots, with a total of 11 600 detected

events used in the composite averages.

An example of a composite LC is Fig. 9 for a relatively

shallow zc 5 28 m. It has a clean spatial structure of an

elongated downwelling center along a horizontal axis ro-

tated clockwise from the breaker direction, with weaker

peripheral upwelling centers to the sides. The horizontal

flow is forward along the rotated axis, with confluence in

the rear and diffluence in front. Figure 9 (left) is in the

plane of the wyminimum, and it shows approximate fore–

aft symmetry in the horizontal flow.15 In a vertical cross

section perpendicular to the axis, the primary extrema16 in

FIG. 7. Snapshots of w/u
*

at depths of (left) 3 m and (right) 32 m for case SB.

14 More precisely, we focus on excluding LCs with excessive

lateral or vertical overlap by defining the black-out volume of

a candidate LC as the union of two rectangular volumes of sizes

(2Lc)
2 � Hc and L2

c(2Hc) each centered on the wy extremum.

15 In planes above the LC center, the aftward confluent flow is

much stronger than the foreward diffluent flow, especially at the

surface (also see section 3.g).
16 Because we base the detection on the locally normalized

amplitude wy, it is not guaranteed that the absolute amplitude of wc

will be largest at zc, as it is in Fig. 9. In Fig. 11 (note the dots on the

profile curves), we see that the maxima in jwcj and kc occur at

shallower depths than zc for the deepest detection zones, although

these maxima are deeper than for those for shallower detection

zones. For the shallowest zones, the profile maxima occur slightly

above zc.
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wc , 0 and ~uc . 0 occur at z 5 zc (a tilde denotes

a horizontally rotated quantity; see Fig. 9 caption), with

approximately the same cross-axis and vertical scales

that are somewhat smaller than jzcj. Cross-axis hori-

zontal convergence occurs above the central depth, and

divergence occurs below. These characteristics are as we

expect for LCs, although the along- and cross-axis cor-

relation lengths are not very large in a turbulent Ekman

layer.

The detected LC population density nc is shown in Fig.

10, together with the vertical distribution of zone centers

zc and zone boundaries. The zone size expands with

depth roughly matching the increase in size of the de-

tected LCs. The nc decreases with depth: there are

fewer, bigger LCs deeper within the Ekman layer.

The average momentum flux associated with a LC

composite in a zone is defined by

hu?cwci(z) [
1

A

ð ð
dx dy u?c(x, y, z, zc)wc(x, y, z, zc),

(16)

whereA is the horizontal area of the domain. We use its

direction at z 5 zc to define the horizontal rotation angle

u
2u

c
w

c
used in Fig. 9; this direction is aligned with the

breakers in the shallowest zone and it rotates clockwise

with depth (Fig. 12). From the average flux, we define a

LC composite eddy viscosity magnitude and angle

analogous to (12) and (13):

kc(z) 5
jhu?cwcij
j›zhu?ij

, uc(z) 5 u
2u

c
w

c
2 u

›
z
u. (17)

Analogous eddy-flux quantities kL
c and uL

c are defined

with the Lagrangian mean shear as in (14).

The total contribution of the detected LC pop-

ulation to any mean quantity is equal to the product

of population density nc times the horizontal av-

erage of the composite quantity, summed over all

zones. For example, the contribution to the vertical

velocity variance profile is hw2i(z) 5 Scnchw2
ci with

hw2
ci(z, z

c
) 5A21

Ð Ð
dx dy w2

c(x, y, z, z
c
). Similarly, the

contribution to the momentum flux is Scnchu?cwci, and

the contribution to the eddy viscosity is Scnckc. Figure 11

shows both the individual composite-zone and composite-

total contributions to the hw2i(z) and kL(z) profiles. In

both quantities all zones show a similar shape varied by

the peak magnitude and depth scale. So, the composite-

total profiles have a similar shape. Furthermore, they are

essentially similar in shape to the LES total profiles but

with a smaller magnitude. The relative magnitude is

somewhat larger for kL than for hw2i, indicating that LCs

are more efficient agents in momentum flux than their

variance fraction would imply. We conclude that the sta-

tistical structure of Ekman layer turbulence is primarily

the result of its coherent LCs. Because of the conserva-

tive design of the detection procedure to avoid false de-

tections, we interpret the magnitude discrepancy as a

consequence of an undercount of the LC population (nc

too small). We hypothesize that this discrepancy would

close with a more sophisticated detection procedure.

A striking result in Fig. 6 is the positive eddy viscosity

directions, u
k
(z) ’ uL

k (z) . 0, through the interior of the

Ekman layer; that is, the clockwise rotation with depth

of the Reynolds stress direction lags that of the mean

shear direction (cf. Figs. 2, 3). This is alternatively shown

in Fig. 12, with the addition of the Reynolds stress direction

angle for the LC composite total u
2ucwc

. Both Eulerian

and Lagrangian shear angles differ substantially from

the flux angle u
2u

c
w

c
. Near the surface the Eulerian shear

is rotated far too much, while the Lagrangian angle is

much closer but rotated too little. In the interior both

shear angles are rotated too much, consistent with pos-

itive uk and inconsistent with simple eddy viscosity. The

LC composite flux angle is very close to the total flux

angle near the surface. In the interior the rate of clock-

wise rotation is very small for the LC flux, and over the

bottom half it rotates too slowly compared to the total

flux. We conclude that the detected LCs are the source

FIG. 8. Profiles of vertical velocity skewness, Sk[w](z) defined in (15),

for the same set of cases using the same color coding as in Fig. 2.
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of positive uk. Evidently the remainder of the turbulent

fluctuations (including undetected weaker LCs) have

a more rotated flux angle on average, so the total flux

angle value lies in between the LC flux and mean shear

values. At the bottom of the Ekman layer (z , 2ho), all

four angles coincide, but, of course, there is not much

mean flow, variance, or flux down there.

f. Breakers and downwelling jets

To illustrate the 3D structure of a typical breaker,

another composite average is constructed from many

transient events in case SB. The detection criterion is

that the surface u in the breaker direction exceeds

a positive threshold value Ucr, chosen as Ucr 5 10u
*

5

0.2 m s21, over a connected area of Acr 5 1.6 3 1023

(u
*
/f )2 5 55 m2. Again, these choices are conservative

ones that select the larger, stronger breakers. For com-

posite averaging, the origin is placed at the position of

maximum u . 0. The composite pattern in Fig. 13 has

strong downwelling in the front and weaker upwelling in

the rear. The horizontal velocity is stronger in u than in

y, divergent and confluent in the rear, and convergent

and diffluent in front. The depth scale is slightly larger

than hb because the composite is for relatively larger,

stronger breakers. Notice that the y scale is wider for

breakers than for upper-ocean LCs (Fig. 9). All of these

characteristics are a response to the specified shape of

the breaker acceleration events, A(x, y, z, t)x̂ (Sullivan

et al. 2007). As with the LC composites, the composite

breaker has a Reynolds stress with huwi(z) , 0 near the

surface (z . 22hb); however, it is much weaker than for

the LC composites.

In the wavy Ekman layer, an interesting phenomenon

emerges: namely, coherent, downward-propagating,

downwelling jets. We detect them by a variant of the LC

detection procedure (section 3e): for a large wy, 0 anom-

aly first detected within the top 3.5 m, a search is made

for another large anomaly in the local spatial neighbor-

hood at a subsequent time 20 s later. If the new detection

is successful, the process is continued in time, always

FIG. 9. (left) Composite LC pattern for case SB plotted in a rotated plane (~x, ~y) at z 5 zc 5 28 m. The grid rotation

is to the opposite direction from the horizontally averaged composite stress at the zone center zc, u
2ucwc

, whose value

here is 20.18 rad. The colors show wc/u*
, and ~u?c/u* is shown as vectors. The magnitude scale is indicated in the inset.

(right) Composite LC pattern in a rotated (~y, z) plane at ~x 5 0. The colors show ~uc/u*, and the (~yc, wc)/u* velocities

are shown as vectors.

FIG. 10. Number of LC detections nc per unit time within the

domain for each vertical detection zone. Horizontal lines indicate

zone centers (gray) and zone boundaries (dashed).
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searching in the local neighborhood of the latest de-

tection. The detection sequence is terminated when no

new local strong anomalies are found. This procedure

yields many examples of downwelling jets that penetrate

much of the way through the boundary layer (Fig. 14).

They have a typical downward propagation speed of

about 0.3u
*
, which is a small fraction both of the rms w

(Fig. 4) and of their own local w extremum and have

a typical horizontal propagation speed of several times

u
*
, generally following the mean flow (Fig. 2). The

downwelling jet extremum typically occurs along the

horizontal axis of a LC; hence, it contributes to the LC

structure in w more as an isolated extremum along the

axis than as a longitudinally uniform distribution typical

of roll cells (Fig. 7). Deep downwelling jets are much less

frequently detected than either breakers or LCs sepa-

rately, but they are much more frequent and coherent in

case SB than any of the other cases in Table 1. In labo-

ratory experiments on breaking waves without evident

LCs, deep downwelling jets are not seen (Melville et al.

2002).

Case SB also has the largest negative skewness among

all the cases here, with Sk[w] ’ 20.85 around z 5

20.15u
*
/f (Fig. 8), although its distinction from other S

cases abates into the interior. We interpret this as an

incremental effect of the strong downwelling jets on top

of the primary LC asymmetry in w. Thus, the jets arise

out of an interaction between breakers and LCs through

a vertical vorticity catalyzation process provided to LCs

by the finite transverse scale of the breaker acceleration,

in particular the opposite-signed vertical vorticity ex-

trema on either side of the breaker center in Fig. 13

(left). A vertical vorticity seed is tilted and stretched by

FIG. 11. (left) Normalized LC composite n
c
hw2

ci and (right) Lagrangian eddy viscosity magnitude n
c
kL

c for case SB.

Separate curves are for different detection zones, with the zone center marked by a dot. The inset plots show profiles

for the composite summed over all zones (black) compared to the LES total profiles (red).

FIG. 12. Comparison of depth profiles for mean angles for case

SB: Reynolds stress angle u2uw (green); Eulerian shear angle uuz

(blue); Lagrangian shear angle u
uL

z
(red); and Reynolds stress angle

from the LC composites u
2ucwc

(black). Black tick marks indicate z 5

2hb and 2hst.
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Stokes drift and the mean current to grow into the

longitudinal vorticity of a mature LC (Leibovich 1983;

Sullivan et al. 2008). This phenomenon is more pro-

nounced with our choice of relatively young wave age

with its larger breakers than with the older waves in

full wind wave equilibrium (section 2). This catalyzation

process is not, of course, the only way to generate a LC

because many other vertical vorticity seeds are present

in a turbulent boundary layer.

g. Surface drift

A long-standing, practical oceanic question is the

lateral drift of a buoyant object at the surface. Its sim-

plest posing is as pure fluid drift, neglecting windage and

other bulk forces on the object and surfactant rheolog-

ical complexity. In the Ekman problem, we have defined

the Lagrangian mean flow by huL
?i5 hu?i1 u

st
. This is

the velocity of an ensemble of randomly placed particles,

averaged over short time periods before their spatial dis-

tribution becomes organized. However, Langmuir tur-

bulence is famous for its ‘‘wind rows’’ with surfactants that

collect in the convergence zones of LCs. Furthermore, the

theoretical model of a roll cell as a paradigm for a LC has a

downwind surface velocity maximum along the con-

vergence line (Leibovich 1983, Fig. 3), implying a posi-

tive drift anomaly for its trapped particles that cannot

follow the downwelling flow into the interior.

We ask whether an ensemble of surface-trapped

particles has the same mean velocity as huL
?i (0) after

long drift periods. Define X(t; X0, t0) as the Lagrangian

horizontal coordinate of a particle released at a random

location X0 at time t0. For t . t0 it moves with the local

surface Lagrangian flow:

dX

dt
5 u?(X(t), 0, t) 1 ust(0). (18)

(This is a wave-averaged trajectory that excludes orbital

motion of surface gravity waves.) The long-time surface

drift UL is defined as the ensemble average of (18) over

many releases at (X0, t0) and their X(t) trajectories of

long duration. Figure 15 (left) is a snapshot for the wavy

case SB of a set of X(t) positions with a large t 2 t0,

calculated by (18) using LES u? fields. The locations are

organized into fragmented lines and apparently have

lost any correlation with their original release locations

by becoming trapped in convergence zones. For this case

the mean drift velocities expressed in (u, y) components

are huL
?i5 (17:3, 2 2:9)u* and UL 5 (17.1, 23.3)u

*
, with

a large downwind ust(0) 5 17.5u
*

contribution. So, the

short- and long-term Lagrangian drifts are relatively

little different.17 Similarly small differences are seen in

our other LES cases.

We calculate the composite-average surface horizontal

flow conditioned on strong convergence (Fig. 15, right).

There is little horizontal flow through the convergence

center, which is where surface trajectories will spend most

FIG. 13. Composite-average velocity in breaking waves for case SB. The plotting conventions are the same as in Fig.

9, except the horizontal grid is not rotated here. The horizontal plane is at z 5 21.9 m, and the vertical section is at

x 5 0 relative to the breaker center.

17 Nevertheless, their differences are statistically significant

based on standard error estimates. Across the S cases, the long-

term drift is rotated more to the right than the short-term drift [i.e.,

ŷ(UL 2 huL
?i) , 0 ].
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of their time once they become organized into wind rows.

That is, the surface-trapped particles move into the LCs

but do not move through them. A similar fore–aft asym-

metry for surface flow in the LCs is shown for hurricane

LES simulations with nonequilibrium wind waves in Figs.

11 and 12 of Sullivan et al. (2012) though with some in-

stances of nonzero but weak down-axis flow ahead of the

downwelling center. This flow structure contradicts the

roll-cell paradigm with a positive downwind velocity

anomaly extending along the cell axis. However, it does

partly explain why UL and huL
?i are nearly the same in our

LES solutions; that is, at the surface particles and LC

convergence patterns move at approximately the same

speed on average as the overall Lagrangian mean flow.

[At the subsurface level of maximum downwelling in a

LC, the down-axis flow is positive though the cell (e.g.,

Fig. 9), but this is not where particles are trapped.] Weller

and Price (1988) measures large positive downwind ve-

locity anomalies near the LC convergence lines (their Fig.

8a), which they interpret as consistent with the roll-cell

paradigm; however, because they cannot precisely collo-

cate their velocity measurements with surface particle

trajectories, it is not clear that this contradicts our results.

Using the u
*
–Ua relation in section 2, we can re-express

the mean drift velocity huL
?i’ UL as about 0.02Ua ro-

tated 108 to the right of the wind direction for case SB. In

the ocean an ensemble of surface drift measurements is

difficult to control for varying conditions of wind, waves,

and stratification, and commonly averages are made by

lumping different situations together. Ardhuin et al.

(2009) uses a combination of surface radar backscatter

and a numerical wave model to estimate mean surface

drifts (comparable to huL
?i because they would not see

particle trapping) of 0.01–018 Ua rotated 108–408 to the

FIG. 14. Examples from case SB of deep jets emanating from near the surface at their first detection time t0: (bottom left) Hovmöller

diagram in (z, t) of many jet centers (gray lines) with one particular jet trajectory (in black) selected for the other panels here; (bottom

right) w(z, t)/u
*

following the black trajectory at the horizontal location of its center; and (top) snapshots of w(x, y)/u
*

for the same

trajectory at depths of 10, 30, and 50 m with relative time separations of 190 and 270 s, using the same color bar.
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right of the wind, with higher speed and greater rotation

when the stratification is strong. They explain that their

speed may be an underestimate because some depth

averaging is implicit in the radar backscatter process

near the surface where the Stokes shear is large. Given

this caveat and their lumping of many situations, we

do not see our answer for UL as notably inconsistent.

However, there is a literature of empirical estimates of

substantially larger surface drift speeds in excess of

0.03Ua (e.g., Bye 1966; Wu 1983; Kim et al. 2009), which

is not supported by our LES results or by the measure-

ments of Ardhuin et al. (2009); we will not attempt to

reconcile these historical contradictions.

4. Parameterization implications

Oceanic general circulation models (OGCMs) require

full-turbulence (RANS) parameterization of boundary

layer turbulent fluxes to calculate upper ocean currents

and material distributions. Because hu?i (z) is quite

different in cases SB and Nt (Fig. 2), we conclude that

presently used OGCM parameterizations are inade-

quate without wave effects. In particular, the param-

eterization influences on boundary layer depth, vertical

mixing rate, and velocity profile shape need to be

changed.

A 1D RANS parameterization model for the Ekman

layer with uniform density is a turbulence-averaged

momentum equation for u?(z, t) with specified wind and

wave forcing in the x direction [tx, ust(z), and A(z)]:

›u

›t
1 f ẑ 3 (u 1 ustx̂) 5 Ax̂ 1

›F

›z
, (19)

where F is the parameterization of the Reynolds stress,

2hu?wi(z). Boundary conditions are F 5 (tx/ro)x̂ at z 5

0 and u?, F / 0 as z / 2‘. The KPP model for the

unstratified Ekman layer is

F(z) 5 k(z)
›u?
›z

k(z) 5 c1u*hG(s), s 5 2
z

h
, h 5 c2

u*
f

G(s) 5 s(12s)2, s # 1, G 5 0, s . 1, (20)

with constants c1 and c2 (McWilliams and Huckle 2006).

Notice that there are no wave influences in this scheme

for F.

We test KPP for the classical Ekman layer without

wave effects: that is, case Nt. First, we optimally fit the

values of c1 and c2 to minimize R, the depth-integrated

rms difference in u?(z) between LES and KPP, nor-

malized by the rms magnitude of u?(z) from LES. The

minimum value is R 5 0.1 for c1 5 0.29 and c2 5 0.72.

These constants are close to the values c1 5 k 5 0.4 for

the von Kármán constant k and c2 5 0.7 previously

FIG. 15. (left) Snapshot of 5000 surface particle locations X at a time t 2 t0 5 103 s 5 0.1 f 21 after random releases

within the (x, y) domain between 6250 m in each direction. Notice the spreading and mean eastward and

southward drifts. (right) Composite-average surface velocity anomaly vectors, (u?(x, y) 2 hu?i)/u
*

(arrows),

conditioned on a surface convergence extremum by a procedure otherwise similar to the breaker detection in

section 3f. The composite-average convergence fields are contoured with an interval of 0.02 f21, with a central

maximum of 0.1 f21. The surface velocity anomaly is nearly zero at the center of convergence. These plots are for

case SB.
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proposed for an Ekman layer modeled with KPP (viz.,

McWilliams and Huckle 2006) but with c1 somewhat

smaller here. The quality of the KPP fit to u?(z) is good

by boundary layer parameterization standards (Fig. 16).

There are larger discrepancies in the shape of k(z) than

in u?(z), but eddy viscosity itself is not the important

parameterization product for OGCMs except as a means

to obtain u?. In particular, without stable density stratifi-

cation, k in LES does not vanish at depth as sharply as in

the KPP model, but the deep value of k is evidently not

very important in determining u?(z) after it has decayed

to a small magnitude. What is most important for ac-

hieving a small value of R is matching the surface layer

structure where u? is large. The KPP recipe (20) is

consistent with a wall-bounded similarity layer (a.k.a.

log layer) where k/c1c2u*
2 /f jzj as jzj / 0; thus, the

strongest constraint is on matching the product of c1c2

with the LES answer. A caution is that the similarity-

layer shear is theoretically singular, ›zu / ku
*
/z; hence,

LES can only provide a discretely approximate standard

for such a case, and LES–1D discretization differences

also limit the degree of agreement in u?. The modest

degree of nonalignment between hu?wi and ›zhu?i (uk .

0 in Fig. 6 for case Nt) is evidently not a serious obstacle to

a reasonably skillful fit with the KPP parameterization

scheme. By practical parameterization standards for use

in OGCMs, there is little motivation to try to do better in

this wind-only case, apart from improving the precision

of the calibration and OGCM implementation if these

are important limitations.

The comparative analyses with and without wave ef-

fects indicate that u?(z) is substantially altered by waves

(section 3). At the least, the boundary layer depth needs

to be deeper and the eddy viscosity k magnitude be larger

with wave effects (Table 1 and Fig. 6). McWilliams and

Sullivan (2000) propose an amplified k magnitude due to

ust based on a case with a stratification-limited depth, and

Eq. (2) suggests a scaling for the amplification of the

turbulent velocity scale18 (but note the cautionary re-

mark at the end of section 3a). Figure 6 shows uk . p/2

for case SB around the Stokes layer. In a conventional

relation of aligned flux and shear, F 5 k›zu, this implies

locally negative diffusion, which is potentially ill be-

haved in time integration of the 1D model (19). Rec-

ognizing the existence of flux-gradient misalignment in

LES with waves, Smyth et al. (2002) propose the addi-

tion of non-eddy-viscous, countergradient flux profiles

to a KPP scheme for F, in analogy with its successful

application in a convective regime (where ›zhTi and

hwTi have the same sign over much of the boundary

layer). This proposal has the disadvantage of complexity

by needing to specify a model for the vector profile

shape and orientation and, unlike in the convective

regime, the eddy momentum flux here is not literally

countergradient (i.e., uk 6¼ p). A potentially simpler

remedy to the ill behavior of a negative-diffusion scheme

is suggested by the alternative of a stress-aligned La-

grangian eddy viscosity scheme,

F 5 kL›zuL
? (21)

with kL $ 0. Figure 6 shows that the problematic

Stokes layer structure in uk is greatly diminished in uL
k

in case SB.

To assess the 1D representation of the wave effects,

we solve (19) with the hAi(z) and ust(z) profiles from

Fig. 1 and a replacement for F with the generalized

Lagrangian eddy viscosity profiles kL(z) and uL
k (z) de-

fined in (14):

F 5 kLR � ›zuL
? with R 5

cosuL
k --sinuL

k

sinuL
k cosuL

k

 !
, (22)

where R(u) is a horizontal rotation matrix representing

the rotation of the shear direction into the Reynolds

stress direction. In this expression, kLR(z) is an eddy

viscosity tensor, dependent upon two scalar functions,

kL(z) and uL
k (z). Using (22), we can reproduce the LES

result for u? with good accuracy (R 5 0.05) for case SB

using the LES-diagnosed profiles of kL and uL
k in Fig. 6.

This can also be done with an analogous Eulerian vis-

cosity form for F and LES-diagnosed Eulerian viscosities.

Now we ask which aspects of the LES viscosity pro-

files are important by solving (19) with alternative pro-

files. Step 1: We refit the KPP Eq. (20) to the LES k(z) in

Fig. 6 for a kL(1) by matching the interior shear layer

shape near its peak. This match can be done better with

Lagrangian kL than an Eulerian k because its peak is

deeper and more in the center of the layer, as in the KPP

shape. The refitted coefficients are c1 5 0.8, c2 5 1.4,

consistent with bigger k and ho with waves. The resulting

u?(z) with (kL 5 kL(1), uk 5 0) is a very poor fit to the

case SB profile (R 5 0.8), mainly due to very different

u(z) near the surface. Step 1 is thus necessary but in-

sufficient. Step 2: Noting that the kL(1) is very much

larger than the LES kL near the surface (because there is

no similarity layer with waves), we derive a surface layer

approximation to the x-momentum balance in (3) by

neglecting Eulerian velocity compared to Stokes veloc-

ity in the aligned Lagrangian eddy viscosity model (21):

18 A consequence of larger k is increased entrainment rate at the

pycnocline (McWilliams et al. 1997). This is likely to be a general

behavior in stratified boundary layers with waves.
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kL
sur(z) 5

ð0

z
A(z9) dz9

›zust(z) 1 So

$ 0 (23)

in which kL
sur/01 as z / 02 in the Stokes layer, because

the denominator is increasing while the numerator

’ u*
2, and even more so in the breaker layer, because the

numerator is also decreasing. The So prevents di-

vergence of kL
sur as z / 2‘, and the small value So 5

0.0025 ›zust(0) makes a smooth transition in a composite

specification,

kL(2)(z) 5 min[kL
sur(z), kL(1)(z)], (24)

in the upper part of the boundary layer with kL(2) 5 kL(1)

in the lower part. Figure 17 shows that kL
sur and, hence,

kL(2) are an excellent fit to the LES-derived kL above the

blending point at z ’ 20.18u
*
/f. In the interior shear

layer, kL(2) is a modest misfit to the LES kL, to a similar

degree as in case Nt in Fig. 16. The 1D solution for u?
with (kL(2), uL

k 5 0) has qualitatively the right profile

shape (Fig. 18, left) with a moderate rms error of R 5

0.27. Here, as with case Nt, the deeper reach of kL in

LES is not important for the u? skill. Step 3: To further

reduce the error, we include the misalignment effect

with the smoothed and depth-truncated uL(3)
k (z) profile

in Fig. 17, which has a small negative lobe in the Stokes

layer and a larger positive lobe in the interior shear

layer, as discussed in section 3d. This choice together

with the viscosity magnitude kL 5 kL(2) gives a very

good fit in u?(z) with R 5 0.09. The reduction in R
between the second and third steps is due to both uL

k

lobes, with the surface lobe the more beneficial. The

transition depth between the lobes of uL
k is approxi-

mately the same transition depth as in (24), just below

the Stokes layer.

Appendix B is the analytic Ekman layer solution for

misaligned, Lagrangian eddy viscosity with constant

viscosity ko and rotation angle uo. It provides an expla-

nation for the primary differences in u?(z) between the

two panels in Fig. 18: near the surface, where uL
k , 0, u is

larger and 2y is smaller, that is, less clockwise rotation

relative to the wind direction, and in the interior shear

layer, where uL
k . 0, the vertical decay length is shorter

and the Ekman spiral is less pronounced. It also illus-

trates that there are ill-behaved solutions for uL
k values

too different from zero [analogous to negative diffusion

with the aligned-stress model (21)].

The influence of breaker acceleration A (versus

surface stress tx) is only weakly evident in the shape of

u?(z) in Fig. 18 as a weak positive shear in u and

positive veering in uu (also in Fig. 2). The primary

x-momentum balance in the breaker layer is between

A and 2›z(uw), not the Coriolis force } fy. The most

FIG. 16. Normalized profiles of (left) mean velocity hu?i(z) and (right) eddy viscosity k(z) for case Nt without

wave effects, comparing the LES result (dashed) with the KPP model (20) with optimally fit constants c1 5 0.29

and c2 5 0.72 (solid). After the fit the rms depth-integrated relative difference in u? between LES and KPP isR5

0.1. k(z) for LES is again truncated below where the Reynolds stress magnitude is less than 2% of its near-surface

value.
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important A influence is a desingularization of the

surface layer, compared to a surface stress boundary

condition and its associated similarity layer. For z ,

2hb where
Ð 0

zA dz9 5 u*
2, all of kL, u?, and the

Reynolds stress profiles are smooth in z, and the lim-

iting case hb / 0 is mathematically and computa-

tionally well behaved and physically meaningful. In

contrast, a surface stress condition in combination

FIG. 17. Lagrangian eddy viscosity profiles for the comparisons in Fig. 18. (left) The kL(z) for KPP (step 1), the

surface model (23), the LES diagnostic using (14), and the blended profile kL(2) in (24). (right) The uL
k (z) from the

LES diagnostic and a smoothed fit uL(3)
k above z ’ 21.2u

*
/f.

FIG. 18. Comparisons of u?(z) for case SB between the LES mean and the 1D model with Lagrangian eddy

viscosity: (left) steps 1–2 with kL(2) and uL
k 5 0 and (right) steps 1–3 with uL(3)

k 6¼ 0. The respective rms differences with

the LES profile are R 5 0.27 and 0.09.
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with k / 0 is ill-behaved and illconceived in the

presence of waves.

Thus, we have demonstrated in three steps—the first:

the familiar KPP model for the interior shear layer with

a wave-enhanced k magnitude and depth scale; and the

second: a derived dynamical approximation near the

surface; and the third: a qualitatively simple, albeit un-

familiar misalignment profile shape (which could easily

be expressed in a formula)—that an accurate 1D model

is achieved with Lagrangian eddy viscosity in the wavy

Ekman regime with both t and ust important [i.e., kL
sur in

(23) vanishes when t 5 0, and its derivation assumes

large Stokes shear]. This cannot be done as well with

Eulerian eddy viscosity because there is no derivable

analog of ksur for the Stokes and breaker layers, which

therefore would have to be yet another empirically fitted

aspect of the model; the Eulerian uk shape is more

convoluted (Fig. 6); and the fit to a KPP shape is less

apt in the interior shear layer. One might argue that

the first two steps alone—leaving out the uL
k 6¼ 0 profile

specification—yield a significant improvement over ex-

isting parameterizations without wave effects. With or

without the third step, this could become a useful frame-

work for OGCM use.

This demonstration does not yet yield a usable pa-

rameterization scheme, of course, because the few LES

cases examined here do not make up a regime scan of

wind, wave, and buoyancy influences in the surface

boundary layer,19 with the extensive calibration and

testing necessary for usability. Nevertheless, it is likely

that the wave influences seen in the Ekman problem will

be echoed more generally.

5. Summary

Under conditions close to wind wave equilibrium, the

influences of surface gravity waves are quite significant

in the Ekman layer. The Stokes-Coriolis and vortex

forces are the main influences, while the differences

between breaker acceleration and surface stress are

secondary and mostly localized near the surface. The

Ekman layer as a whole approximately separates into

three vertical sublayers: the breaker layer where A is

large, the Stokes layer where ust is large, and the interior

shear layer underneath, with hb� hst� ho in the cases

considered here. These distinctive sublayers are evident

in the mean current and Reynolds stress profiles, as well

as the momentum and turbulent kinetic energy bal-

ances. The Ekman layer with waves is deeper and more

energetic, and its surface current profile u?(z) is con-

trolled by the shapes of A(z) and ust(z)—neither of

which is easily measured in the ocean—acting through

ksur (23) and the 1D momentum balance (3) with Stokes-

Coriolis force. This is a different conception of Ekman

surface layer dynamics than either Monin–Obukhov

similarity or breaker energy injection (Craig and Banner

1994); breaker energy injection E(z) does occur dis-

tributed over hb, but it does not directly relate to the

Reynolds stress F or eddy viscosity k, hence not to the

momentum balance and u?(z) profile. The cases with

mean acceleration and energy injection profiles, hAi(z)

and hWi(z), give generally similar answers to those with

stochastic A and W, and they are much simpler and more

economical to compute. The energy cycle is very dif-

ferent with forcing by either mean stress or breaker in-

jection so that the latter is much to be preferred as

a process depiction. The partial wave formulation of

Stokes drift without breaker injection (case St) is ill

structured approaching the surface, with LCs de-

veloping very fine scales without the regularization

provided by breaker-augmented mixing and dissipation.

Breaker acceleration creates transverse overturning

cells near the surface, and shear instability and Stokes

vortex force create longitudinal LCs whose scale ex-

pands and horizontal orientation rotates with depth.

Both types of coherent motions contribute important

Reynolds stress. These influences occasionally combine

to create downward-propagating downwelling jets. In

the surface layers, the large Stokes shear requires rapid

rotation with depth of the Reynolds stress, and in the

interior shear layer the LCs rotate clockwise (i.e., have

substantial vertical coherence) more slowly with depth

than the mean shear (Ekman spiral); these behaviors

create a moderate degree of stress–shear misalignment

that is inconsistent with downgradient eddy viscosity.

The mean surface Lagrangian drift of buoyant particles

with waves is dominated by the Stokes drift velocity and

rotated slightly rightward; this drift is only slightly dif-

ferent for short- and long-time particle trajectories in

spite of particles become trapped within LC conver-

gence zones.

To both explore parameterization possibilities and

test our comprehension of wave influences, we solve

a 1D model (19) with parameterized Reynolds stress F.

Without wave effects (case Nt), a K-profile parameter-

ization scheme is successful. With wave effects (case SB)

several modifications are necessary for success: a KPP

profile shape with greater, deeper eddy viscosity in the

interior shear layer; a Lagrangian eddy viscosity scheme

(23) in the breaker and Stokes layers; and a stress–shear

19 The Coriolis force with a nonvertical rotation axis is also in-

fluential in Ekman layers, especially in the tropics. A KPP scheme

is proposed in McWilliams and Huckle (2006), but as yet its in-

terplay with wave effects is unexamined.
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misalignment profile with uL
k , 0 in the Stokes layer and

.0 in the interior shear layer.

The ocean has a wide range of wind wave conditions,

as well as various buoyancy influences. Often the transient

evolution is more evident than a steady-state equilib-

rium in the surface boundary layer. So, the wavy Ekman

layer problem solved here, while central, is hardly gen-

eral. A good strategy is still needed for encompassing

the general behaviors of the upper ocean in measure-

ments and models.
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APPENDIX A

Mean and Total Kinetic Energy Balances

The energy analyses in sections 3a and 3c focus on the

total work done by stress and breaker forcings,
Ð

Etot dz,

and on the turbulent kinetic energy (TKE): e defined in

(1) contains both resolved-eddy and subgrid-scale en-

ergies and its balance relation (7). To clarify the total

energy context, we complement them here with the

energy balance relation for the mean flow (MKE):

e 5 0:5hu?i
2. Their sum then gives a combined balance

perspective for the total kinetic energy, etot 5 e 1 e.

In equilibrium the MKE balance relation is

›te(z) 5 0 5 E 1 F 1 T 2 Pu. (A1)

With a steady, eastward wind stress acting as a delta

function at the surface (z 5 0), the mean stress and

breaker acceleration injection is

E(z) 5 d(z)txhui(0)/ro 1 hAi(z)hui(z), (A2)

while the fluctuating breaker acceleration A9 work and

subgrid-scale injection W are assigned to the e balance in

(8). The Stokes-Coriolis force provides an energy con-

version with the surface gravity wave field [as does

Stokes production, Pst in (9), for the e balance (7)]:

F (z) 5 f ẑ � hu?i3 u?st 5 2f hyiust. (A3)

The mean transport is

T (z) 5 2›z(hu?wi � hu?i), (A4)

whose vertical integral is zero. The shear production Pu

defined in (9) is a conversion from e to e. Finally, notice

that a mean dissipation rate associated with the subgrid-

scale stress can be defined as

�(z) 5 2hts
izi›zhuii, (A5)

with index notation (i here is only horizontal because

hwi 5 0); however, it is already part of Pu in (9), so it

does not contribute separately to the MKE balance.

The total energy balance relation is the sum of (7) and

(A1). It has depth-integrated sources from injection,

Etot 5 E 1 E; Stokes–Coriolis conversion F ; and Stokes

production Pst and a single dissipative sink from �. This

is shown diagrammatically in Fig. A1. Notice that all

three sources contain a conversion with the surface wave

field. The sum of sources equals the dissipation sink in

equilibrium.

We do not show a quantitative evaluation of the MKE

balances, but rather summarize them qualitatively from

a volume-integrated perspective. With Stokes vortex

forces (S cases), the primary e source is F . 0, and E is

small because hui(0) is small, both a consequence of the

Stokes-Coriolis force. [The sign ofF is clearly positive in

(A3) because hyi, 0 by the southward Ekman transport

constraint in (5).] However, Pst� F in all S cases, and E
is even larger thanPst with breakers (B cases), so the two

wave conversions acting directly in the TKE balance are

the important sources, with the Pu conversion from

MKE a minor effect. The wavy energy route is sum-

marized as E 1 Pst / �. This is very different from

the Ekman layer without waves (case Nt), where the

MKE / TKE route is essential: E/Pu/�.

FIG. A1. Diagram of the volume-integrated turbulent and mean

kinetic energy balances in (7) and (A1). Quantities are defined in

the text.
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APPENDIX B

Analytic Solution with Misaligned Lagrangian
Viscosity

As an aid to interpreting the 1D solutions in section 4,

we pose the Ekman layer problem with Stokes-Coriolis

force, a misaligned Lagrangian eddy viscosity that is uni-

form with depth, an equivalent surface stress boundary

condition (which is well behaved for constant viscosity),

and a velocity that vanishes toward the interior:

f ẑ 3 uL
? 5 koR(uo)›2

zuL
?

koR(uo)›zuL
?(0) 5 x̂

tx

ro

. (B1)

The analytic solution is readily obtained by recasting the

problem as a second-order, complex differential equa-

tion for U 5 uL 1 iyL, using R 5 eiuo simply as a complex

number. The result for the Eulerian velocity is

u(z) 5 2ust(z) 1
tx

ro

ffiffiffiffiffiffiffiffi
f ko

p ekz cos

�
lz 2

p

4
2

uo

2

�
(B2)

y(z) 5
tx

ro

ffiffiffiffiffiffiffiffi
f ko

p ekz sin

�
lz 2

p

4
2

uo

2

�
(B3)

with vertical decay and oscillation wavenumbers,

k5
f

ko

� �1/2

cos

�
p

4
2

uo

2

�
and l 5

f

ko

� �1/2

sin

�
p

4
2

uo

2

�
,

(B4)

when uo is in a range around 0 where k . 0. With ust 5

uo 5 0, this is the classical Ekman solution. Otherwise,

compared to the classical solution, u has a flow compo-

nent opposite to ust; the vertical decay rate k is faster and

the rotation rate l is slower with uo . 0 (and vice versa if

uo , 0); and some uo values are inconsistent with a

boundary layer solution (e.g., uo 5 2p/4 where k 5 0).
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