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A multi-scale asymptotic theory is derived for the evolution and interaction of currents
and surface gravity waves in water of finite depth, under conditions typical of coastal
shelf waters outside the surf zone. The theory provides a practical and useful model
with which wave–current coupling may be explored without the necessity of resolving
features of the flow on space and time scales of the primary gravity-wave oscillations.
The essential nature of the dynamical interaction is currents modulating the slowly
evolving phase of the wave field and waves providing both phase-averaged forcing
of long infra-gravity waves and wave-averaged vortex and Bernoulli-head forces
and hydrostatic static set-up for the low-frequency current and sea-level evolution
equations. Analogous relations are derived for wave-averaged material tracers and
density stratification that include advection by horizontal Stokes drift and by a vertical
Stokes pseudo-velocity that is the incompressible companion to the horizontal Stokes
velocity. Illustrative solutions are analysed for the special case of depth-independent
currents and tracers associated with an incident surface wave field and a vortex with
O(1) Rossby number above continental shelf topography.

1. Introduction
We derive approximate dynamical equations for surface gravity waves and currents

in a fluid bounded below by a spatially variable bottom topography. The purpose
of our modelling differs from well-established theory for effects of topography,
nonlinearity, and currents on wave evolution (see Mei 1989 for a review). We
focus on how the primary gravity waves (i.e. characteristic of the peak of the
wave spectrum) influence currents and vice versa on the longer space and time
scales that characterize their nonlinear evolution, with the goal of obtaining a wave-
averaged asymptotic model for the mutual interaction of waves and currents in
oceanic shelf regions. We accomplish this through the assumption of scale separation
between the waves and currents and time averaging over the wave scales. This
approach is an extension of McWilliams & Restrepo (1999), but here we do not
assume that waves are distinguished from currents entirely by their irrotationality.
Rather the distinction between what we mean by waves and currents is made by
scale dependences alone; the temporal scale separation is the most fundamental one.
The resulting model has the appealing theoretical and practical attribute of making
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the large-scale interaction between waves and currents explicit without the burden
of resolving the wave oscillations. Our hope is that this model will be useful for
discovering new phenomena that arise through wave–current interactions as well as
for realistic coastal simulation modelling. We leave open pro tem several possible
generalizations of the theory of the wave evolution along previously established lines
(e.g. dissipation effects).

The ingredients of the dynamics are the following:
(i) Surface gravity waves that (a) are approximately irrotational; (b) are in water

of finite depth (i.e. µ = k0H0 ∼ 1, where k−1
0 and H0 are characteristic values for the

horizontal scale of the waves and depth of the layer, respectively); (c) have a small
but finite amplitude (i.e. ε = a0k0 � 1, where a0 is a characteristic sea level amplitude
for the waves); and (d) propagate in a slowly varying environment provided by the
topography, long waves, and currents (i.e. with a ratio β � 1 between the characteristic
wave and topography/long-wave/current horizontal scales).

(ii) A separate long surface gravity wave component (i.e. an infra-gravity wave),
forced by a nonlinear, phase-averaged pressure head and a mass-flux divergence due
to the primary waves.

(iii) Nonlinear, rotational currents, whose evolution is influenced by Stokes-drift
advection and vortex forces (cf. Craik & Leibovich 1976; McWilliams & Restrepo
1999), as well as other wave-averaged effects.
The theory describes the interactions among these components. It also includes their
consequences for material tracers and density stratification.

Work on the interactions among water waves and currents spans nearly half a
century. Mainly driven by military, shipping, and shoreline interests, most of the
research has focused on how wave nonlinearities affect the shape and spectrum of the
waves and on how strong currents affect waves, rather than the other way around.
Longuet-Higgins & Stewart (1960, 1961) analyse the nonlinear interaction between
short waves and long waves (or currents) and show that variations in the energy of
the short waves corresponds to work done by the long waves against the radiation
stress of the short waves. In a shoaling area these radiation stresses lead to what are
known as the wave set-up and set-down, surf beats, the generation of smaller waves
by longer waves, and the steepening of waves on adverse currents and tidal streams
(Longuet-Higgins & Stewart 1962, 1964). In Longuet-Higgins (1970) the divergence of
this radiation stress is shown to generate an along-shore current by obliquely incident
waves on a beach. Peregrine (1976) and Peregrine & Thomas (1979) contribute to
the general asymptotic theory on the effects of currents on waves. Thomas (1981,
1990) further investigates the problem both numerically and experimentally. Burrows
& Hedges (1985) describe the influence of currents on the oceanic wave climatology.
Yoon & Liu (1989) develop a nonlinear dispersive-wave model with current terms.
Reviews of wave–wave and wave–current interactions appear in Fenton (1990) and
Jonsson (1990).

The effect of waves on currents has been studied much less. It is well known
that waves produce a residual Lagrangian current on time and space scales larger
than those typical of the waves. Its asymptotic expression is known as the Stokes
drift velocity (Longuet-Higgins 1953; Restrepo & Leaf 2002). The coupling of the
vorticity in a current with the Stokes drift, known as the vortex force, can lead to
a destabilization of the current, forming cells that have striking similarity to oceanic
Langmuir circulations (Craik & Leibovich 1976; McWilliams, Sullivan & Moeng
1997). Waves can cause a decrease in tidal-current amplitude with increasing wave
height through enhancement of the wave-averaged bottom stress (Grant & Madsen
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1979; Prandle 1997; Wolf & Prandle 1999). The wave set-up effect (above) can also
be viewed as an effect on the larger scales associated with the currents.

The organization of the paper is the following: the primitive dynamics and non-
dimensionalization are defined in § 2; the leading-order wave solution is presented
in § 3; the multi-scale asymptotic expansion is defined in § 4; the wave dynamics are
more fully determined in § § 5–7 and Appendices A and C; the forced long-wave
dynamics are in § 6 and Appendix B; the current dynamics are in § § 8–9; the evolution
of a material tracer field is in § 10; the generalization to density stratification is in
§ 11; the classical shallow-water ansatz is derived in § 12, and some of its illustrative
solutions are analysed in § 13; and a summary and discussion are in § 14. Appendix D
summarizes the definition of the symbols employed.

2. Primitive dynamics
Our starting point is the conservative system of equations for three-dimensional

velocity U(x, z, t), sea level z = E(x, t), and material concentration C(x, z, t) in a
rotating, finite-depth layer with uniform density ρ0, a free upper surface of constant
pressure, and variable resting depth z = −H (x). Here x are the horizontal spatial
coordinates and z the vertical one, parallel to gravity, with an upward unit vector
ẑ; z = 0 coincides with the quiescent oceanic sea level. We make all equations
and variables non-dimensional with a characteristic gravity-wave frequency σ0 and
wavenumber k0, wave amplitude in sea level a0, and the linear dispersion relation
with a characteristic water depth H0 = µk−1

0 (namely σ 2
0 = gk0 tanh[µ], where g is the

gravitational acceleration and µ = k0H0). Thus, we non-dimensionalize with k−1
0 for

distance and depth, σ −1
0 for time, a0 = εk−1

0 for E (where ε = a0k0), εσ0k
−1
0 for U ,

ερ0σ
2
0 k−2

0 for pressure P , and εσ0 for the vorticity Ω . We use f0 as the scale for
the Coriolis frequency, and define a non-dimensional frequency, f nd = f0/σ0, which
is equivalent to a Rossby number based on time scales. For convenience, we define
the gradient operator in terms of its horizontal and vertical components so that
∇ ≡ (∇x, ∂/∂z). We similarly write the velocity U ≡ ( Q, W ). The horizontal extent of
the oceanic region of interest is denoted by D with a boundary ∂D.

The resulting non-dimensional equations of motion are

∂U
∂t

+ εU · ∇U + f nd ẑ × U + ∇P +
ẑ

ε tanh[µ]
= 0,

∇ · U = 0,


 (2.1)

with a bottom boundary condition of no flow through the ground,

W = −µ Q · ∇xH at z = −µH, (2.2)

and kinematic and pressure-continuity boundary conditions at the sea surface,

W =
∂E

∂t
+ ε Q · ∇xE,

P = P0 at z = εE.


 (2.3)

Here the resting depth H is assumed to be changing appreciably only over large
spatial distances. P0 represents the large-scale atmospheric pressure anomaly from
climatology that we assume does not vary spatially on the oceanic scales of interest.
We can absorb the gravitational force and surface pressure by defining

p = P +
z

ε tanh[µ]
− P0; (2.4)
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thus, the final two force terms are replaced by ∇p and the final surface boundary
condition by

p =
E

tanh[µ]
at z = εE. (2.5)

Taking the curl of (2.1), we derive the vorticity equation for Ω = ∇ × U:

∂Ω

∂t
+ ∇ × [(εΩ + f nd ẑ) × U] = 0. (2.6)

(The governing equations for material tracers and buoyancy are deferred until § 10–
11.)

A vertical integral of the continuity equation in (2.1), in combination with the
vertical boundary conditions on W in (2.2)–(2.3), yields the local mass conservation
law,

∂E

∂t
+ ∇x ·

∫ εE

−µH

Q dz′ = 0. (2.7)

With appropriate lateral boundary conditions on ∂D this system preserves total mass,

M =

∫ ∫
D

(µH + εE) dx ′, (2.8)

and energy,

E =

∫ ∫
D

∫ εE

−µH

(
1
2
U · U +

z′

ε2 tanh[µ]

)
dz′ dx ′. (2.9)

3. Linear gravity wave solutions
To leading order in ε, f nd , and β , and making use of the slow variation assumption

on H , a non-dimensional solution of (2.1)–(2.5) is

E = a cos[k · x − σ t],

Q =
ak

σ tanh[µ]

cosh[Z]

cosh[H]
cos[k · x − σ t],

W =
ak

σ tanh[µ]

sinh[Z]

cosh[H]
sin[k · x − σ t].




(3.1)

a is the sea-level height; k is the horizontal wavenumber vector; k is its modulus;
Z = k(z+µH ) is a rescaled height; H = kµH is a rescaled water depth; and the local
dispersion relation is given by

σ 2 = k
tanh[H]

tanh[µ]
. (3.2)

As µ → 0 (i.e. the wavelength becomes very long compared to the depth), σ 2 → Hk2,
and as µ → ∞ (i.e. deep water), σ 2 → k.

The physical setting we have in mind is an inner coastal shelf region with its typical
wind waves and swell waves. So, for example, for a wavelength of 100 m, then µ is not
small except very near the shore where H is small compared to about 15 m (i.e. less
than a few metres depth). In this regime there are several non-conservative near-shore
processes that are not modelled here but could be appended later: divergence of
wave radiation stress due to wave breaking in the surf zone (Longuet-Higgins 1970),
bottom drag, and local wave generation by wind stress.
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The velocity in (3.1) may be defined in terms of a velocity potential Φ as

U = ∇Φ,

so that for the solution in (3.1),

Φ =
a

σ tanh[µ]

cosh[Z]

cosh[H]
sin[k · x − σ t]. (3.3)

The associated pressure field satisfies p = −∂Φ/∂t , hence

p =
a

tanh[µ]

cosh[Z]

cosh[H]
cos[k · x − σ t]. (3.4)

The vorticity to leading order is zero,

Ω ≡ ∇x × U = 0.

In the more general circumstances analysed below, we shall preserve this wave
behaviour at the shortest space and time scales considered.

Substituting (3.1) into (2.9) and averaging over the oscillations leads to an expression
for the mean wave energy, valid to leading order in ε,

E =
a2

2 tanh[µ]
, (3.5)

which is composed of equal contributions from the potential and kinetic components.

4. Multi-scale dependences and the asymptotic expansion form
We denote the non-dimensional wave-scale coordinates by (x, z, t). We assume

the waves have a slowly varying ‘envelope’ dynamics in the horizontal and
time coordinates (X, τ ), where X = βx, τ = βt , and β � 1, including a ‘long-wave’
component that does not oscillate in the wave coordinates (x, t). We assume that
the bottom topography varies on the coordinate X , while the currents have slow
scales of variation in the coordinates X and T = γ t , with γ � β � 1. We choose an
asymptotic expansion form that decomposes the velocity and surface elevation into
wave, long-wave, and current components that have the scale dependences described
above. An expansion form that retains (3.1)–(3.3) as a leading-order solution is the
following:

Q = q(x, z, t, X, τ, T , . . .) + λq lw(z, X, τ, T , . . .) + δv(z, X, T , . . .) + · · · ,
W = w(x, z, t, X, τ, T , . . .) + λβwlw(z, X, τ, T , . . .) + δβwc(z, X, T , . . .) + · · · ,
Ω = [(∇x, ∂/∂z) + β∇X + . . .] × (q, w)

+ λ [(β∇X, ∂/∂z) + . . .] × (q lw, βwlw) + δ [(β∇X, ∂/∂z) + . . .] × (v, βwc) + · · ·
≡ ωw(x, z, t, X, τ, T , . . .) + λωlw(z, X, τ, T , . . .) + δωc(z, X, T , . . .) + · · · ,

E = η(x, t, X, τ, T , . . .) + ληlw(X, τ, T , . . .) + δζ (X, T , . . .) + · · · ,
p = pw(x, z, t, X, τ, T , . . .) + λplw(z, X, τ, T , . . .) + δr(z, X, T , . . .) + · · · .



(4.1)

Here λ, δ � 1. ∇X denotes a spatial derivative with respect to the slow horizontal
coordinate X . The right-hand-side quantities (q, w, ωw, η, pw) are for the primary
surface waves (evolving on fast horizontal and time scales) that are influenced in
their slow coordinate dependences by topography, long waves, and currents; we
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further denote the three-dimensional wave velocity by u = (q, w). The quantities
(q lw, wlw, ωlw, ηlw, plw) are for the long waves that arise from wave-averaged nonlinear
interactions among the primary waves, with ulw = (q lw, βwlw). Finally, (v, wc, ωc, ζ, pc)
are for the slowly evolving wave-averaged currents that are influenced by wave-
induced vortex forces, Stokes-drift advection, etc. The topography also has only a
slow spatial dependence, H = H (X).

We distinguish waves and currents by a slow averaging operator, denoted by 〈 · 〉,
over the (x, t, τ ) dependences in (4.1). This implies that all wave quantities have zero
slow average, e.g. 〈η〉 = 〈ηlw〉 = 0. We further define a wave-phase average, denoted by
( · ), over only the (x, t) dependences, which distinguishes the primary and long waves;
e.g. for η in (3.1), η = 0 and η2 = 1

2
a2, and for ηlw , 〈ηlw〉 = 0. We thus distinguish two

types of fluctuations about these averages by

( · )′ = ( · ) − 〈 · 〉, ( · )† =( · ) − 〈 · 〉, (4.2)

where the dot denotes the operand.
Consistent with non-breaking waves near the peak of their spectrum in the ocean,

we assume that ε � 1. We shall use ε as the fundamental expansion parameter of
the asymptotic theory. The other scaling parameters [β, f nd, γ, δ, λ] � 1 will be
chosen in relation to ε to permit particular dynamical balances. We will choose them
to obtain both a consistent and general leading-order vorticity equation for the wave-
averaged current dynamics with advection, rotation, topography and stratification
influences, and a general combination of influences from nonlinearity, topography
and the currents for the slowly varying envelope dynamics of the waves. We shall see
that the scaling choices that allow this are the following:

β = ε2, f nd = ε4f, γ = ε4, δ = ε, λ= ε, (4.3)

where we assume that f, µ ∼ ε0 = O(1). It will be shown that these choices are
consistent in (4.1) with the wave velocity remaining irrotational up to O(ε2) (§ § 3, 5
and 7) and with the long-wave and current velocities being entirely horizontal up to
O(δβ) = O(ε3).

A physical characterization of the regime of interest can be made by using a primary
surface gravity wavelength of 100 m and a wave amplitude of 1.2 m in water with a
depth of 100 m. From the dimensional form of (3.2), the wave period is 8 s. The wave
steepness is ε = 0.1. The slow length scale is β−1 = ε−2 times the wavelength or 10
km; this is comparable to the baroclinic deformation radius in coastal regions. The
slow time scale is γ −1 = ε−4 times the period or 1 day; this is comparable both to
sub-tidal current advective times and to synoptic atmospheric times over which the
wind forcing of the primary waves changes. These slow scales are thus relevant for
sub-mesoscale and mesoscale topography and currents on a continental shelf.

5. Wave envelope dynamics
Here we construct a slowly varying weakly nonlinear wave theory for gravity

waves in finite-depth water, carrying further the approach in Chu & Mei (1970). The
basic strategy is to apply WKB theory (c.f. Keller 1958). To leading order the result
coincides with the linear solution in § 3. At higher orders it includes effects of wave
nonlinearity and vorticity, topographic variations, long waves, and currents. In this
section we assume that the long-wave (ηlw, ulw)(X, z, τ ) and current (ζ, v)(X, z, T )
quantities are known, in order to determine their influence on the primary wave
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evolution. (In subsequent sections we shall derive the evolutionary equations for the
long waves and currents.)

5.1. Governing equations

Exploiting the properties of the velocity field mentioned at the end of the previous
section and the scaling choices (4.3), we write

U = ∇φ + ε(q lw + v) + ε2uwv + ε3 ẑ(wlw + wc); (5.1)

φ is the wave component of the velocity potential Φ , and uwv is the wave velocity
associated with wave vorticity (i.e. ωw = ∇ × uwv 
= 0). The εδ prefactor of the wave
vorticity is determined by nonlinear interactions with the currents (demonstrated
below).

We obtain simplified governing equations for φ by dropping terms of O(ε3) after
making use of the scaling relations in (4.3), δ = ε and β = ε2 in particular. The
momentum balance (2.1) can be rewritten as

∇
(

∂φ

∂t
+

ε

2
(U · U) + p + P0

)

= −ε2

(
∂uwv

∂t
+

(
∂V
∂z

∂φ

∂z
, −

[
∂V
∂z

· ∇xφ

]))
+ O(ε3), (5.2)

where

V = q lw + v (5.3)

is the phase-averaged horizontal velocity. The neglected terms contain current
acceleration, Coriolis force, and other higher-order terms. In order to clearly
distinguish the irrotational and rotational components of the wave velocity, we
require that the left- and right-hand sides of (5.2) vanish separately to the indicated
order. The left-hand side yields a Bernoulli integral,

∂φ

∂t
+

ε

2
U · U + p + (P0 − Cb) = 0 + O(ε3). (5.4)

Cb is an arbitrary function of t that appears due to spatial integration of the
momentum equations; it will be specified later (§ 9). The right-hand side of (5.2)
yields

∂uwv

∂t
=

(
−∂V

∂z

∂φ

∂z
,

[
∂V
∂z

· ∇xφ

])
+ O(ε). (5.5)

Clearly, (5.4) is only valid to the indicated order with the particular, but permissible,
choice of uwv in (5.5). In § § 6–7 we present more complete analyses of the long-wave
dynamics and the wave vorticity balance, but for now we proceed with the analysis
for φ, formally assuming that uwv is otherwise known (i.e. just as for ulw , ηlw , v,
and ζ ).

Continuity in the pressure field allows us to evaluate (5.4) at the free surface:

1

tanh[µ]
E +

∂φ

∂t
+

ε

2
(U · U) = Cb − P0 + O(ε3), z = εE. (5.6)

Its material derivative is

[φ] + ε
∂

∂t
(U · U) +

ε2

2
(U · ∇)(U · U) +

ε2

tanh[µ]
wwv = O(ε3), z = εE, (5.7)
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which is obtained by applying ∂/∂t + εU · ∇ to (5.6). The operator  is defined as

 ≡ ∂2

∂t2
+

1

tanh[µ]

∂

∂z
. (5.8)

The incompressibility relation and kinematic boundary conditions from (2.1)–(2.3)
are

∇2φ = −ε2∇ · uwv, −µH < z < εE, (5.9)

∂φ

∂z
= −µε2∇xφ · ∇XH − ε2wwv + O(ε3), z = −µH, (5.10)

∂φ

∂z
=

∂E

∂t
+ εU · ∇xE − ε2wwv + O(ε3), z = εE, (5.11)

Next we expand the free-surface conditions in a Taylor series about the mean sea
level, z =0. This is done by applying the operator

R ≡ exp

(
εE

∂

∂z

)
= 1 + εE

∂

∂z
+

ε2

2
E2 ∂2

∂z2
+ O(ε3)

= 1 + εη
∂

∂z
+ ε2

(
Z

∂

∂z
+

1

2
η2 ∂2

∂z2

)
+ O(ε3) (5.12)

to (5.7) and (5.6) and evaluating the resulting equations at z = 0. Here

Z = ηlw + ζ (5.13)

is the phase-averaged sea-level elevation. After substituting from (5.1), we obtain

R[[φ]] = −2ε

(
1 + εη

∂

∂z

)[
∇φ · ∇∂φ

∂t

]
+

ε2

tan h[µ]
wwv

− ε2

(
1

2
(∇φ · ∇)(∇φ · ∇φ) + 2V · ∇x

∂φ

∂t

)
+ O(ε3), z = 0, (5.14)

1

tanh[µ]
(η + εZ) = −R

[
∂φ

∂t

]
− ε

2

(
1 + εη

∂

∂z

)
[∇φ · ∇φ]

− ε2 (V · ∇xφ) + (Cb − P0) + O(ε3), z = 0. (5.15)

The equations (5.9), (5.10), and (5.14) comprise the governing equations for the wave
dynamics in φ, and (5.15) may be used to evaluate η from φ. These differ from those
of Chu & Mei (1970) most substantially by including contributions from the wave
vorticity (5.5) that, as we shall see, carry significant information about the effects of
currents.

5.2. Wave phase dynamics

We expand the solution in ε,

φ = φ0 + εφ1 + ε2φ2 + · · · ,
η = η0 + εη1 + ε2η2 + · · · .

}
(5.16)

At leading order we use a WKB representation for the linear wave solution (3.1) and
(3.3) over slowly varying depth, H (X),

φ0 = 1
2
φ01(X, z, τ )eiS(X,τ )/ε2

+ c.c.,

η0 = 1
2
η01(X, τ )eiS(X,τ )/ε2

+ c.c.,

}
(5.17)
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where

η01 = A(X, τ ), φ01 = − iA

σ tanh[µ]

cosh[Z]

cosh[H]
. (5.18)

Here i =
√

−1, and c.c. denotes the complex conjugate; φ01 and η01 are complex
functions. A is the wave amplitude function in the surface elevation, and S is the
phase function that, when divided by ε2 in the exponential, yields oscillations over
the fast coordinates (x, t). S is related to the wavenumber vector and frequency by

k = ∇XS, σ = −∂S

∂τ
, (5.19)

as is customary in ray theory (Lighthill 1978). This solution form satisfies (5.9), (5.10),
and (5.14) at leading order in ε when the derivatives (∇x, ∂/∂t) are interpreted as
ε2 (∇X, ∂/∂τ ) when applied to the solution form (5.17) and when the dispersion
relation (3.2) holds; i.e.

σ 2 = Σ2 (X, τ, k) ≡ k
tanh[H(X, k)]

tanh[µ]
. (5.20)

The accompanying fields for the leading-order wave solution have the following
harmonic coefficients in expansion forms analogous to (5.16)–(5.17):

q01 = ikφ01 =
Aσ k

k sinh[H]
cosh[Z],

w01 =
∂φ01

∂z
= − iAσ

sinh[H]
sinh[Z],

pw
01 = iσφ01 =

A

tanh[µ] cosh[H]
cosh[Z],

ωw
01 = 0.




(5.21)

The so-called ray equations for the phase dynamics are completed by the differential
consequences of (5.19) and (5.20), namely

∂k
∂τ

+ Cg · ∇Xk = −∇XΣ |τ,k = − kσ

sinh[2H]
∇X[µH ],

∂σ

∂τ
+ Cg · ∇Xσ =

∂Σ

∂τ

∣∣∣∣
x,k

= 0,


 (5.22)

where Cg is the group velocity,

Cg =
∂Σ

∂k
=

σ

2k2

(
1 +

2H
sinh[2H]

)
k. (5.23)

Thus, the leading-order wave solution is wholly determined by the preceding relations
except for the slowly varying amplitude A.

5.3. Wave amplitude dynamics

To determine A we must consider higher-order dynamical balances. Because of the
nonlinearities in (5.14)–(5.15), the wave solution form (5.17) induces other harmonics
of the primary oscillation. As in Chu & Mei (1970), we assume that

φn =

n+1∑
m=1

(
1
2
φnmeimS/ε2

+ c.c.
)
, ηn =

n+1∑
m=1

(
1
2
ηnmeimS/ε2

+ c.c.
)

(5.24)

for n � 1. Here φnm and ηnm are complex functions of the slow variables (X, τ ).
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Substituting (5.24) into (5.9), (5.10), and (5.14), then collecting the leading-order
linear operator terms on the left-hand sides, yields the following boundary-value
problem for φnm:

(
∂2

∂z2
− m2k2

)
φnm = Fnm, −µH < z < 0, (5.25)

∂φnm

∂z
= Bnm, z = −µH, (5.26)(

1

tanh[µ]

∂

∂z
− m2σ 2

)
φnm = Gnm, z = 0. (5.27)

The right-hand sides are functions of solution components with n′ < n (in particular,
they are trivial for n = 0). Similarly, we formally write the η evaluation condition
(5.15) as

ηnm − imσ tanh[µ]φnm =Hnm, z = 0. (5.28)

When Fn1, Bn1, or Gn1 is non-trivial, there is a compatibility condition that must
be satisfied for the solution form (5.17) and (5.24) to be valid. This compatibility
condition arises from the Fredholm Alternative Theorem; from the adjoint problem
for (5.25)–(5.27), we can derive the following:

∫ 0

−µH

φ∗
01Fn1 dz′ = tanh[µ]Gn1φ

∗
01|z=0 − Bn1φ

∗
01|z=−µH (5.29)

for all n � 1, where ∗ denotes complex conjugation.
We next apply this condition at n = 2 to determine A. This requires that we first

evaluate the wave solution at O(ε). Evaluating the right-hand sides of (5.25)–(5.28)
from (5.9)–(5.10) and (5.14)–(5.15) with the solution form (5.17), we obtain

F11 = F12 =B11 =B12 =G11 = H11 = 0,

G12 =
3iA2kσ

tanh[µ] sinh[2H]
,

H12 =
A2k

2 sinh[2H]
(cosh[2H] − 2).




(5.30)

Given the above the only non-trivial wave components at this order are φ12 and η12.
By solving (5.25)–(5.28) with (5.30), we obtain

φ12 = −3

8

iA2σ

sinh4[H]
cosh[2Z],

η12 =
A2k

2 tanh[H]

(
1 +

3

2 sinh2[H]

)
.


 (5.31)

At O(ε2) we evaluate the compatibility condition (5.29) in order to determine A.
(We will otherwise evaluate the wave components at n = 2 in Appendix A, since they
also are needed for later evaluation of wave-averaged forcing of the current equations
(§ § 8–9).) First we evaluate the vortical component of the wave velocity from (5.5)
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and (5.18):

qwv
0 = −1

2

(
A sinh[Z]

sinh[H]

∂V
∂z

)
eiS/ε2

+ c.c.,

wwv
0 =

1

2

(
iA cosh[Z]

k sinh[H]
k · ∂V

∂z

)
eiS/ε2

+ c.c.




(5.32)

Next, using the lower-order solution components (5.18) and (5.31), we evaluate the
requisite right-hand-side quantities from (5.9), (5.10), and (5.14):

F21 = − 1

tanh[µ]

(
2k · ∇X

[
A cosh[Z]

σ cosh[H]

])

− 1

tanh[µ]

([
A cosh[Z]

σ cosh[H]

]
(∇X · k)

)
− iA cosh[Z]

k sinh[H]

∂2V
∂z2

(z)

B21 = − A

σ tanh[µ] cosh[H]
k · ∇XµH − iA

k sinh[H]

∂V
∂z

(−µH )

G21 =
1

tanh[µ]

(
2
∂A

∂τ
− A

σ

∂σ

∂τ

)
+

i2A

tanh[µ]

(
σk

sinh[2H]
Z + V(0)

)

− iA

k tanh[µ] tanh(H)

∂V
∂z

(0) +
iM

tanh[µ]
A|A|2,




(5.33)

where

V(z) = k · V (z)

and

M = k2σ

(
1 +

1

sinh2[H]
+

9

8 sinh4[H]

)
. (5.34)

Inserting (5.33) into the compatibility condition yields an equation for the complex
amplitude A:

∂A

∂τ
+ Cg · ∇XA+ 1

2
A∇X · Cg + 1

2
iM |A|2A

+
ikA

sinh[2H]

(
σZ + 2

∫ 0

−µH

cosh[2Z]V(z) dz

)
= 0. (5.35)

This may be more readily interpreted by decomposing A into its magnitude and slow
phase,

A(X, τ ) ≡ |A|eiΘ. (5.36)

The equation for the former takes the form of wave action conservation:

∂A
∂τ

+ ∇X · (CgA) = 0. (5.37)

The action is defined in the usual way as mean wave energy over the intrinsic
frequency (Lighthill 1978),

A =
|A|2

2σ tanh[µ]
=

E
σ

(5.38)

(cf. (3.5)). Notice that the action evolution does not depend on the long waves,
currents, or wave nonlinearity. In contrast, the evolution of the slow phase is
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governed by

∂Θ

∂τ
+ Cg · ∇XΘ +

M

2
|A|2 +

k

sinh[2H]

(
σZ + 2

∫ 0

−µH

cosh[2Z]V(z) dz

)
= 0, (5.39)

indicating how the long waves, currents, and wave nonlinearity each induce changes
along ray paths. In particular, note that the long waves and currents enter together
in a simple additive fashion in the primary wave dynamics. The equation (5.35) for A,
which underlies (5.37) and (5.39), has a cubic nonlinearity as previously derived for
dispersive surface gravity waves (e.g. Mei 1989, Chap. 12). We shall see in § § 6 and 9
that the effects of Z in (5.35) are a combination of cubic nonlinearities, augmenting the
explicit nonlinear term, and a variable environment provided by an inverse-barometer
response to atmospheric pressure variations. The final term in (5.39) is recognizable
as a Doppler shifting of the slowly varying frequency, −∂Θ/∂τ , by a wave-profile
weighted-average of the long-wave and current horizontal velocity, V . This Doppler
shift can be rewritten as

1

A

∫ 0

−µH

vSt (z) · V (z) dz , (5.40)

where A is the wave action (5.38) and vSt is the Stokes drift velocity discussed in § 8;
in the special case where V is independent of depth (c.f. § 12), the profile-weighted
Doppler shift is simply V = k · V . Missing from (5.35)–(5.39) are second-order spatial
derivatives (e.g. as in a nonlinear Schrödinger amplitude equation; Mei 1989, p. 616)
that would act to spread the distribution of A and allow the occurrence of a side-band
instability (Benjamin 1967); this effect would be relevant for a shorter wave packet,
but in our scaling it is deferred to higher order in ε. If desired for the purpose
of phenomenological realism, these second-order terms could be appended to (5.35)
without asymptotic inconsistency, though in excess of a minimal consistency.

This completes the determination of the wave envelope dynamics to leading order
in ε and on evolutionary scales to (X, τ ); the dependence on T is implicit in ζ and v

in these wave balances.

5.4. Special limits

It is worth noting two situations that allow substantial simplification of the wave
formulae, as well as those below for the wave-averaged effects on the long waves and
currents.

First, in deep water we can smoothly take the limit in the preceding relations as µ

and H = kµH become very large. As a consequence, σ ≈ ±
√

k,

sinh[H], cosh[H] ≈ 1
2
eH,

and in the upper ocean,

sinh[Z], cosh[Z] ≈ 1
2
eHekz.

Commonly these H and Z functions appear as denominators and numerators,
respectively; thus their ratio has the simple exponential form, ekz. (In contrast, we
cannot smoothly take the shallow-water limit on the scale of the primary waves,
µ, H → 0, since the nonlinear interaction hierarchy for the waves becomes ill-
ordered.)

Second, given steady-state boundary conditions for the primary wave field, after
adjustment from arbitrary initial conditions it will equilibrate through propagation so
that ∂τ = (·)† = 0. Under these conditions the forced long-wave component disappears
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(§ 6), and the wave envelope dynamics are diagnostically determined from the currents,
topography, and boundary conditions, with an implicit evolution only on the time
scale T .

6. Long-wave dynamics
In the presence of the primary waves in § 5, there are forcings of long waves

(sometimes called infra-gravity waves, to indicate their lower frequency) and currents
due to non-trivial wave averages of the nonlinear terms in (2.1) and (2.3). Here we
consider this long-wave dynamics, deferring the currents until § § 8–9. We therefore
focus on the response to the averaging operator ( · )† defined in (4.2).

6.1. Leading-order balances

Given the coordinate and amplitude dependences in (4.1) and the primitive dynamics
of § 2, the leading-order long-wave balances are the following:

∂q lw

∂τ
+ ∇Xplw = −∇X

1
2

(
u2

0

)†
, (6.1a)

∂plw

∂z
= − ∂

∂z
1
2

(
u2

0

)†
, (6.1b)

∇X · q lw +
∂wlw

∂z
= 0, (6.1c)

wlw(−µH ) + q lw(−µH ) · ∇X[µH ] = 0, (6.1d)

wlw(0) − ∂ηlw

∂τ
= ∇X · (η0q0(0))†, (6.1e)

plw(0) − 1

tanh[µ]
ηlw = −

(
η0

∂pw
0

∂z
(0)

)†

. (6.1f)

Balances (6.1b) and (6.1f ) occur at O(ε), while the rest occur at O(ε3); the corrections
to (6.1) occur at O(ε2). The horizontal momentum equation and the kinematic
condition at the surface (i.e. (6.1a) and (6.1e) formally have more contributing right-
hand-side terms than the ones listed. Appendix B explains how the listed terms
are the non-trivial leading-order contributions. This is an entirely linear long-wave
dynamics, forced by the right-hand-side wave-averaged terms.

From (5.21), we can evaluate the long-wave forcing quantities in (6.1) as

1
2

(
u2

0

)†
=

1

2 tanh[µ]

(
|A|2k

sinh[2H]
cosh[2Z]

)†

,

(η0q0(0))† =
1

2

(
|A|2σ k

k tanh[H]

)†

≡ (T St )†,(
η0

∂pw
0

∂z
(0)

)†

=
1

2 tanh[µ]

(
|A|2k tanh[H]

)†
.




(6.2)

We defer the interpretation of these wave-averaged forcings to § § 8–9 where they
again arise in the current dynamics but with the alternative averaging operator 〈 · 〉.
But, to connect with other wave-averaged effects on currents, we remark here that the
quantity T St is the depth-integrated horizontal transport by the Stokes drift (9.13).
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6.2. Quasi-static sea level and pressure

We simplify (6.1) by separating out a quasi-static component of the long-wave solution
defined by

p̂lw(z) ≡ − 1
2

(
u2

0(z)
)†

= − 1

2 tanh[µ]

(
|A|2k

sinh[2H]
cosh[2Z]

)†

,

η̂lw ≡ tanh[µ]

[
p̂lw(0) +

(
η0

∂pw
0

∂z
(0)

)†
]

= −1

2

(
|A|2k

sinh[2H]

)†

.




(6.3)

These relations (and their slow-averaged counterparts in § 9.2) express the ‘set-up’
phenomenon (Longuet-Higgins & Stewart 1962, 1964), whereby the mean sea level is
more depressed under larger-amplitude waves. Furthermore, η̂lw contributes, through
the term containing Z, to the nonlinear influence on the slow phase evolution of the
primary waves by augmenting the |A|2 coefficient M in (5.39).

6.3. Long-wave currents

We denote the residual components of (plw, ηlw) by (p̃lw, η̃lw):

plw = p̂lw + p̃lw, ηlw = η̂lw + η̃lw. (6.4)

The latter components are in dynamical balance with non-zero q lw and wlw .
After subtracting the quasi-static balances, (6.1a) implies that q lw is vertically

irrotational; hence, we can define a long-wave horizontal velocity potential,

q lw = ∇Xϕlw. (6.5)

Relation (6.1b) implies that

∂p̃lw

∂z
=

∂q lw

∂z
=

∂ϕlw

∂z
=0; (6.6)

hence this long-wave component satisfies a classical shallow-water dynamics with wlw

a linear function of z. Eliminating p̃lw and wlw in (6.1) and noting that

∂ϕlw

∂τ
= − 1

tanh[µ]
η̃lw, (6.7)

we obtain a forced horizontal wave equation for the long-wave velocity potential,

∂2ϕlw

∂τ 2
− ∇X · [(Clw)2∇Xϕlw] = Flw , (6.8)

where

Clw =

√
µH

tanh[µ]
(6.9)

is the long (i.e. non-rotating, shallow-water) gravity-wave speed and the wave-averaged
forcing is

F̃lw =
1

tanh[µ]

(
∇X · ( T St )† +

∂η̂lw

∂τ

)

=
1

2 tanh[µ]

[
∇X ·

(
|A|2σ k

k tanh[H]

)†

− ∂

∂τ

(
|A|2k

sinh[2H]

)†
]

. (6.10)
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Equations (6.8)–(6.10) are a two-dimensional variable-depth generalization of the
long-wave dynamics in Mei (1989, p. 613). All of q lw , η̃lw , and η̂lw contribute through
V and Z to the nonlinearity in the slow phase evolution (5.39), as functionals of |A|2.

In the special case of deep-water primary waves (µ � 1; § 5.4), η̃lw � 1 in (6.10)
(c.f. ζ̂ � 1 in § 9.2), and the long-wave horizontal velocity may or may not retain
its depth-independent structure, depending upon whether µε2 is small or not. In
the latter case, the preceding relations must be corrected accordingly. In the case of
steady-state primary waves (i.e. (·)† = 0; § 5.4), all of the long-wave forcings in (6.2)
vanish, hence so does the necessity for a long wave component due to primary-wave
nonlinearity. In this case the only significant wave-averaged forcing is for the currents
(§ § 8–9).

6.4. Long-wave vorticity

The ordering choices (4.3) and the expansion form (4.1) make it useful both to rescale
and to define an anisotropic decomposition of the long-wave vorticity:

εωlw = ε (ξ lw
, ε2χlw), (6.11)

where

ξ lw = ẑ ×
(

∂q lw

∂z
− ε4∇Xwlw

)
= ẑ × ∂q lw

∂z
+ O(ε4)

is a purely horizontal vector and

χlw = ẑ · ∇X × q lw.

However, the depth independence of q lw and the vanishing of its vertical component
of curl, implied by (6.1a) and by (6.5), imply that

ξ lw
, χ lw = O(ε2). (6.12)

This indicates that the long waves are irrotational to a high order. We will see that
this is sufficient to ensure that the long-wave component contributes to the primary
wave vorticity (§ 7) in only a limited way and not at all to the current vorticity balance
(§ 8).

6.5. A propagating wave packet

The wave-packet problem is for a primary wave whose amplitude function, A, has
compact support and propagates with Cg in (5.23) as described in § § 5.2–5.3. No
current is forced by the wave packet since the average of the wave forcing over the τ

scale is trivial. An analytic solution may be obtained for the special circumstances in
which H , k, and σ are constant, and A is uniform in the direction perpendicular to
k. In this case the primary wave has uniform steady-state propagation in (X, τ ) for
all its dependent variables except Θ . We define a slow horizontal coordinate moving
with Cg and parallel to the phase propagation,

X∗ =
σ k
|σk| · (X − Cgτ ). (6.13)

A steady-state solution to (6.8)–(6.10) is

q lw(X, Y, τ ) = ∇Xϕlw = −
(

(Clw)2

(Clw)2 − C2
g

) (
1

µH
T St + Cg

[
− η̂lw

µH

])
(X∗). (6.14)
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From (5.23) and (6.2), T St and Cg are in the same direction and thus combine
constructively in (6.14). From (5.23) and (6.9),

|Cg|
Clw

=

√
tanh[H]

H

(
1

2
+

H
sinh[2H]

)
� 1 ∀ H � 0. (6.15)

This indicates that the forced long-wave horizontal velocity moves with the wave
packet; it is uniform perpendicular to X∗ (as is the primary wave packet); and it is
directed oppositely to T St/µH (the depth-averaged Stokes drift; see § § 8 and 9.3) at a
speed that is either equal to it (as H → ∞; deep water on the primary wave scale) or
faster (n.b. T St remains finite while η̂lw → 0 as H → ∞). As H → 0 (shallow water
on the primary wave scale), |q lw| → ∞ since |Cg| → Clw . Since the asymptotic theory
here is valid for H ∼ 1, alternative analyses should be made for these extreme limits.

This behaviour corresponds to the discussions in McIntyre (1981) and Craik (1985,
§ 11.2) based on several earlier analyses referenced therein. Although the asymptotic
scaling relations in (4.3) differ from those in the previous derivations, the resulting
solution is the same. Once the preceding special assumptions are relaxed with more
general initial and topographic conditions, we can expect departures from steady-state
propagation with non-trivial evolution of the wave packet properties and a ‘wake’ of
long-wave currents forced by the packet as determined from the relations in § § 5.2–3
and 6.3.

7. Wave vorticity balance
The preceding wave dynamics are irrotational up to the first two leading expansion

orders. The first non-trivial wave vorticity arises at O(ε2) due to the background
vorticity provided by the currents, as indicated in (5.5). To evaluate the wave quantities
in § 5, only a leading-order approximation to (ξw

, χw) is required; however, to evaluate
the averaged wave forcings in the current vorticity balance (§ 8), an approximation to
O(ε2) is needed.

The ordering choices (4.3) and the expansion form (4.1) make it useful both to
rescale and to define an anisotropic decomposition for the primary wave and current
vorticities (as done for the long wave in (6.11)):

ωw = ε2(ξw
, χw), εωc = ε (ξ c

, ε2χc). (7.1)

The ξ are purely horizontal vectors. Thus, based on the ε ordering in (5.1) and (7.1),

(ξw
, χw) = ∇ × uwv.

Also,

ξ c = ẑ ×
(

∂v

∂z
− ε4∇Xwc

)
= ẑ × ∂v

∂z
+ O(ε4). (7.2)

Note that the formal scaling of the long-wave and current vorticities is identical,
although (6.12) indicates that the former are actually much smaller.

From (2.6) and (4.1), we have

ε−2 ∂ωw

∂t
= −∇ × [(ωlw + ωc + ε2f ẑ) × u]

− ε∇ × [(ε−2ωw) × u]′ − ε2∇ × [(ε−2ωw) × V ] + O(ε3), (7.3)
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where f = ε−4f nd is an order-one constant and the prime superscript denotes
departure from the wave average (4.2). The solutions to (7.3) for the wave vorticity
to O(ε2) are in Appendix C.

8. Current vorticity balance
The leading-order vorticity balance for currents comes from averaging (2.6) over

wave scales. The expansion form in (4.1) and parameter relations in (4.3) have been
chosen so that the tendency, advection, and wave-averaged forcing terms all enter at
the leading order. Formally, we write this at O(ε5) as

∂ωc

∂T
+ ε−2∇ × [(ωc + ε2f ẑ) × (v, ε2wc)] = −ε−2∇ × 〈(ε−2ωw) × u〉, (8.1)

but its leading-order balances are more apparent when we decompose it into
horizontal and vertical components at O(ε5) and O(ε7), respectively:

∂ξ c

∂T
+

(
v · ∇X + wc ∂

∂z

)
ξ c −

(
ξ c · ∇X + (f + χc)

∂

∂z

)
v

= + ẑ × ∂ J
∂z

− [ ẑ × ∇X]K,

∂χc

∂T
+

(
v · ∇X + wc ∂

∂z

)
(f + χc) −

(
ξ c · ∇X + (f + χc)

∂

∂z

)
wc

= ẑ · ∇X × J,




(8.2)

where

ξ c = ẑ ×
(

∂v

∂z
− ε2∇Xwc

)
≈ ẑ × ∂v

∂z
,

χc = ẑ · ∇X × v.


 (8.3)

The horizontal vector J is defined by

J = ε−2 ẑ × 〈wξw − χwq〉 = ẑ ×
〈
w0ξ

w
2 + w2ξ

w
0 +w1ξ

w
1 − χw

0 q2 − χw
2 q0 − χw

1 q1

〉
, (8.4)

and K is defined by

K = ẑ ·
〈
q0 × ξw

0

〉
. (8.5)

The wave-averaged forcing terms in (8.2) come from the right-hand side of (8.1) that
has the form of a curl of the so-called wave vortex force, whose horizontal and vertical
components, respectively, are J and ε−2K at O(ε5). These affect the evolution of the
current vorticity as a vortex stretching associated with the Stokes drift of material
parcels (also see § § 9–10). In (8.4), we have used the fact that quadratic products
between n = 0 and 1 components have zero wave average. We have also used the
fact that 〈

w0ξ
w
0 − χw

0 q0

〉
= 0

from (3.1) and (C 6). Since the form of (
ˆ̂
ξ

w

2 , ˆ̂χ
w

2 ) is identical to (ξw
0 , χw

0 ) in its
dependences upon the primary wave variables, this also implies that the former
long-wave terms in (C 8) will make no contribution to J even at O(1), and thus can
be ignored for our purposes. The other potential long-wave contributions implicit
in the formulae for (ξw

2 , χw
2 ) vanish since they enter linearly in V and disappear

after averaging over τ . Finally, there are no vortex forces resulting from averages of
quadratic products of long-wave fields (e.g. 〈q lw × ξ lw〉) since they would enter (8.2)
only at a higher order in ε.
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We evaluate fully the expressions for J and K from (5.21), (C 6), (C 7), (C 8), (8.4),
and (8.5) to obtain the following:

J = − ẑ × 〈vSt〉(χc + f ) − 〈wSt〉∂v

∂z
− ∇X

[〈 ∫ z

−µH

vSt (z′) dz′
〉

· ∂v

∂z

]
,

K = −
〈 ∫ z

−µH

vSt (z′) dz′
〉

· ∂2v

∂z2
.


 (8.6)

In both J and K , we note that all the wave-averaged forcing terms are related to the
Stokes drift, which is defined and evaluated as

vSt ≡
[∫ t

u0 dt · ∇
]

u0 =
|A|2σ

2 sinh2[H]
cosh[2Z]k. (8.7)

Its vertical integral is ∫ z

−µH

vSt (z′) dz′ =
|A|2σ

4k sinh2[H]
sinh[2Z]k. (8.8)

We also have defined a vertical pseudo-velocity,

wSt (z) = −∇X ·
∫ z

−µH

vSt dz′. (8.9)

This combines with the horizontal Stokes drift in the following three-dimensional
incompressibility relation:

∇X · vSt +
∂w

∂z

St

= 0.

We use the term pseudo-velocity here to distinguish it from the vertical component of
the averaged quadratic quantity in (8.7) – the true Stokes drift – which is zero. Stokes
drift is the Lagrangian mean flow associated with the leading-order wave field, and it
has a non-dimensional scaling factor of ε (i.e. the same as v in (4.1)).

Since currents are distinguished from waves, not just in their coordinate
dependences (4.1), but also in their dominantly vortical, rather than irrotational,
character, we can view (8.2) as the central dynamical relations for current evolution
under wave influences. However, for a complete characterization of the current fields
and their dynamics, we must consider additional relations (§ 9). Further interpretation
of the vortex force is in § 9.6.

9. General current balances
Now we examine the wave-averaged continuity and momentum equations and

boundary conditions for the currents. In anticipation of the leading-order dynamical
balances, we partition the sea level and pressure to isolate a component in static
balance with the atmospheric surface pressure and wave field (denoted by ˆ) and a
dynamical term (denoted by c) associated with the currents:

ζ = ζ̂ + ε2ζ c, r = p̂ + ε2pc. (9.1)

The static components are analogous to (η̂lw, p̂lw) in § 6, except here they are due to
the full average over the wave scales.
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9.1. Continuity and bottom boundary condition

The linear equations are easily averaged. The continuity equation for currents occurs
at O(ε3) compared to (2.1):

∇X · v +
∂wc

∂z
= 0. (9.2)

The bottom boundary condition (2.2) also occurs at O(ε3):

wc = −µv · ∇XH at z = −µH. (9.3)

9.2. Static pressure and sea-level fields

The leading-order wave-averaged momentum balance from (2.1) occurs at O(ε3)
horizontally and O(ε) vertically; in both relations it can be integrated spatially to
give a balance with the wave kinetic energy density,

p̂ = − 1
2

〈
u2

0

〉
+ Cp, (9.4)

which is a simple form of the Bernoulli integral (c.f. (5.4)). The right-hand side is
often called a Bernoulli head, here due to the wave-averaged kinetic energy. Cp is
an integration constant. There are analogous wave-averaged forms of the surface
conditions, (2.5) and (5.15), expanded about z = 0 (as in § 5) at O(ε):

p̂(0) +

〈
η0

∂pw
0

∂z
(0)

〉
=

1

tanh[µ]
ζ̂ ,

−
〈

η0

∂2φ0

∂z∂t
(0)

〉
− 1

2

〈
u2

0(0)
〉

+ ε−1(Cb − P0) =
1

tanh[µ]
ζ̂ .




(9.5)

Using the leading-order wave solution in § 3 or 5, we evaluate the leading-order wave
kinetic energy density to be

1
2

〈
u2

0

〉
=

1

2 tanh[µ]

〈
|A|2k

sinh[2H]
cosh[2Z]

〉
, (9.6)

and the wave terms in (9.5) to be〈
η0

∂pw
0

∂z
(0)

〉
= −

〈
η0

∂2φ0

∂z∂t
(0)

〉
=

〈
w2

0(0)
〉
=

1

2 tanh[µ]
〈 |A|2k tanh[H]〉. (9.7)

The latter quantity is thus the mean sea-level tendency variance, 〈(∂η/∂t)2〉. The first
relation in (9.5)–(9.7) – among oceanic surface pressure, atmospheric pressure (c.f.
(2.4), sea level, and 〈w2〉 – is similar to one derived in McWilliams & Restrepo
(1999); it shows that one cannot infer the oceanic surface pressure without correcting
for a wave-averaged term (e.g. in altimetric inferences of dynamic pressure). These
relations can be manipulated to show that Cp = ε−1(Cb − P0) and Cb = 0 without loss
of generality. Thus, the static sea-level and pressure fields are

ζ̂ = − tanh[µ]

ε
P0 − 1

2

〈
|A|2k

sinh[2H]

〉
,

p̂(z) = −1

ε
P0 − 1

2 tanh[µ]

〈
|A|2k

sinh[2H]
cosh[2Z]

〉
.




(9.8)

The wave forcings in each of these expressions are the same as for their long-wave
counterparts in (6.2)–(6.3) except for the difference in averaging operators. The first
part of ζ̂ is the ‘inverse-barometer’ response of sea level to an atmospheric pressure
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anomaly (presumed to be O(ε) for well-orderedness), and the second part is the
wave set-up on the current time scale. As with ηlw in § 6, the current-scale sea-level
fluctuations provide, through ζ̂ and Z, an additional cubic nonlinearity in the wave-
amplitude balance (5.35). The determining relations for p̂ and ζ̂ do not involve the
current velocity; hence they may be called static balances.

In the deep-water limit (i.e. H → ∞), (9.8) indicates that ζ̂ → 0 while p̂(0) remains
finite. This implies that the wave set-up effect on sea level becomes negligible in
deep water. It also implies that the indicated altimetric correction to inferred surface
pressure based on (9.5)–(9.7) becomes applicable only to the static pressure, p̂(0),
rather than the dynamic pressure, pc(0), and thus inconsequential for determination
of large-scale geostrophic currents in deep water through the cancellation of the
static pressure gradient force and the leading-order Bernoulli-head gradient in the
momentum equations (see further remarks at the end of § 9.5).

9.3. Dynamic surface boundary conditions

With p̂ and ζ̂ fully determined, we proceed to the nonlinear, wave-averaged surface
boundary conditions at O(ε3) and horizontal and vertical momentum equations at
O(ε5) and O(ε3), respectively. The surface pressure condition (2.5) is

1

tanh[µ]
ζ c − pc(0) = ζ̂

∂p̂

∂z
(0) +

〈
ηlw ∂plw

∂z
(0)

〉
+

1

tanh[µ]
P0, (9.9)

where the wave-averaged forcing term is

1

tanh[µ]
P0 =

1

2

〈
η2

0

〉∂2p̂

∂z2
(0) +

1

2

〈
η2

0

∂2plw

∂z2
(0)

〉
+

〈
η0

∂2pw
0

∂z2
(0)

〉
ζ̂

+

〈
η0

∂2pw
0

∂z2
(0)ηlw

〉
+

〈
η0

∂pw
2

∂z
(0) + η2

∂pw
0

∂z
(0) + η1

∂pw
1

∂z
(0)

〉

+

〈
η0η1

∂2pw
0

∂z2
(0) +

1

2
η2

0

∂2pw
1

∂z2
(0)

〉
+

1

6

〈
η3

0

∂3pw
0

∂z3
(0)

〉
. (9.10)

Other terms formally contribute here at lower order in ε, but they drop out after
averaging. The evaluation of P0 is laborious, involving (5.21), (5.31), (5.33), (A 3),
(A 4), (A 5), and (A 7); the result is

P0 =
1

2
〈|A|2k2(1 + tanh2[H]) (ζ̂ + ηlw)〉 +

tanh[µ]

4

〈
|A|2 ∂2

∂z2
(p̂ + plw)(0)

〉

+
1

2

〈
|A|2
σ

{
tanh[H]

sinh[2H]

(
−∂V

∂z
(0) + cosh[2H]

∂V
∂z

(−µH )

+

∫ 0

−µH

∂2V
∂z′2 cosh[2kz′] dz′

)
− 2k tanh[H]V(0)

}〉

+
1

4

〈
|A|4k3

sinh[2H] sinh4[H]

(
9 + 9

2
sinh2[H] − 2 sinh4[H]

)〉
. (9.11)

Note that the surface condition (9.9) between dynamic pressure and sea level
at this order relevant to the current dynamics is more complicated in its wave-
averaged correction than (9.5). As in the long-wave dynamics (§ 6), it is composed
of higher-order contributions to the static sea-level and pressure fields in § 9.2 as
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well as dynamical pressure forces for the currents (§ 9.5), but we will not make this
decomposition explicitly here.

The surface kinematic condition in (2.3), after expansion about z = 0 and averaging,
becomes

wc(0) = ∇X · 〈η0q0(0)〉, (9.12)

where similar considerations are used in this derivation as in its long-wave counterpart
in (6.1). This final expression for the wave-averaged forcing of the surface vertical
velocity is familiar from McWilliams & Restrepo (1999): it is the ∇X divergence of

〈η0q0(0)〉 =
1

2

〈
|A|2σ k

k tanh[H]

〉
=

〈∫ 0

−µH

vSt dz′
〉

≡ 〈 T St〉, (9.13)

the depth-integrated Stokes drift (c.f. (8.7)–(8.8)). This relation is the counterpart of
the long-wave ( η0q0(0) )† flux in (6.2).

9.4. Mass balance

The depth-integrated Stokes drift also appears in the wave-averaged local mass
conservation law from (2.7) at its leading order, O(ε3): from (9.2)–(9.3) and (9.12),

∇X ·
∫ 0

−µH

v dz′ = −wc(0) = −∇X ·〈T St〉 = 〈wSt (0)〉. (9.14)

This indicates that the leading-order horizontal mass transport divergence by the
currents is equal and opposite to that by the waves. Equivalently, the current vertical
velocity at the surface is equal and opposite to the surface value of the vertical
pseudo-velocity wSt from (8.9). However, this does not imply an equivalence of mass

transport by waves and currents because the rotational component, ẑ · ∇X ×
∫ 0

−µH
v dz′,

is unconstrained. For most large-scale currents the rotational component is much
larger than the divergent component (e.g. § 13).

9.5. Momentum balance

Substituting (4.1) into (2.1) and averaging with 〈 · 〉 yields the leading-order horizontal
momentum balance for currents at O(ε5):

∂v

∂T
+

(
v · ∇X + wc ∂

∂z

)
v + f ẑ × v + ∇Xpc = −∇XK + J . (9.15)

The first right-hand-side group of wave-averaged forcing terms here is minus the
gradient of the primary- and long-wave horizontal kinetic energy density at O(ε2),
namely a higher-order form of the Bernoulli head,

K =
〈
u2 · u0 + 1

2
u2

1 + 1
2
(q lw)2

〉
=

1

4

〈
σ |A|2

k sinh2[H]

(
− sinh[2Z]

∂V
∂z

+

∫ z

−µH

∂2V
∂z′2 sinh[2k(z − z′)] dz′

)〉

+
9

64

〈
|A|4σ 2k2 cosh[4Z]

sinh8[H]

〉
+ 1

2
〈 (q lw)2〉, (9.16)
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and the second group here is part of the wave vortex force, 〈 u × ωw 〉, where J is
defined in (8.4). Its curl, of course, leads to (8.2). In (9.16) the explicit evaluation of
the long-wave contribution can be done only after solving (6.8), (6.5), and (6.7).

The vertical momentum balance for currents at O(ε3) is

∂pc

∂z
= −∂K

∂z
+ K, (9.17)

which has the same types of wave-averaged forcing terms, with K defined in (8.5).
This is a quasi-hydrostatic balance since the vertical acceleration and mean advection
are negligible.

Because the depth-integrated mass balance (9.14) lacks the tendency term ∂ζ/∂T ,
which is smaller than the retained terms by O(ε4), we must solve a diagnostic relation
for pc in order to time-integrate the current dynamical equations. This relation is
obtained by integrating (9.15) over the resting depth interval (−µH, 0), taking the
horizontal divergence, and using (9.14) to replace the depth-integrated acceleration
with a T derivative of the Stokes transport (which is fully determined from the wave’s
forcing and boundary conditions independently from the current fields). The result is
a diagnostic equation for ∇X ·

∫ 0

−µH
∇Xpc dz′ in terms of present values of the current

velocity and wave-averaged forcing terms. The complementary vertical variation of
pc is determined from (9.17). With pc determined, (9.9) is a diagnostic relation for ζ c.

For radar altimetric inferences of pc(0) from measurements of ζ c, the static
components, p̂ and ζ̂ , must first be eliminated as described in § 9.2 (n.b. the elimination
is trivial in deep water). As shown above, however, there are other wave-averaged
contributions through P0 in (9.10) and K in (9.16) that in principle must also be
included in this inference; furthermore, some of these contributions involve wave–
current products that are unknown a priori. Nevertheless, in the limit of small Rossby
number for the currents (i.e. V c � f Lc, dimensionally), these contributions in P0 and
K are small compared to the geostrophically balanced components of pc(0) and ζ c,
and thus this aspect of the altimetric inference remains valid.

In (9.15) the Coriolis forces involving f combine into −f ẑ × (v + 〈vSt〉), after using
(8.6). Ursell (1950) noted that, for rotating flows in the presence of a steady spatially
uniform primary wave, the only conservative, steady, uniform current solution is
v(z) = −〈vSt〉(z) since all other forces vanish. This solution is also consistent with the
mass balance (9.14). This has sometimes been misinterpreted as an indication that
the wave-averaged effect on currents may be only a trivial cancellation of the Stokes
drift, otherwise leaving the currents the same as if there were no waves. In the usual
oceanic regimes with non-steadiness and spatial non-uniformity for all quantities, this
conclusion is logically unwarranted, and the particular solutions in § 13 demonstrate
that the interpretation is often far from valid.

9.6. Vortex force and Bernoulli head

The vortex force ε5(J, ε−2K) in (8.6) is non-unique in its contribution to the current
vorticity balance (8.2) with respect to any irrotational force vector. The Bernoulli
head force in (9.15) and (9.17), namely

−ε5

(
∇X, ε−2 ∂

∂z

)
K, (9.18)

is such an irrotational vector. The following three-dimensional vector identity can be
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demonstrated:

ε5(J, ε−2K) = ε5 (〈 vSt〉, ε2〈 wSt〉) × ( ε−2ξ c
, f + χc)

− ε5

(
∇X, ε−2 ∂

∂z

) [〈∫ z

−µH

vSt (z′) dz′
〉

· ∂v

∂z

]
. (9.19)

The left-hand side is the vortex force in (8.6); the first right-hand-side term has the
classical vortex-force form of the vector cross-product of Stokes drift and absolute
current vorticity (Craik & Leibovich 1976, with f = 0; McWilliams & Restrepo
1999), here generalized to include the Stokes vertical pseudo-velocity; and the second
right-hand-side term is another obviously irrotational force vector.

For the dual reasons of retaining contact with the classical form and of simplifying
the evaluation formulae for both quantities, we choose to shift the second right-hand-
side term in (9.19) from the vortex force and combine it with the Bernoulli-head
force; in doing so the first term in the second line of (9.16) cancels. Thus, we redefine
the vortex force and the Bernoulli head (as denoted by an asterisk subscript) to be

J∗ = − ẑ × 〈vSt〉(χc + f ) − 〈wSt〉∂v

∂z
,

K∗ = 〈vSt〉 · ∂v

∂z
,

K∗ =
1

4

〈
σ |A|2

k sinh2[H]

∫ z

−µH

∂2V
∂z′2 sinh[2k(z − z′)] dz′

〉

+
9

64

〈
|A|4σ 2k2 cosh[4Z]

sinh8[H]

〉
+ 1

2
〈 (q lw)2〉.




(9.20)

The redefined quantities (J∗, K∗, K∗) can replace (J, K, K) in (8.2), (9.15), (9.17),
and all their derivative relations.

In summary, the current fields, (v, wc, ξ c
, χc, pc, ζ c), are fully determined at

their leading orders from (9.15), (9.17), (9.2), (8.2), (9.3), (9.9), and (9.12), once their
wave-averaged forcings are determined from the wave dynamics in § § 5–7.

10. Material tracers
The non-dimensional primitive equation for conservation of a material tracer is

∂C
∂t

+ εU · ∇C = 0. (10.1)

The non-dimensional scale for C is irrelevant since this equation is linear in C.
Analogous to (4.1), we decompose C into primary- and long-wave and current
components,

C = ν(c(x, z, t, X, τ, T , . . .) + λclw(X, τ, T , . . .)) + C(z, X, T , . . .), (10.2)

where ν � 1 because c arises at its leading order as a consequence of wave advection
of ∇C, specifically the vertical stratification. This is also true for the long-wave
component clw , recalling that λ= ε in (4.3). Here the choice ν = ε leads to the
following rapidly fluctuating tracer balance:

∂c

∂t
= −w

∂C

∂z
− ε (∇φ · ∇c)′ − ε2

(
w

∂clw

∂z
+ q · ∇XC + V · ∇xc

)
+ O(ε3). (10.3)
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As with wave vorticity (§ 7 and Appendix C), we can expand c in powers of ε and
integrate (10.3) over the fast time to obtain

c0 = −∂C

∂z

(∫ t

w0 dt

)
,

c1 = −∂C

∂z

(∫ t

w1 dt

)
−

∫ t

(∇φ0 · ∇c0)
′ dt,

c2 = −∂C

∂z

(∫ t

w2 dt

)
− ∂clw

∂z

(∫ t

w0 dt

)
− ∇XC ·

(∫ t

q0 dt

)

− V ·
(∫ t

∇xc0 dt

)
−

∫ t

(∇φ0 · ∇c1 + ∇φ1 · ∇c0)
′ dt −

(∫ t ∂c0

∂τ
dt

)
.




(10.4)

The slow evolution of C is determined at O(ε4) by

∂C

∂T
+

(
v · ∇X + wc ∂

∂z

)
C = −ε−2〈 ∇ · uc〉, (10.5)

where we have used the three-dimensional non-divergence of u to rewrite the right-
hand side as a wave-averaged material flux divergence. Again, there are no averaged
contributions from products of the long-wave components at this order.

In spite of its appearance, the wave-averaged forcing in (10.5) is actually O(1), as
we now show. Expanding the right-hand side to O(1), we obtain

−ε−2 〈 ∇ · uc〉 = −∇X · 〈 q0c0〉

− ε−2 ∂

∂z
〈w0c0〉 − ε−1 ∂

∂z
〈w0c1 + w1c0〉

− ∂

∂z
〈 w0c2 + w1c1 + w2c0〉. (10.6)

The middle-line terms vanish: the first one vanishes because c0 ∝
∫ t

w0 dt and the
resulting 〈w0(

∫ t
w0 dt)〉 = 0 with the leading-order wave solution (§ 3); and the other

two vanish because quadratic products of n= 0 and n= 1 have zero phase average
since they have phase functions ± S and ± 2S, respectively (§ 5). The remaining terms
are O(1). They can be evaluated further by substituting cn from (10.4) and evaluating
the resulting wave-averaged quantities using the leading-order wave solution (5.21)
and the definition of Stokes drift (8.7), while also recognizing some cancellations due
to the wave averaging. The result is

∂C

∂T
+

(
v · ∇X + wc ∂

∂z

)
C = −〈vSt〉 · ∇XC − 〈wSt〉 ∂C

∂z
. (10.7)

Thus, three-dimensional tracer advection happens both by the current velocity and
by the wave-averaged Lagrangian velocity composed of the horizontal Stokes drift
and its associated vertical pseudo-velocity. The latter effect is a generalization of the
horizontal tracer advection by vSt found previously (Mei & Chian 1994; Restrepo &
Bona 1995; McWilliams & Restrepo 1999). The addition here of vertical advection
by the pseudo-velocity wSt is a consequence of the horizontal spatial scale separation
between waves and currents.

The leading-order long-wave tracer balance also occurs at O(ε4). It thus has a
right-hand-side wave-averaged forcing term analogous to (10.5)–(10.7) that selects the
τ time variation instead of the T variation (n.b. (4.2), as well as long-wave advection
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of the current-scale tracer gradients. The outcome is

∂clw

∂τ
= −(q lw + (vSt )†) · ∇XC − (wlw + (wSt )†)

∂C

∂z
+

1

2

∂

∂z

[(
∂

∂τ
e2

)
∂C

∂z

]
. (10.8)

The final right-hand-side term involves the variance of the vertical parcel displacement
for the wave field, e, defined to leading order by

∂e

∂t
=w ⇒ e2 = 1

2
|e01|2, e01 =

A sinh[Z]

sinh[H]
(10.9)

(n.b. e = η at z = 0). This relation shows that long-wave tracer fluctuations are a
consequence of combined long-wave velocity and Stokes-drift advection of current-
scale tracer gradients, analogous to the current-scale tracer fluctuations in (10.7), plus
an apparent vertical diffusion in the long-wave tracer field by temporal changes in
the wave displacement variance. This final effect does not lead to an actual vertical
diffusion of C in (10.7) since its 〈 · 〉 average is zero.

11. Stratified flows
Given the preceding results, it is straightforward to generalize the formal theory to

include the effects of density stratification. Here we consider the simplest case where
the density itself is a material tracer, but the further extension to a more general
equation of state would not be difficult. In this case all of the relations in § 10 apply
to the density ρ, or equivalently the buoyancy B defined dimensionally by

B = g

(
1 − ρ

ρo

)
. (11.1)

Associated with B 
= 0 there is an additional gravitational force. If we non-
dimensionalize the buoyancy by Bo = gε3δ – so that it contributes at leading order
in the current vertical momentum balance in § 9.5, consistent with the criteria for the
choices in (4.3) – then the non-dimensional momentum equation (2.1) generalizes to

∂U
∂t

+ · · · = ẑ
ε3B

tanh[µ]
, (11.2)

where the dots denote previous terms not repeated here. As a consequence, the
vorticity equation (2.6) becomes

∂Ω

∂t
+ · · · = − ẑ × ∇

[
ε3B

tanh[µ]

]
, (11.3)

and the conserved energy (2.9) becomes

E =

∫ ∫
D

∫ εE

−µH

(
1
2
U · U +

z

ε2 tanh[µ]
− ε2z′B

tanh[µ]

)
dz′ dx ′. (11.4)

The effects additional to those in § 2 are, respectively, the buoyancy force, buoyancy
force curl, and potential energy.

Buoyancy effects are negligible for the leading-order gravity wave solutions in § 3.
Indeed they are also negligible for the wave envelope dynamics in § 5. Analogous
to (4.1) and (10.2), we decompose B into primary- and long-wave and current
components,

B = ε(b(x, z, t, X, τ, T , . . .) + λblw(X, τ, T , . . .)) + B(z, X, T , . . .) . (11.5)
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With this choice the wave buoyancy force enters the momentum balance (5.2) as a
right-hand-side term, ẑε4b/ tanh[µ]. This is beyond the order of retained terms in § 5,
but it does contribute to the wave vorticity balance (7.3) in § 7 as

ε−2 ∂ωw

∂t
= · · · − ε2

tanh[µ]
ẑ × ∇b; (11.6)

hence in (C 3b) as

ξw
2 = · · · − ẑ × ∇x

(∫ t b0

tanh[µ]
dt

)
. (11.7)

We evaluate b0 from the buoyancy counterpart of the first relation in (10.4):

b01 = −∂B

∂z

( ∫ t

w01 dt

)
= −A sinh[Z]

sinh[H]

∂B

∂z
. (11.8)

Then (C 8) becomes

ξw
21 = · · · − A sinh[Z]

tanh[µ]σ sinh[H]

∂B

∂z
( ẑ × k), (11.9)

without any analogous change in χw
21. In principle, this wave vorticity term contributes

to the current vorticity and momentum balances in § § 8–9 through the horizontal
vortex force J in (8.4), specifically the term ẑ × 〈w0ξ

w
2 〉. In practice, however, this

buoyancy contribution is zero after inserting w01 from (5.21) and ξw
21 from (11.9) and

averaging. Yet the buoyancy torque in (11.3) does contribute at leading order in the
current vorticity balance, providing an additional term to the horizontal equation
in (8.2):

∂ξ c

∂T
= · · · − ẑ

tanh[µ]
× ∇XB. (11.10)

In summary, density stratification does not change the primary wave dynamics
importantly. It does contribute to the current dynamics through the buoyancy force
in the vertical momentum balance in (9.17),

∂pc

∂z
= −∂K

∂z
+ K +

B

tanh[µ]
, (11.11)

and through the buoyancy torque in (11.10). Wave-averaged advection does contribute
to the evolution equation for B analogous to (10.7):

∂B

∂T
+

(
v · ∇X + wc ∂

∂z

)
B = −〈vSt〉 · ∇XB − 〈wSt〉∂B

∂z
. (11.12)

It similarly contributes to the long-wave buoyancy equation analogous to (10.8):

∂blw

∂τ
= −(q lw + (vSt )†) · ∇XB − (wlw + (wSt )†)

∂B

∂z
+

1

2

∂

∂z

[(
∂

∂τ
e2

)
∂B

∂z

]
. (11.13)

12. Shallow-water currents and tracers
A widespread oceanic approximation for currents with small aspect ratio (i.e.

β � 1) in a uniform-density layer is the so-called shallow-water model. In such an
asymptotic limit the vertical structure of the flow is often considered to have little
significance, so that it is sensible to represent the fluid velocity in terms of its depth
average. This form of representation is not unique. One alternative is to represent the
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velocity by its value at the ocean surface (Peregrine 1967; Restrepo & Bona 1995).
Here, however, we choose the simpler alternative assumption that ∂v/∂z ≈ 0. The
result of this assumption is a considerably simplified dynamics compared to either the
three-dimensional dynamics derived in § § 8–10 or even their depth-averaged dynamics
(Restrepo 2001). In the presence of wave-averaged forcing with non-trivial vertical
structure (i.e. H not small), the shallow-water condition of zero vertical current shear
cannot hold; however, we can imagine vertical mixing processes (absent in the present
formulation) that act to enforce the shallow-water condition on the evolutionary time
scale of the currents but not the waves. In such a case we can heuristically argue
that this would have the effect of imposing this condition on the current and tracer
dynamics.

The current vorticity (8.3) implies that ξ c = 0 to O(ε2) if ∂v/∂z = 0. This greatly
simplifies the wave vorticity: from (C 1)–(C 3), we conclude that ξw

0 = χw
0 = ξw

1 =
χw

1 = 0; hence J or J∗ is entirely given by its first term in (8.6) or (9.20). Ignoring
the horizontal vorticity equation in (8.2) and vertically averaging the wave forcing
in the vertical vorticity equation in (8.2) inside the horizontal divergence operator –
both for consistency with the shallow-water condition and to preserve the differential
functional form of the forcing – we obtain for the latter,

∂χc

∂T
+ ∇X · [(f + χc)v] = ẑ · ∇X ×

[
1

µH

∫ 0

−µH

J dz

]
= −∇X ·

[
Π

〈∫ 0

−µH

vSt dz

〉]
.

(12.1)

Here the depth-integrated Stokes drift is given by (9.13), and

Π =
f + χc

µH
(12.2)

is the potential vorticity of the shallow-water currents. The local mass balance from
(9.14) becomes

∇X · [µHv] = −∇X ·
〈∫ 0

−µH

vSt dz

〉
. (12.3)

These two relations can be combined to give the potential vorticity law,(
∂

∂T
+ v · ∇X

)
Π = −

[
1

µH

∫ 0

−µH

〈vSt〉 dz

]
· ∇XΠ. (12.4)

A further compaction of these expressions can be made by defining

Az = f + χc, ẑ × ∇XΨ = µHU =µHv +

〈 ∫ 0

−µH

vSt dz

〉
, (12.5)

that, respectively, are the vertical component of the absolute vorticity for currents
Az and the combined transport streamfunction Ψ that ensures the mass balance in
(12.3). Rewriting (12.1) and (12.4), with Π = Az/µH , yields

∂Az

∂T
+ ∇X · [ AzU ] = 0,

∂Π

∂T
+ U · ∇XΠ = 0.


 (12.6)
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These are quite familiar functional forms for shallow-water vorticity and potential-
vorticity dynamics, but with the Stokes advection implicit in the relevant advective
velocity.

The vorticity and divergence relations (12.1)–(12.3) are sufficient to determine v,
given the definition of χc in (8.3). Thus we can avoid dealing explicitly with the current
momentum balances, (9.15) and (9.17), and the associated boundary conditions, (9.3),
(9.9), and (9.12); this also allows us to avoid (pc, ζ c, wc) except as diagnostic fields. But
the relations (9.4)–(9.8) for p̂ and ζ̂ are unaltered in the shallow-water approximation.

The analogous shallow-water statement about the material tracer is ∂C/∂z =0. Both
c0 and c1 in (10.4) vanish since they are proportional to ∂C/∂z, and the leading-order
tracer fluctuation occurs only at O(νε2) as

c2 = −∇XC ·
(∫ t

q0 dt

)
. (12.7)

The corresponding slow tracer balance (10.7) becomes

∂C

∂T
= −v · ∇XC −

[
1

µH

〈 ∫ 0

−µH

vSt dz

〉]
· ∇XC (12.8)

after the vertical averaging required for consistency with the shallow-water conditions.
Thus, the wave-averaged forcing has the effect of an extra horizontal tracer advection
by the depth-averaged Stokes drift.

We can combine (12.3) and (12.8) into the relation

∂

∂T
[µHC] = −∇X ·

[(
µHv +

〈∫ 0

−µH

vSt dz

〉)
C

]
= − ẑ · ∇XΨ × ∇XC. (12.9)

Integrating this over all space yields the expected conservation relation for the total
material tracer,

d

dT

∫ ∫
D

∫ 0

−µH

C dz dx = 0, (12.10)

if there is no flux at the lateral boundary.

13. An illustrative example: evolution of a shelf vortex
We illustrate some of the possible wave and current behaviours with numerical

solutions of the shallow-water model (§ 12). We choose a broad shelf region with a
gentle bottom slope up toward the west and a circular depression (figure 1a). We refer
to the edges x = 0 and y = 0 of the rectangular domain as the western and southern
boundaries. The primary wave is specified to be incident from the deeper region to
the east, and it propagates westward through the domain en route to a coastline
farther west. The currents are dominated by a cyclonic vortex, initially centred over
the bottom depression (figure 1b). We examine both wave and current solutions,
but their mutual interaction is artificially constrained to simplify this preliminary
computational study: the wave field is in steady-state balance (on the τ scale) with
the initial vortex, hence the long-wave component is zero, and the vortex evolution
(on the T scale) is calculated with the wave field frozen in this initial state, rather
than co-evolving with the currents. However, as more fully explained in § 14, the only
field that is biased by this artificiality is Θ(X, T ). For oceanographic recognition,
we present the quantitative results in dimensional units, although we retain our
non-dimensional notation.
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Figure 1. (a) Bottom depth H (X) (m). (b) Initial vortex velocity v(X, 0) (m s−1).

We solve the wave equations (3.2), (5.22), and (5.35)–(5.39). In our baseline case for
the wave evolution, the horizontal domain is a square with a span of L = 56 km. The
resting depth decreases from 25 m in the east to 20 m in the west, and the superimposed
depression is 2m deep with a Gaussian decay on a spatial scale of 7 km and a centre in
the northeast quadrant (figure 1a). The boundary conditions are periodicity in y and
inward and outward radiation at the east and west, respectively. The incident wave is
uniform along the eastern boundary. It has an amplitude of |A| =1.0 m, slow phase of
Θ = 0, wavelength of 2π/k = 160 m, and propagation direction to the southwest. The
associated wave period is 2π/σ =11.5 s, phase speed is 13.6 m s−1, and group velocity
is |Cg| =10.5 m s−1. Consequently, the non-dimensional parameters are ε =0.04 and
µ = 1.0. A cyclonic current vortex is centred over the bottom depression (figure 1b).
It has a Gaussian shape for χc(X) with a peak amplitude of 10−4 s−1. The widths
of both the depression and vortex are 7 km. This is comparable to the characteristic
X scale of 1/ε2k = 15 km to be consistent with the assumptions of the asymptotic
theory (§ 4). The associated velocity field has a maximum speed of about 0.16 m s−1.
Note that v is not axisymmetric (n.b. stronger flow in the northwest sector than in the
southeast), even though χc is symmetric, due to the initial velocity divergence implied
by the current dynamics discussed below.

Since this partial differential equation system is hyperbolic, we use first-order
space/time differencing, with upwinding in the advective terms. Nonlinear terms
are incorporated using a fixed-point scheme (Isaacson & Keller 1994, pp. 109–
113), iterating until the difference between successive trial solutions has an absolute
supremum norm no larger than 10−8. A convergence test confirms that the code
has the correct approximating characteristics and that the diffusion due to first-
order upwinding is small enough over the time scales of the calculations for waves
propagating in any direction. The solution is integrated until reaching a steady state
with the incident conditions throughout the entire domain. This takes less than 3 hr
(c.f. the characteristic τ scale is 1/σε2 = 0.32 hr).

With this posing σ is uniform in the domain because it is conserved along ray
paths in (5.22); however, both k and Cg have modest variations due to the depth
changes. The spatial distribution of the wave amplitude (figure 2) shows substantial
variations across the domain in both magnitude and slow phase. |A| is substantially
reduced behind the bottom depression and increased on its flanks as a result of the
convergence and divergence of Cg , respectively. In the absence of the depression
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Figure 2. Steady-state wave amplitude in the baseline case: (a) |A|(X) (m); (b) Θ(X) (rad).

10 20 30 40 500

10

20

30

40

50

X (km)

–3.5

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

10 20 30 40 500

10

20

30

40

50

X (km)

Y
 (

km
)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(a) (b)

Figure 3. Steady-state wave amplitude: (a) |A|(X) [m] without the bottom depression;
(b) Θ(X) (rad) without the currents.

(figure 3a), |A| varies much less through the small convergence of Cg as the waves
shoal, and |A| is uniform with uniform H . From (5.37)–(5.38), there are no influences
on |A| from either wave nonlinearity or currents. The Θ variations are mostly due

to the wave nonlinearity (from both ζ̂ and M) in their magnitude (c.f. figure 3b),
but the Θ(x) pattern in the baseline case is substantially influenced by v through
opposite-sign Doppler shifting on either side of the vortex (c.f. figure 3b).

We solve the current equations (12.1)–(12.3). We discretize them with centred
second-order differences. We make a Helmholtz decomposition,

v = ẑ × ∇Xψ + ∇Xϕ, (13.1)

and then solve the second-order elliptic equations for ψ and ϕ after time stepping for
new values of vertical vorticity and horizontal transport divergence, respectively. The
initial velocity, v(X, 0) (figure 1b), thus has an axisymmetric vortical component due
to χc and an asymmetric divergent component due to the mass-flux balance in (12.3).
The boundary conditions for currents are periodicity in y (but including a trend in y

for ϕ to represent the domain-averaged flow) and no normal flow at the eastern and
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Figure 4. (a) Stokes drift vSt (X) (m s−1) and (b) the combined velocity v + vSt (X) (m s−1)
(both as vectors and contoured speeds) in the baseline case at a time of T = 4.0 days.

western boundaries,

ψ = 0,
∂ϕ

∂x
= − 1

µH

〈 ∫ 0

−µH

x̂ · vSt dz′
〉

. (13.2)

The second condition includes the Stokes drift, consistent with the mass-flux constraint
(12.3). These conditions are not truly appropriate to open-ocean boundaries, but we
use them only for solutions where v remains quite small there. This limits the
integration time in T for solutions with spatial propagation like these. Finally we also
set χc =0 on the x boundaries for calculating the potential-vorticity flux divergence
in (12.1), as a further degree of isolation of the current evolution from boundary
fluxes.

In the baseline case for the current evolution, the initial cyclonic vortex (figure 1a)
has a peak amplitude of 10−4 s−1 that is equal to f ; hence the initial vortex
Rossby number is 1. The depth-averaged Stokes drift, 〈

∫ 0

−µH
vSt dz′〉/µH is shown in

figure 4(a). It is directed mainly to the southwest, parallel to k, and its magnitude
ranges from 0.013 to 0.023 m s−1 with a pattern similar to |A| (figure 2a); this is
slightly larger than the magnitude of v(0) (figure 1b). (Recall that the Stokes drift is
held fixed in time.) As the currents evolve (figure 5), the vortex retains its coherence
as it moves off the bottom depression and propagates to the southsouthwest at an
average speed of 0.05 m s−1 while emitting a weak topographic Rossby wave wake.
This behaviour is analogous to the much studied propagation of a strong, isolated
barotropic vortex under the influence of a variable Coriolis frequency, f (Y ) (e.g.
McWilliams & Flierl 1979), except here due to the topographic slope H (X) and
assisted by the Stokes-drift advection in (12.1). There is a proclivity for v to develop
a component ≈ −vSt , as a means of satisfying (12.3), which would have a cancelling
effect on the wave influence in the net advecting velocity. This proclivity is quite
strong in wave-influenced Ekman-layer solutions (McWilliams & Restrepo 1999) but
it is more modest here (c.f. Figs. 4b and 5b) where vSt is much weaker than v.

We contrast this baseline solution with the evolution of currents without any wave
influence (i.e. vSt = 0), shown in figure 6. The vortex evolution is qualitatively similar
without waves, but the propagation speed and direction are substantially different,
the Rossby wave wake is less extensive, and the exterior velocity field is smaller.
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Figure 5. (a) Vorticity χc(X) (s−1) and (b) velocity v(X) (m s−1) (both as vector and
contoured speed) for the currents in the baseline case at a time of T =4.0 days.
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Figure 6. Same as figure 5, except without wave effects.

The propagation speed is here more toward westsouthwest and the average speed
is 0.01 m s−1. Note that the difference in propagation speeds with and without wave
effects is larger than the magnitude of the Stokes drift by about a factor of 2. Since
the initial vortex would be a steady solution without a topographic slope (because the
bottom depression and the vortex are both axisymmetric and concentric), there is an
early slowness in the propagation until the vortex moves away from the depression.
The axial asymmetry in the vortex velocity, evident in the initial conditions (figure 1b),
becomes larger with time (figure 5b) in the presence of the waves, but it is nearly
absent without waves (figure 6). This occurs in spite of a high degree of axisymmetry
persisting in χc in both cases.

From the differing vortex displacements with and without waves, it is clear that
this solution does not conform to the misinterpretation of Ursell (1950) discussed at
the end of § 9.5. In particular, the net currents in the presence of the primary waves
(figure 4b) are noticeably different from the currents without waves (figure 6b), both
near the vortex and in the far field. The wave-averaged effects are not limited to the
currents alone. It can be inferred from figure 4 that the evolution of passive tracers,
advected by the net velocity in (12.9), differs significantly in the presence of primary
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waves. With waves, tracer patches in the vicinity of the vortex move more rapidly
to the southwest and are stirred less vigorously; nearshore patches move farther
northward; and offshore patches move farther southward (for brevity these fields are
not shown).

These solutions demonstrate that the effects of wave–current interactions, as
implied by our asymptotic theory, can be significant in a plausible coastal regime.
Here we intend no more than a preliminary impression of the implied possibilities,
leaving to the future a more extensive phenomenological exploration and dynamical
interpretation.

14. Summary and discussion
In this paper we have derived a leading-order asymptotic theory for the coupled

evolution of a primary gravity-wave field, forced long waves, and currents. This is
done in the context of a coastal shelf region with finite-depth effects on all these
components. The resulting model yields a fairly complete description of the dynamics
of waves, currents, buoyancy, and tracers in this setting. The principal assumptions
are the following:

(a) The primary gravity waves have the fastest velocity scale (δ, λ� 1); they are
nearly irrotational; and they have a weakly nonlinear dynamics because of small
wave slope (ε = ak � 1).

(b) There is a scale separation in both temporal and horizontal scales between the
primary wave and the currents, long waves, topography, and domain shape (β, γ � 1).
These assumptions are embodied in the multi-scale solution form (4.1).

The asymptotic theory is first developed for a non-stratified, non-dissipative, finite-
depth ocean (i.e. with a depth comparable to the primary wave scale; µ ∼ 1), but
generalizations to deep water (§ 5.4), material tracers (§ 10), and density stratification
(§ 11) are also developed. The governing equations in the theory are averaged over
the primary wave scales, and thus contain horizontal and time derivatives only on
longer scales. The scaling relations among the various parameters (4.3) are chosen to
give the most general governing dynamical balances at leading order, consistent with
the assumptions above.

The primary gravity-wave field has an oscillatory structure in time and horizontal
coordinate, is surface intensified, and has the familiar linear finite-depth dispersion
relation (§ 3). On the horizontal scale of the wave envelope (§ 5), the primary phase
properties satisfy a topographically controlled group-velocity theory for waves in a
slowly varying environment (5.22), and the amplitude function satisfies an action-
conservation law (5.37)–(5.38) independent of the long waves and currents, but with
slow phase modulation (5.39) by the topography, wave nonlinearity, long waves, and
currents.

A long infra-gravity wave is forced by the phase-averaged Bernoulli head and
horizontal mass flux of the primary wave (§ 6). It is composed of a static component
involving only sea-level and pressure variations (6.3) – called wave set-up – and a
dynamic component consistent with linear shallow-water waves (6.7)–(6.8). Both of
these components disappear after a transient adjustment of the primary waves to
their generating boundary conditions (and wind forcing, if included) when the latter
are imposed in a steady-state fashion. On the other hand, a propagating primary
wave packet forces propagating long waves but no currents (§ 6.5).

There are analogous static components in sea level and pressure in response to
the steady-state wave-averaged Bernoulli head and horizontal mass flux (9.8). The
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wave-averaged corrections to the usual hydrostatic relation between low-frequency
large-scale sea level and dynamic pressure – involving both 〈w2〉 plus additional terms
in (9.9) – need to be considered in inferences of geostrophic currents from tide-gauge
and radar-altimetric measurements (c.f. McWilliams & Restrepo 1999); however, these
corrections are expected to be negligible for geostrophic current inferences in deep
water for small current Rossby number (n.b. the end of § § 9.2 and 9.5).

The vorticity balance for the currents (8.2) contains the wave-averaged vortex force,
(ε5 J, ε3K) or (ε5 J∗, ε3K∗) in (8.6) or (9.20), related to the primary-wave horizontal
Stokes drift, vSt , and its vertical pseudo-velocity, wSt , by (8.7)–(8.9). Stokes drift also
contributes to the depth-integrated mass balance for currents (9.14). In the current
momentum balance (9.15)–(9.17), there is an additional wave-averaged Bernoulli-head
force, −∇K or −∇K∗ from (9.16) or (9.20), and a static wave set-up in sea level and
pressure (9.8). Finally, due to fluctuations induced by the primary wave acting on
large-scale low-frequency material-concentration gradients, there are wave-averaged
advective transports in the material-tracer and buoyancy balances, (10.7) and (11.12),
by vSt and wSt . The large-scale buoyancy variations, of course, couple to the current
dynamics through the gravitational force in (11.10) and (11.11).

The wave–current dynamical coupling in this asymptotic theory has several causal
chains that are not fully closed as feedback loops. The long-wave evolution (§ 6)
contains primary-wave forcing that depends on the magnitude of the wave amplitude
|A| but not the slow phase Θ , and it also has no direct current effects; the same
is true for the long-wave evolution of tracers and buoyancy (§ § 10–11). The current
evolution is independent of the long waves and other transient adjustments of the
primary waves on the τ scale. Furthermore, the wave effects on the current fields
(including tracers and buoyancy) also depend only on |A| but not Θ (§ § 8–12). The
evolution of |A| in (5.37), through conservation of wave action, has no influences from
the currents and long waves nor from Θ , and thus it may be calculated independently.
The evolution of Θ in (5.39), however, is influenced by |A|, long waves, and currents,
but its evolution does not feed back onto any of them.

Since there are many additional effects that could be included in a more realistic
wave dynamics than the asymptotic theory in § 5 (e.g. Doppler shifting of the leading
order for σ and wave steepening due to currents), it is important to emphasize that
the derived form of the wave-averaged effects on the current dynamics should be
robustly valid in their dependences on A, k, etc., as long as the primary wave slope is
not large, even if the evolution equations for these wave attributes are different than
presented here.

The present theory for wave-averaged effects on currents encompasses its
predecessors (Craik & Leibovich 1976; McWilliams & Restrepo 1999, where e.g.
the vorticity forcing term is ε3∇ × [〈vSt〉 × (ε2f ẑ + ωc)], and the tracer and buoyancy
forcing terms are advection only by 〈 vSt 〉, rather than (10.7) and (11.12)). These prior
forms are a subset of the more general ones here and can be derived by assuming
that (a) the Rossby number is O(1) and (b) the horizontal scale of the currents
is comparable with that of the primary wave (e.g. as in Langmuir circulations;
McWilliams et al. 1997). Thus, the essential basis for the new more general theory
is the assumption of multiple horizontal scales (i.e. β � 1) applied to the currents as
well as to wave-averaged quantities – with the happy side benefit that the isotropic
regime for currents (i.e. β = 1 in this particular sense) is also encompassed.

The large-scale oceanic surface (Ekman) layer is modified by wave-averaged effects
of several kinds, in addition to the familiar vertical Reynolds stress and material flux
by boundary-layer turbulence (not considered in this paper). Most of these effects
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were discussed in McWilliams & Restrepo (1999), and they can be derived from the
present theory if we make the conventional large-scale assumption of a small Rossby
number for both the currents and Stokes drift. In this limit, the principal Ekman-layer
momentum balance contains the Stokes–Coriolis vortex force, J, J∗ ≈ −f ẑ ×〈vSt〉 as
in (8.6) or (9.20); the sea-level/surface-pressure relation contains the 〈w2

0(0)〉 term as
in (9.5); and the Stokes mass-transport divergence forcing of surface vertical velocity
is as in (9.12). What is more general in the present theory, relevant even for small
Rossby number, is the additional 〈wSt〉 vertical advection in the wave-averaged tracer
and buoyancy balances in (10.7) and (11.12).

The preceding two paragraphs indicate that the conservative wave-averaged
effects on currents and material tracers derived in this paper represent the most
comprehensive characterization yet known. In particular, stepping outside the
particular asymptotic scaling regime used here – a fruitful path for future research
on wave–current interactions – the implicated wave-averaged terms can be appended
to alternative fluid models to investigate the full range of wave influences from
Langmuir circulations (i.e. β ∼ 1, Rossby number→ ∞) to Ekman–Stokes currents (β ,
Rossby number→ 0). In the same spirit it may become advantageous to combine the
long-wave and current dynamics in a single governing equation set with the union of
the wave-averaged terms in § § 6 and 8–11.

The illustrative solutions presented for the shallow-water ansatz (§ § 12–13) give
only a small sample of the possible behaviours implicit in the coupled wave–current
dynamics. A future task is to make a more systematic phenomenological exploration,
with the plausible expectation that new modes of behaviour will be found (c.f. the
Langmuir instability; Craik & Leibovich 1976). Because the asymptotic equations
are averaged over the primary wave oscillations, they are much more economical to
solve computationally than the primitive equations. For transient wave adjustment
the reduction in computational cost is by a factor of β3 = ε6 and, for steady-state
waves (§ 5.4) and currents, the factor is β2γ = ε8. These will allow studies of coupling
regimes that are quite inaccessible by direct numerical simulation.

The present theory lacks several features needed for realistically posed problems in
coastal regions. Most important are parameterizations for several non-conservative
effects. These include wave and current generation by local winds, to accompany the
remotely generated waves transmitted through open lateral boundaries; more robust
wave boundary conditions (e.g. Higdon 1986, 1987); wave dissipation, implicitly
representing the weakly nonlinear cascade from the spectrum-peak scale to breaking
and viscous dissipation, as well as wave damping by surface contamination; current
dissipation and boundary-layer mixing; and shoreline wave absorption and/or
reflection and rip current generation through the accompanying radiation-stress
divergence (Longuet-Higgins 1970). Although the present theory has been presented
for a single primary wave, several such waves with incommensurate primary phase
fields may be superimposed without changing the results above since ε � 1; their
wave-averaged effects on the long waves, currents, and material tracers are simply
additive. Even if their phase fields are nearly commensurate, e.g. as might happen with
shoreline reflection, then the generalization to include weakly nonlinear wave-wave
coupling can be envisioned along previously developed lines (e.g. Komen et al. 1994,
Chap. II.3).
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Appendix A. Higher-order wave components
In the analyses of the current dynamics, we require a full determination of the wave

quantities at O(ε) for m =2 and O(ε2) for m =1. Here we make these determinations
for all quantities except the wave vorticity (§ 7 and Appendix C) using expansion
forms like those in (5.24).

The velocity potential has components φ01 and φ12 given by (5.18) and (5.31). The
boundary-value problem for φ21 is posed in (5.27) with forcing terms in (5.33), under
the compatibility constraint provided by the amplitude equation (5.35). The latter can
be expressed as

F̃ 21

∫ 0

−µH

cosh2[Z′]
∂2V
∂z′2 dz′ +

F c
21

4k cosh[H]
(2H + sinh[2H])

+
F s

21

4k cosh[H]
(cosh[2H] − 1) +

F Zs
21

8k cosh[H]
(2H cosh[2H] − sinh[2H])

= tanh[µ]G21 − B21

cosh[H]
, (A 1)

where we have partitioned F21 in (5.33) into its separate dependences on Z:

F c
21 = − 1

tanh[µ]

(
2k · ∇X

[
A

σ cosh[H]

]
+

A

σ cosh[H]
(∇X · k)

)
,

F s
21 = − 2Ak

tanh[µ]σ cosh[H]
(k · ∇X)µH,

F Zs
21 = − 2A

tanh[µ]σk cosh[H]
(k · ∇X)k,

F̃ 21 = − i2A

k tanh[µ] sinh[2H]
.




(A 2)

The solution to the boundary-value problem is

φ21 = − iA

2k2 sinh[H]

(
∂V
∂z

(z) +
∂V
∂z

(−µH )

)
sinh[Z] − Aσ (k · ∇X[µH ])

k2 sinh[H]
Z cosh[Z]

+
iA

2k2 sinh[H]

(∫ z

−µH

∂2V
∂z′2 sinh[2Z′ − Z] dz′

)

− σ cosh[H]

kA
∇X ·

[
A2k

k2 sinh[2H]

]
Z sinh[Z] − Aσ (k · ∇X)k

2k4 sinh[H]
Z2 cosh[Z]. (A 3)

We have set to zero the undetermined coefficient of the homogeneous solution,
cosh[Z], to distinguish it from the leading-order solution in (5.18).

From (5.15) expressed in the form of (5.28), we derive the sea-level component at
this order,

η21 = i tanh[µ]σφ21(0) + H21, (A 4)
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where

H21 = i
∂

∂τ

[
A

σ

]
+ Ak tanh[H] Z − A

σ
V(0) − 3|A|2Ak2

8

(
sinh4[H] − sinh2[H] + 1

sinh4[H]

)
.

(A 5)

The wave velocity at higher order comes from evaluating (5.1) in terms of φ and v,
using (5.32) for uwv:

q12 = 2ikφ12 =
3A2σ k

4 sinh4[H]
cosh[2Z],

w12 = φ12,z = − 3iA2σk

4 sinh4[H]
sinh[2Z],

q21 = ikφ21 − i∇X

[
Aσ cosh[Z]

k sinh[H]

]
− A sinh[Z]

sinh[H]

∂V
∂z

,

w21 =
∂

∂z
φ21 +

iA cosh[Z]

k sinh[H]

∂V
∂z

.




(A 6)

These expressions have been checked by verifying the incompressibility relation in
(2.1) for each (n, m) component. Finally, the wave pressure components are derived
from the Bernoulli relation (5.4),

pw
12 = 2iσφ12 − A2k

2 tanh[µ] sinh[2H]
=

A2k

2 tanh[µ] sinh[2H]

(
3
cosh[2Z]

sinh2[H]
− 1

)
,

pw
21 = iσφ21 + i

∂

∂τ

[
Aσ cosh[Z]

k sinh[H]

]
− Aσ cosh[Z]

k sinh[H]
V− 3|A|2Ak2

4 tanh[µ]

cosh[3Z]

sinh[2H] sinh3[H]
.




(A 7)

Again, the long-wave and current effects appear in (A 3)–(A 7) only in combination
as their sum.

Appendix B. Wave-averaged forcing of infra-gravity waves
The right-hand side of the momentum equation in (2.1), after substituting the

primary wave solution form from (4.1) and (5.16) and isolating the phase-averaged
fluctuation, has a contribution at O(ε3) that is the horizontal component of

−
((

∇ × uwv
0

)
× u0

)†
.

By substituting for u0 from (5.21) and for uwv
0 from (5.32), and using the property of

the phase-averaging operator that

ab = 0

for any wave quantities a and b unless they have the same exp(imS/ε2) harmonic factor
and their coefficients of A are either both real or both imaginary, this contribution can
be shown to vanish. The right-hand side of the surface kinematic condition in (2.3) at
O(ε3), after expansion about z = 0 and isolation of the phase-averaged fluctuation,
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becomes

− 1

ε2

(
η
∂w

∂z
(0)

)†

− 1

2ε

(
η2 ∂2w

∂z2
(0)

)†

− ζ

(
η
∂2w

∂z2
(0)

)†

− 1

6

(
η3 ∂3w

∂z3
(0)

)†

+
1

ε2
((q(0) · ∇x)η )† +

1

ε

(
η

(
∂q
∂z

(0) · ∇x

)
η

)†

+ ζ

( (
∂q
∂z

(0) · ∇x

)
η

)†

−
(

ηlw

(
η
∂2w

∂z2
(0) −

(
∂q
∂z

(0) · ∇x

)
η

) )†

+
1

2

(
η2

(
∂2q
∂z2

(0) · ∇x

)
η

)†

= ∇X · ( η0q0(0) )† +

(
η0∇x ·

(
∂q0

∂z
η1 +

∂q1

∂z
η0

)
+ η1∇x ·

(
∂q0

∂z
η0

))†

+
1

2

(
η2

0∇x ·
(

∂2q0

∂z2
η0

))†

= ∇X · ( η0q0(0) )† . (B 1)

In deriving the successive relations in (B 1), we use the following: the incompressibility
condition for the wave field; the ε expansion (5.16) and wave solution form (5.24);
the result above for what is required to have a non-zero phase-average – which is true
here only for the term in the final relation in (B 1) since both qn and ηn have purely
real coefficients for n = 0, 1, see (5.18), (5.21), (5.31), and (A 6); the related property
that

∇x · ab = ε2∇X · ab
for any wave quantities a and b; and, finally, the property that (η0∇x · (q0zη0))

† = 0
since no triple product of m = 1 harmonic functions can have a non-zero average.
These evaluations confirm the results in (6.1).

Appendix C. Wave vorticity solutions
After substituting (7.1) into (7.3), separating horizontal and vertical components,

expanding the wave fields in ε, and formally integrating in time while neglecting any
slow time dependences, we obtain the following relations:

ξw
0 = (ξ c · ∇x)

( ∫ t

q0 dt

)
− ∂ξ c

∂z

(∫ t

w0 dt

)
, (C 1a)

χw
0 = (ξ c · ∇x)

( ∫ t

w0 dt

)
, (C 1b)

ξw
1 = (ξ c · ∇x)

( ∫ t

q1 dt

)
− ∂ξ c

∂z

( ∫ t

w1 dt

)

+

∫ t
((

ξw
0 · ∇x

)
q0 + χw

0

∂q0

∂z
− (q0 · ∇x)ξ

w
0 − w0

∂ξw
0

∂z

)′

dt (C 2a)

χw
1 = (ξ c · ∇x)

( ∫ t

w1 dt

)

+

∫ t
((

ξw
0 · ∇x

)
w0 + χw

0

∂w0

∂z
− (q0 · ∇x)χ

w
0 − w0

∂χw
0

∂z

)′

dt, (C 2b)
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ξw
2 = ξ̂

w

2 +
ˆ̂
ξ

w

2 + (χc + f )

( ∫ t ∂q0

∂z
dt

)
−

(( ∫ t

q0 dt

)
· ∇X

)
ξ c

− (V · ∇x)

(∫ t

ξw
0 dt

)
+ (ξ c · ∇x)

(∫ t

q2 dt

)
− ∂ξ c

∂z

(∫ t

w2 dt

)
+

(∫ t

χw
0 dt

)
∂v

∂z

+

∫ t
((

ξw
0 · ∇x

)
q1 +

(
ξw

1 · ∇x

)
q0 + χw

0

∂q1

∂z
+ χw

1

∂q0

∂z

)′

dt

−
∫ t

(
(q0 · ∇x)ξ

w
1 + (q1 · ∇x)ξ

w
0 + w0

∂ξw
1

∂z
+ w1

∂ξw
0

∂z

)′

dt + · · · , (C 3a)

χw
2 = χ̂w

2 + ˆ̂χ
w

2 + (χc + f )

( ∫ t ∂w0

∂z
dt

)
−

(∫ t

w0 dt

)
∂χc

∂z

+ (ξ c · ∇x)

( ∫ t

w2 dt

)
− (V · ∇x)

( ∫ t

χw
0 dt

)

+

∫ t
((

ξw
0 · ∇x

)
w1 +

(
ξw

1 · ∇x

)
w0 + χw

0

∂w1

∂z
+ χw

1

∂w0

∂z

)′

dt

−
∫ t

(
(q0 · ∇x)χ

w
1 + (q1 · ∇x)χ

w
0 + w0

∂χw
1

∂z
+ w1

∂χw
0

∂z

)′

dt + · · · . (C 3b)

The contributions (ξ̂
w

2 , χ̂w
2 ) are due to (X, τ ) derivatives of the (n, m) = (0, 1)

coefficients:

ξ̂
w

21 =
i

σ

(
(ξ c · ∇X)q01 − ∂

∂τ
ξw

01

)
,

χ̂w
21 =

i

σ

(
(ξ c · ∇X)w01 − ∂

∂τ
χw

01

)
.


 (C 4)

The contributions (
ˆ̂
ξ

w

2 , ˆ̂χ
w

2 ) are due to the long-wave vorticity, and they have a form
analogous to (C 1):

ˆ̂
ξ

w

2 = ε−2

(
(ξ lw · ∇x)

( ∫ t

q0 dt

)
− ∂ξ lw

∂z

(∫ t

w0 dt

))
,

ˆ̂χ
w

2 = ε−2

(
(ξ lw · ∇x)

( ∫ t

w0 dt

))
.


 (C 5)

The right-hand-side quantities are O(1) by (6.12).
The wave-vorticity expressions at n = 0 are equivalent to those that come from

taking the curl and time integral of the wave-momentum balance (5.5) at its leading
order. The neglected terms at n = 2 in (C 3), denoted by . . . , indicate contributions
from nonlinear products that yield other harmonics in the wave vorticity than m = 1,
which at this order do not contribute to the wave-averaged fluxes in § 8. Note that
we have not expanded the current quantities in ε since our purpose here is to
obtain expressions for the functional dependence of the waves on the currents for
later substitution into wave-averaged forcing terms in the current dynamical balances
(§ § 8–10).

The expression (C 1) is easily evaluated to give the leading-order wave-vorticity
coefficients,

ξw
01 = − A

k sinh[H]

(
cosh[Z]X k + k sinh[Z]

∂ξ c

∂z

)
,

χw
01 =

iA

sinh[H]
sinh[Z]X,


 (C 6)
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where

X = k ·
(

ẑ × ∂v

∂z

)
≈ k · ξ c

.

The coefficients (C 6) can also be obtained as the curl of uwv
0 in (5.32) or, equivalently,

the curl of u2 in (A 6).
The expression (C 2) may similarly be evaluated to give

ξw
12 = − A2

4 sinh2[H]

(
3 cosh[2Z]

sinh2[H]
Xk +

3k sinh[2Z]

2 sinh2[H]

∂ξ c

∂z
,

− sinh[2Z]

k

∂X
∂z

k − sinh2[Z]
∂2ξ c

∂z2

)

χw
12 = − iA2

2 sinh2[H]

(
sinh2[Z]

∂X
∂z

− 3k sinh[2Z]

2 sinh2[H]
X

)
.




(C 7)

Finally, the evaluation of (C 3)–(C 4) yields

ξw
21 = − 1

σ

(
Xq21 + iw21

∂ξ c

∂z

)
+

iA

k sinh[H]

(
k sinh[Z](χc + f )k

− cosh[Z](k · ∇X)ξ c +
i

σ

(
k sinh[Z]

(
X∂v

∂z
+ V∂ξ c

∂z

)
+ cosh[Z]XVk

))

+
i

σ
(ξ c · ∇X)

[
Aσ cosh[Z]

k sinh[H]
k
]

+
i

σ

∂

∂τ

[
AX cosh[Z]

k sinh[H]
k
]

+
i

σ

∂ξ c

∂z

∂

∂τ

[
A sinh[Z]

sinh[H]

]

+
A∗

2k sinh[H]

(
cosh[Z]

((
k · ξw

12

)
k + 2k2ξw

12

)
+ k sinh[Z]

(
∂ξw

12

∂z
+ iχw

12k
))

+
3|A|2A

8 sinh5[H]

(
3k cosh[3Z]Xk + (sinh[3Z] + cosh[2Z] sinh[Z])

∂X
∂z

k

+ k2 sinh[3Z]
∂ξ c

∂z
+ k sinh[2Z] sinh[Z]

∂2ξ c

∂z2

)
+

ˆ̂
ξ

w

21, (C 8a)

χw
21 = − 1

σ
Xw21 +

A

sinh[H]

(
k cosh[Z](χc + f ) − sinh[Z]

∂χc

∂z
+ i

sinh[Z]

σ
VX

)

+
1

σ
(ξ c · ∇X)

[
Aσ sinh[Z]

sinh[H]

]
+

1

σ

∂

∂τ

[
AX sinh[Z]

sinh[H]

]

+
A∗

2 sinh[H]

(
k cosh[Z]χw

12 − i sinh[Z]
(
k · ξw

12

))
− i

3|A|2Ak

8 sinh5[H]

(
k sinh[3Z]X + sinh[2Z] sinh[Z]

∂X
∂z

)
+ ˆ̂χ

w

21. (C 8b)

The double-hatted terms are from (C 5). More generally we see that the long-wave
and current velocities enter into the wave-vorticity expressions (C 6)–(C 8) in such a
way that every term has at least one vertical derivative, and the only places where
long-wave contributions appear in (ξw

n , χw
n ) are in the two terms at n = 2 proportional

to V, as well as the double-hatted terms. In neither case do these potential long-wave
contributions survive in the wave-averaged forcing of the current vorticity equation
(§ 8). The expressions (C 6)–(C 8) have been checked by verifying the non-divergence
of wave vorticity for each (n, m) component.
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Appendix D. Definitions of symbols
As this paper is of atypical mathematical complexity, a list of symbols is provided

in table 1.

Symbol Name Where defined

a, A wave sea level amplitude (3.1), (5.18)
Az absolute vertical vorticity for currents (12.5)
A wave action density (5.38)
b wave buoyancy field (11.5)
B current buoyancy field (11.5)
Bnm bottom wave forcing (5.26)
B total buoyancy field (11.1)
Bo dimensional scale for B after (11.1)
c wave material concentration (10.2)
C current material concentration (10.2)
Cb Bernoulli constant (5.4)
Cp pressure constant (9.4)
C total material concentration before (2.1)
Cg group velocity (5.23)
Clw long gravity-wave speed (6.9)
D domain area before (2.1)
δD domain lateral boundary before (2.1)
e wave vertical parcel displacement (10.9)
E total sea level anomaly before (2.1)
E total energy (2.9), (11.4)

E mean wave energy (3.5)
f, f0, f

nd Coriolis frequency (2.1), (4.3)
Fnm surface wave forcing (5.25)
F c

21, F
s
21, F

Zs
21 , F̃ 21 coefficients in F21 (A 2)

F̃lw dynamical forcing of long waves (6.10)
g gravitational acceleration before (2.1)
Gnm interior wave forcing (5.28)
H resting bottom depth before (2.1)
Hnm surface wave forcing of η (5.27)
H rescaled depth after (3.1)
J , J∗ horizontal vortex force at O(ε5) (8.4), (9.20)
k horizontal wavenumber vector (3.1)
k modulus of k before (2.1)
K , K∗ vertical vortex force at O(ε3) (8.5), (9.20)
K, K∗ Bernoulli head at O(ε3) (9.16), (9.20)
L computational domain width Sec. 13
M nonlinear coefficient in A eqn. (5.34)
M total mass (2.8)
pw wave pressure (4.1)
plw long-wave pressure (4.1)
p̂lw ,p̃lw components of plw (6.3) et seq.
pc, p̂ components of current pressure (9.1)
P, p pressure (2.1), (2.4)
P0 atmospheric pressure (2.3)
P0 wave-averaged pressure forcing (9.10)
q wave horizontal velocity (4.1)
q lw long-wave horizontal velocity (4.1)
qwv vortical wave horizontal velocity (5.32)
Q total horizontal velocity before (2.1)
r current pressure (4.1)

Table 1. List of symbols.
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Symbol Name Where defined

R[·] Taylor series operator (5.12)
S wave phase function (5.17), (5.19)
t wave time coordinate before (2.1)
T current time coordinate (4.1)
T St depth-integrated Stokes velocity (6.2) & (9.13)
U total 3D velocity before (2.1)
u total 3D wave velocity (4.1)
ulw 3D long-wave velocity (4.1)
uwv vortical part of 3D wave velocity (5.1)
U combined current and Stokes-drift (12.5)

horizontal transport velocity
v horizontal current velocity (4.1)
vSt Stokes-drift velocity (8.7)
V phase-averaged horizontal velocity (5.3)
V wavevector-V dot product after (5.33)
w wave vertical velocity (4.1)
wc current vertical velocity (4.1)
wlw long-wave vertical velocity (4.1)
wwv vortical wave vertical velocity (5.32)
wSt Stokes-drift vertical pseudo-velocity (8.9)
W total vertical velocity before (2.1)
x = (x, y) wave-scale horizontal coordinates before (2.1)
X slow horizontal coordinates before (4.1)
X wavenumber-vorticity product after (C 6)
z vertical coordinate before (2.1)
ẑ upward vertical unit vector before (2.1)
Z phase-averaged sea level (5.13)
Z rescaled vertical coordinate after (3.1)
β current/wave length-scale ratio before (4.1)
γ current/wave time-scale ratio before (4.1)
[·] differential operator (5.8)
δ current/wave horizontal velocity ratio (4.1)
ε wave slope parameter § 1
ζ current sea-level elevation (4.1)

ζ c ,ζ̂ components of current sea level (9.1)
η wave sea-level elevation (4.1)
ηlw long-wave sea-level elevation (4.1)
η̂lw ,η̃lw components of ηlw (6.3) et seq.
Θ amplitude phase function (5.36)
λ long wave amplitude parameter (4.1)
µ wave depth parameter before (2.1)
ν wave/current ratio for materials (10.2)
ξw wave horizontal vorticity (7.1)

ξ lw long-wave horizontal vorticity (6.11)

ξ̂
w

wave horizontal vorticity component (C 4)
ˆ̂
ξ

w

wave horizontal vorticity component (C 5)
ξ c current horizontal vorticity (7.1)
Π potential vorticity of depth-uniform currents (12.2)
ρ density before (11.1)
ρ0 mean density before (2.1)
σ wave frequency (3.2)
Σ dispersion relation (5.20)
τ slow wave time coordinate (4.1)
Φ,φ wave velocity potential (3.3), (5.1)

Table 1. Continued
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Symbol Name Where defined

ϕlw horizontally divergent component of q lw (6.5)
ϕ horizontally divergent component of v (13.1)
χw wave vertical vorticity (7.1)
χlw long-wave vertical vorticity (6.11)
χ̂w wave vertical vorticity component (C 4)
ˆ̂χ

w
wave vertical vorticity component (C 5)

χc current vertical vorticity (7.1)
ψ vertically rotational component of v (13.1)
Ψ combined current and Stokes-drift (12.5)

transport streamfunction
ωc current vorticity (4.1)
ωlw long-wave vorticity (4.1)
ωw wave vorticity (4.1)
Ω total 3D vorticity before (2.1)
∇ 3D spatial derivative before (2.1)
∇x wave-scale horizontal derivative before (2.1)
∇X slow horizontal derivative after (4.1)
〈 · 〉, (·) averages before (4.2)
( · )′, ( · )† fluctuations (4.2)

Table 1. Continued
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