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ABSTRACT5

Large-Eddy Simulations are made for the canonical Ekman layer problem of a steady wind6

above a uniformly rotating, constant-density ocean. The focus is on the influence of surface7

gravity waves, viz., the wave-averaged Stokes-Coriolis and Stokes-vortex forces and parame-8

terized wave breaking for momentum and energy injection. The wave effects are substantial:9

the boundary layer is deeper, the turbulence is stronger, and eddy momentum flux is dom-10

inated by breakers and Langmuir Circulations with a vertical structure inconsistent with11

both the conventional logarithmic layer and eddy viscosity relations. Surface particle drift12

is dominated by Stokes velocity. Implications are assessed for parameterization of the mean13

velocity profile in the Ekman layer with wave effects by exploring several parameterization14

ideas. We find that the K-Profile Parameterization (KPP) eddy viscosity is skillful for the15

interior of the Ekman layer with wave-enhanced magnitude and depth scales. Furthermore,16

this parameterization form is also apt in the breaker and Stokes layers near the surface17

when it is expressed as a Lagrangian eddy viscosity (i.e., turbulent Reynolds stress propor-18

tional to vertical shear of the Lagrangian mean flow, inclusive of Stokes drift) with a derived19

eddy-viscosity shape and with a diagnosed vertical profile of a misalignment angle between20

Reynolds stress and Lagrangian mean shear.21
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1. Introduction22

The Ekman layer is the quintessential oceanic surface turbulent boundary layer. Its23

canonical formulation is a steady surface wind stress, τ = ρou
2
∗ (with u∗ the pceanic “friction24

velocity”), on top of an ocean with uniform density ρo and uniform rotation rate f (Coriolis25

frequency) aligned with the vertical direction. The analytic steady solution with constant26

eddy viscosity κo has a surface current to the right of the stress direction (with f > 0)27

and a further rightward spiral decay over a depth interval ∼
√
κo/f . With a turbulent28

boundary-layer parameterization (e.g., K-Profile Parameterization, KPP; Large et al. 1994;29

McWilliams and Huckle 2006), κ(z) has a convex shape and a magnitude ∼ u2
∗/f , hence30

a depth scale ∼ u∗/f . Large-Eddy Simulation (LES) — with an explicit calculation of31

the turbulent eddies, their Reynolds stress, and the mean current — provides a validation32

standard for parameterizations to be used in large-scale circulation models (Zikanov et al.33

2003).34

The same winds that cause the Ekman layer also cause surface gravity waves, either in35

local equilibrium with the wind, or in disequilibrium due to a transient history or remote36

propagation. The combination of wind and waves has a significant impact on the (wavy)37

Ekman layer, most importantly through the generation of turbulent Langmuir Circulations38

(LCs) and modification of the Coriolis force through the wave-averaged Stokes drift profile39

ust(z) acting as “vortex forces” (Skyllingstad and Denbo 1995; McWilliams et al. 1997;40

plus many subsequent studies reviewed in Sullivan and McWilliams 2010). Furthermore,41

especially for high winds and waves, the momentum transmission from atmospheric winds42

to oceanic currents by surface drag occurs primarily through isolated impulses associated43

with wind-generated surface waves when they break and penetrate into the ocean, rather44

than through a uniform τ at the surface; this is represented in a stochastic breaker model45

(Sullivan et al. 2007).46

This paper reports on LES solutions of the Ekman layer problem, which is a simpler47

boundary-layer configuration than most prior studies that include a depth-limiting stable48
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density stratification and surface buoyancy flux1. We contrast the Ekman layer without49

wave effects to the wavy layer with both Stokes drift and breaker impulse forcing, in var-50

ious combinations to distinguish particular influences. The primary focus is on how the51

coherent structures, LCs and breaker-induced circulations, relate to the turbulent Reynolds52

stress, hence the mean current profile, to be able to assess the requirements for a successful53

parameterization of the wavy Ekman layer. Because we do not include buoyancy effects, non-54

stationarity, other types of currents, nor survey a variety of different wave-wind regimes, our55

results only provide an idealized case study rather than a more comprehensive characteriza-56

tion of wave effects in the surface boundary layer. Nevertheless, for this case it demonstrates57

their importance and salient characteristics.58

2. Problem Set-Up59

The LES code solves the wave-averaged dynamical equations in Sullivan and McWilliams60

(2010) with forcing options among a uniform mean surface stress τx, or fields of stochastic61

breaker acceleration A(x, t) and subgrid-scale energy injection rate W (x, t), or mean breaker62

vertical profiles, 〈A〉(z) and 〈W 〉(z). (Mean refers to time and horizontal averages, denoted63

by angle brackets; z is the vertical coordinate.) The forcing options are normalized to give the64

same mean vertically-integrated force, i.e.,
∫
〈A〉 dz = τx/ρo = u2

∗. The LES model includes a65

sub-grid scale parameterization scheme that generalizes the turbulent kinetic energy balance66

and eddy viscosity model in Moeng (1984) with the additional Stokes drift and breaker work67

effects in Sullivan and McWilliams (2010).68

We focus on a particular situation where the forcing is aligned with x̂ (east), and the69

wind speed at 10 m height is Ua = 15 m s−1 (implying a surface stress of 0.35 N m−2, hence70

velocity u∗ = (|τx|/ρo)1/2 = 1.9× 10−2 m s−1). The wave elevation spectrum (determining71

1Polton et al. (2005) and Polton and Belcher (2007) also analyze simulations of an unstratified Ekman

layer with Stokes drift.
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the Stokes drift profile ust(z)) and breaker spectrum (determining A and W ) are empirically72

consistent with equilibrium for this wind for a wave age of cp/u∗a = 19 (cp is the phase73

speed of the wave elevation spectrum peak, and u∗a =
√
ρo/ρa u∗ is the atmospheric friction74

velocity)2. The profiles of 〈A〉(z) and ust(z) are in Fig. 1. Both are surface intensified,75

and they have characteristic vertical length scales (defined, somewhat arbitrarily, as the76

depth where the amplitude has decreased to 10% of its surface value) of hb = 1.4 m and77

hst = 13 m respectively. Both of these are much smaller than the turbulent boundary layer78

depth ho; the ordering hb � hst � ho is typical in the ocean. For full wave elevation and79

breaker spectra, as used here, there is no uniquely correct vertical scale definition, and we80

use these estimates only as a rough guide for the vertical profiles shown below. We will see81

that the flow structure and dynamical balances are distinctive in three sub-layers within the82

overall Ekman layer, which we designate as the breaker, Stokes, and interior shear layers.83

We choose a mid-latitude Coriolis frequency, f = 10−4 s−1, hence an Ekman boundary layer84

dimensional depth scale of u∗/f = 190 m. The domain size is Lx × Ly × Lz = 500 m × 50085

m × 300 m, large enough to encompass the Ekman layer and its energetic turbulent eddies.86

The horizontal grid cell size is dx = dy = 1.7 m, and the vertical grid is non-uniform in the87

vertical with a minimum cell size dz = 0.42 m near the surface and maximum of dz = 588

m at the bottom where the flow is nearly quiescent. Solutions are spun up from rest to89

a statistical equilibrium state after about one inertial period, 2π/f . The solution analyses90

are made over a subsequent interval of several inertial periods, with temporally filtering to91

exclude the inertial oscillation in the horizontally-averaged current at each vertical level. All92

our analysis results are presented in non-dimensional form using appropriate factors of u∗93

2This age is somewhat young compared to full wind-wave equilibrium, with cp/u∗a = 30. Younger waves

have relatively fewer, larger breakers, and we make this choice to allow better resolution for a given spatial

grid. Our conclusion in Sec. 5 is that the details of the A and W profiles are only important within the

breaker layer, so the age choice is not determinative overall. See Sullivan et al. (2007) for details about how

the elevation and breaker spectra are specified from measurements and related to ust, A, and W consistent

with conservation of momentum and energy in the air-wave-water system.
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and f .94

In this paper we distinguish among different wave effects by defining six different cases,95

all of which have the same mean momentum forcing (i.e., the same u∗). The case without96

any wave effects is designated as Nτ , where N denotes the exclusion of Stokes drift influences97

and τ denotes a surface stress boundary condition; this is the classical Ekman problem. The98

case with fullest wave effects is SB, where S denotes the inclusion of Stokes drift and B99

denotes stochastic breaker forcing; we view this case as the most complete representation100

of wave effects. Intermediate partial wave-effect cases are Sτ and NB. In addition, to101

understand the importance of the transient breaker forcing, we define cases N〈B〉 and S〈B〉102

in which the 4D fields of acceleration and energy-injection rate are replaced by their 1D103

mean profiles, 〈A〉(z) and 〈W 〉(z).104

3. Solution Analysis105

a. Bulk Statistics106

Table 1 gives several bulk statistics for the six cases. These include the mean boundary107

layer depth ho; the depth-integrated value of the turbulent kinetic energy3 profile,108

e(z) = 0.5 〈u′2〉+ 〈es〉 (1)

(i.e., the sum of the large-eddy velocity-fluctuation energy and the local subgrid-scale kinetic109

energy density es as parameterized in LES; the superscript prime denotes a fluctuation110

about the horizontal average, and the superscript s refers to a (x, t)-local variable in the111

subgrid-scale energy model); and the total depth-integrated energy injection rate4,
∫
E tot dz,112

3This is distinct from the mean kinetic energy profile, e(z) = 0.5 〈u⊥〉2. See Sec. 3.c and Appendix A.1.
4
∫
Etot dz is the breaker and stress injection for the combined mean and turbulent energies, etot = e+ e.

It is the sum of the work associated with the mean flow,
∫
E dz = τx〈u〉(0)/ρo +

∫
〈A〉 〈u〉 dz, plus the

integral of E defined in (8) associated with breaker fluctuations A′ and subgrid-scale energy injection W .

This separation is relevant to the separate mean e and turbulent e balances. See Sec. 3.c and Appendix A.1
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associated with either surface stress, τx〈u〉(0)/ρo, or breaker forcing,
∫
〈Au + W 〉 dz. u is113

the x-velocity in the direction of the wind and waves, and v, w are the transverse and vertical114

velocities in the y, z directions. All quantities in the table are listed non-dimensionally.115

We immediately see several important wave effects. Stokes drift and vortex forces make116

the turbulent Ekman layer about twice as deep, independent of how the momentum forcing117

occurs. This effect would be much smaller in the more commonly analyzed situation with a118

stable pycnocline limiting the boundary layer depth. Vortex forces also increase the kinetic119

energy,
∫
e dz, again by about a factor of two. The injection rate

∫
E tot dz is largest with120

breaker forcing, mainly because W is large, and this enhancement has a similar magnitude121

with either stochastic or mean breaker forcing and with either ust present or not; the injection122

rate is slightly smaller in 〈B〉 cases than B cases because the fluctuation correlation effect,123

〈A′u′〉, is absent. There is also a noticeable difference in E tot between the stress forcing124

cases with and without Stokes drift (i.e., Sτ and Nτ , respectively); we will see in Sec. 3.b125

that the Sτ case injection rate is smaller than the Nτ case because 〈u〉(0) is much reduced126

through the effect of the Stokes-Coriolis vortex force5. The enhanced boundary layer depth is127

consistent with the idea that, when Stokes drift is important, the relevant turbulent velocity128

scale is a composite one,129

u∗ com = u2/3
∗ u

1/3
st o . (2)

This scale is derived by assuming that Stokes–Reynolds stress production in the turbulent130

kinetic energy (TKE) balance (i.e., Pst ∼ u2
∗ust/hst in Sec. 3.c) enters into a dominant131

balance with dissipation rate ε ∼ u3
∗ com/hst. Because ust(z) is more than ten times bigger132

than u∗ near the surface6 (Fig. 1), the estimate u∗ com/f for ho is more than twice as deep133

for the full energy balances.
5In case Sτ the small wind-stress injection is not the dominant energy source, which rather are Stokes-

Coriolis and Stokes production conversions with the surface waves (Sec. 3.c and Appendix A.1).
6For a full wave spectrum the choice of ust o is somewhat delicate because ust(z) near the surface is

sensitive to the spectrum shape. So we prefer to view this scaling estimate for u∗ com qualitatively rather

than precisely. Similarly, the turbulent Langmuir number, Lat =
√
ust o/u∗, is an useful indicator of the
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with Stokes drift, consistent with Table 1. The relevance of u∗ com to the TKE balance134

has been previously validated in stratification-limited Ekman layers (Harcourt and D’Asaro135

2008; Grant and Belcher 2009; Kukulka et al. 2010), where ho does not satisfy the Ekman136

scaling relation7.
∫
e also increases by about a factor of two with ust present, but this does137

not scale well with a bulk estimate using the composite velocity scale, u3
∗ com/f (ten times138

bigger). The enhanced E tot is consistent with the idea of breaker injection of TKE and a local139

production-dissipation TKE balance (Craig and Banner 1994), and it is also consistent with140

measurements of enhanced ε near the surface (Terray et al. 1996). Remarkably, there is not141

a direct relation between E tot and the turbulent energy
∫
e dz itself. Breaker forcing strongly142

enhances energy input, hence dissipation, yet it does not increase e greatly. Nor does E tot143

increase only because ust is present, as would be suggested by the increase in u∗ com (cf., cases144

Nτ and Sτ). This demonstrates a degree of decoupling between e itself and the energy cycle145

throughput rates, E tot and ε, so that the conventional turbulent scaling of ε ∼ e3/2/h, for146

some turbulent length scale h, does not hold across the various combinations with ust and147

B. Furthermore, because eddy viscosity is commonly estimated as κ ∼ e1/2h, this result also148

casts doubt on the idea that breaker energy injection leads directly to enhanced turbulent149

mixing near the surface. The increase of e with ust does support the idea of enhanced mixing150

by the LCs sustained by the vortex force; however, the increase in
∫
e dz is not by as much as151

a simple scaling estimate ∼ u3
∗ com/f , and the diagnosed value of κ (Sec. 3.d) increases by far152

more than e1/2h does. In summary, Stokes drift effects increase the boundary layer depth and153

turbulent energy, and breakers increase the energy cycle rate, but these enhancements are154

not collectively well represented by simple bulk scaling estimates, even with the composite155

velocity scale u∗ com in (2).156

wind-wave dynamical regime (McWilliams et al. 1997), but it too depends on ust o. From Fig. 1 we see that

Lat is a bit smaller than 0.3 in our S cases, close to a local wind-wave equilibrium value.
7Harcourt and D’Asaro (2008) propose a modified form of u∗ com with different vertical weighting of ust(z)

for use in scaling the variance of w under more general circumstances. Kukulka et al. (2010) propose another

modification when 〈u〉(0)/ust o is not small (unlike in our S cases).
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b. Mean Velocity and Momentum Balance157

The mean momentum balance is158

0 = f〈v〉 − ∂z〈uw〉+ 〈A〉

0 = −f( 〈u〉+ ust )− ∂z〈vw〉 , (3)

with an associated surface condition of 〈u⊥w〉 = − ρ−1
o τx x̂ at z = 0 (i.e., it is zero in the B159

cases). These balances contain the mean Coriolis and Stokes-Coriolis force, the mean breaker160

acceleration 〈A〉, and the divergence of the total horizontal turbulent Reynolds stress,161

〈u⊥w〉 = 〈u′⊥w′〉+ 〈τ s⊥z〉 . (4)

τ sij is the local subgrid-scale stress tensor as evaluated in the LES parameterization model.162

The index notation is i and j for all three spatial directions, ⊥ for a horizontal vector163

component, and z for a vertical one. The vertical integrals of (3) relate the mean transport164

to the Stokes transport and the mean wind stress in τ cases (or its integral equivalent
∫
〈A〉 dz165

in B cases):166 ∫
〈u〉 dz = −

∫
ust dz ,

∫
〈v〉 dz = − τx

ρof
. (5)

These relations are independent of the profiles of turbulent Reynolds stress.167

The mean horizontal velocity profiles, 〈u⊥〉(z) = (〈u〉, 〈v〉) (z), have the familiar Ek-168

man “spiral” structure of decaying amplitude and rotating clockwise with increasing depth169

(Fig. 2). The profiles for the different cases are primarily distinguished by Stokes drift effects,170

with the forcing mechanism secondary. Compared to an Ekman layer without waves, Stokes171

drift causes the boundary layer depth ho to be deeper (Table 1), hence the mean velocity172

magnitude is diminished near the surface to satisfy the transport constraint (5). Stokes drift173

further diminishes the down-wind velocity near the surface. This effect is a consequence of174

the Stokes-Coriolis force (Huang 1979), i.e., the second term in the y-momentum balance175

in (3). It adds an anti-Stokes component to the x-transport in (5) and makes the surface176

current angle θu(0) more nearly southward, − π/2. The reduced value of 〈u〉(0) with ust177

8



leads to the reduced energy injection rate E tot in case Sτ with stress forcing (Table 1); in178

the cases with breaker forcing, E tot is dominated by the subgrid-scale injection 〈W 〉, hence is179

not sensitive to 〈u〉(0). 〈u〉(z) has down-wind, down-wave shear near the surface. Without180

ust, this extends over the whole upper half of the layer, and it is especially large within a181

thin layer with stress forcing (as expected from Monin-Obukhov similarity, with 〈u〉 ∼ 1/z)182

controlled in the LES by the subgrid-scale mixing. Breaker forcing limits the strength of183

the near-surface shear over a vertical scale of hb. With ust, the positive x-shear is confined184

within the breaker layer hb. Just below in the Stokes layer, the x-shear is up-wave over most185

of the Stokes depth scale hst in accord with the anti-Stokes tendency in (3). Even with wave186

effects, ∂z〈v〉(z) does not have strong features on the scales of hb and hst. With breaker forc-187

ing its surface boundary condition of zero shear is approached within a thin layer controlled188

by subgrid-scale mixing. The magnitude of ∂z〈v〉(z) is diminished with ust because ho is189

bigger while the y-transport is the same. Overall, the oscillations with depth of the velocity190

component profiles (i.e., Ekman spiral) are less evident with ust even in the interior shear191

layer (cf., Appendix A.2). In both components breaker forcing and ust cause reduced mean192

shear near the surface compared to surface stress forcing, and more so in the transient B193

cases than in the mean 〈B〉 cases, consistent with enhanced vertical momentum mixing by194

wave-induced breakers and LCs and the absence of a Monin-Obukhov similarity layer.195

The Reynolds stress profiles, 〈u⊥w〉(z) (Fig. 3), are grossly similar among the different196

cases, except within the breaker layer near the surface. As with the mean velocity in Fig. 2,197

we plot the Reynolds stress as its magnitude |〈u⊥w〉| and angle θ−uw. The latter is in the198

direction opposite to −〈u⊥w〉 to facilitate comparison with the mean shear ∂z〈u⊥〉, which199

can be compared within the framework of an eddy viscosity assumption of proportionality200

between Reynolds stress and mean shear (Sec. 3.d).201

The Reynolds stress angle profiles show monotonic clockwise rotation with depth, by a202

total amount ∆θ−uw ≈ −π before the stress magnitude becomes very small. So the main203

inter-case difference is due to the larger vertical scale ho with ust, hence a slower rotation rate.204
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In all cases, the bulk rotation rate is dθ−uw/dz ≈ −0.7π/ho. The Ekman spiral has a simpler205

manifestation in Reynolds stress than in mean velocity, where the anti-Stokes tendency partly206

obscures the rotation. 〈u⊥w〉(0) = ∂z〈u⊥〉(0) = 0 with breaker forcing, whereas the latter207

quantity is nonzero and equal to −u2
∗ in the x-direction with stress forcing. The different208

surface boundary conditions for surface stress and breaker forcing are accommodated within209

the thin breaker layer hb without otherwise much difference in the interior; i.e., − ∂z〈uw〉210

stays positive to the surface with eastward stress forcing, while211

− ∂z〈uw〉 ≈ − 〈A〉 < 0 (6)

with breaker forcing. Notice in particular the opposite signs between down-wind Reynolds212

stress and mean shear within the Stokes layer (upper left panels in Figs. 2-3), with ∂z〈u〉 < 0213

while −〈uw〉 > 0, which is inconsistent with down-gradient momentum flux; this presages214

the invalidity of conventional eddy viscosity parameterization in the Stokes layer (Sec. 4).215

Without the Stokes forces, the flux is down-gradient in the upper ocean, and even throughout216

the interior shear layer (Sec. 4). In both the upper ocean in no-wave cases and in Stokes217

layers, 〈v〉 < 0 (mean flow to the right of the surface wind) and ∂z〈v〉 < 0, hence− ∂z〈vw〉 > 0218

and −〈vw〉 > 0 because of zero transverse Reynolds stress at the surface. These 〈v〉 and219

〈vw〉 profiles are qualitatively similar in shape with or without waves, with the transverse220

Reynolds stress divergence in (3) balanced in the upper part of the layer by either f〈u〉 or221

fust in N or S cases, respectively.222

c. Velocity Variance and Energy Balance223

Many previous studies show that the Stokes-drift vortex force increases e and alters the224

anisotropic partition of variance among the fluctuation velocity components by reducing the225

down-wind component u′ and increasing the transverse and vertical components (v′, w′) as226

expected from the idealized geometry of LCs as longitudinal roll cells. In these aspects we227

also see two groupings based on whether ust is included (S cases) or not (N cases) (Fig. 4).228
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The cases with different forcing specifications have more complicated distinctions: τ forcing229

enhances u′ variance and diminishes (v′, w′) variance near the surface without ust (N cases)230

and vice versa with ust (S cases); e is much larger in the surface layer with breaker forcing231

than with stress forcing, and it is largest with 〈B〉 forcing, mainly because of a subgrid-scale232

e enhancement near the surface; and the forcing-induced differences are mostly confined to233

a thin layer of several times hb. The maximum for 〈w′2〉(z) occurs near the surface near234

the base of the Stokes layer but outside the primary influence of subgrid-scale mixing and235

breaker forcing. It is much stronger in S cases as an expression of LCs that have peak236

intensity in the Stokes layer (Sec. 3.e). The case Sτ is anomalous in having the shallowest237

depth for the maximum, and it also has the largest surface extremum for 〈v′2〉; vortex force238

acts almost singularly in generating small-scale LCs near the surface, unless limited by the239

extra mixing associated with breaker forcing.240

We decompose the profile of kinetic energy into three pieces: the mean-current kinetic241

energy (MKE), e(z) = 0.5 〈u⊥〉2(z), and the total turbulent kinetic energy (TKE), e(z) in242

(1), which contains both large-eddy and subgrid-scale components. Energy balance relations243

are derived by averaging the product of the momentum equation and the velocity and adding244

this to an average of the subgrid-scale model that is expressed ab initio as an energy balance.245

There are separate balance relations for e and e. For completeness, we record the mean246

energy balance in Appendix A.1, but we focus here on the balance relation for the turbulent247

energy e(z) in statistical equilibrium, viz.,248

∂t e(z) = 0 = E + Pu + Pst + T − ε . (7)

The individual right-side terms, respectively, are transient breaker or surface wind stress249

work; the Reynolds stress productions from mean shear and Stokes shear; the vertical trans-250

port; and the viscous dissipation rate. The mean wind stress 〈τ〉 or mean breaker acceleration251

〈A〉(z) is an energy source for e, not for turbulent e directly; the connection to the latter252

is made by a conversion through the shear production Pu, which is thus a sink for e and253

a source for e (Appendix A.1). We assume a steady wind here, which therefore does not254
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provide a direct source for e. The transient and subgrid-scale breaker work for e is255

E = 〈A′u′ +W 〉 . (8)

The shear and Stokes production terms are256

Pu = −〈u⊥w〉 · ∂z〈u⊥〉

Pst = −〈uw〉 · ∂zust , (9)

where the total horizontal Reynolds stress is defined in (4). The transport term is257

T = − ∂z
(
〈w′ [

1

2
u

′2 +
5

3
es + p′/ρo ] 〉+ 〈u′iτ s

′

iz 〉 − 2〈κs∂zes〉
)
. (10)

p is the dynamic pressure8. Index summation over i is implied in the next-to-last term.258

Finally, the viscous dissipation term occurs entirely through the subgrid-scale model,259

ε(z) = 〈εs〉 . (11)

The quantities stress τ s, energy es, dissipation rate εs, and eddy viscosity κs are local fields260

calculated in the subgrid-scale model (Sec. 2).261

The TKE balance without wave effects (Fig. 5, right panel) is a familiar story of Pu ≈ ε,262

with T much weaker and acting to spread e downward from the more energetic upper part to263

the lower part of the Ekman layer; the cross-over depth from negative to positive T is around264

10% of ho. The story is quite different with wave effects (Fig. 5, left panel). Breaker energy265

injection E now happens within the Ekman layer instead of just at the surface by wind-stress266

work, albeit confined to the thin breaker layer hb, and this influence is so strong that the267

entirety of the underlying Stokes and interior shear layers are supplied by the downward268

8In LES with waves, the large-eddy pressure is

π =
p

ρo
+

2
3
es +

1
2

(
(u + u⊥st)

2 − u⊥2
st

)
(Sullivan et al. 2007). The first two terms contribute to T in (10), and the third term combines with the

vortex force to yield Pst and cancel any net contribution to T .
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energy flux from the breaker layer, T > 0. Dissipation ε is much increased in the surface269

layer primarily to balance the large E , but T is also much increased. The transport again270

carries energy downward into the interior of the Ekman layer, but now T is positive even in271

the Stokes layer and at least part of the breaker layer, i.e., at all depths where we trust its272

discrete diagnostic accuracy (see Fig. 5 caption)9. The negative T values necessary for its273

zero depth integral are only in the top two grid cells (not plotted). Stokes production Pst274

is much larger than Pu but is necessarily restricted to the Stokes layer. Within the interior275

shear layer Pu is an energy source, but small compared to transport and dissipation. Within276

the breaker layer, injection and transport approximately balance dissipation, and over the277

Stokes and interior shear regions of the wavy Ekman layer, Stokes production and transport278

balance dissipation. The differing character of the TKE balance with depth may explain279

why the simple scaling estimate based on Stokes production, u∗ com in (2), is not uniformly280

successful in accounting for wave effects (Sec. 3.a). Nevertheless, the importance of Stokes281

production, rather than shear production, gives support for the Lagrangian eddy viscosity282

proposed in Secs. 3.d and 4.283

In summary, the TKE balance without waves has shear production as its source, passed284

through the MKE budget from mean surface-stress wind work. In contrast, the TKE balance285

with waves has primarily breaker energy injection and secondarily Stokes production as its286

sources, both of which are conversions from the wave field; in this case the energy conversion287

from MKE though Pu is much less important. The associated MKE balances are further288

summarized in Appendix A.1.289

9An implication of the diagnosed transport profile is that there probably is fine-scale structure on a scale

of perhaps 10 cm or less near the surface, which is not well resolved in our present solutions. Besides the

discretization accuracy limitation that could be ameliorated with finer grid resolution, we would question the

physical validity of our subgrid-scale and breaker parameterization schemes in a surface micro-scale realm.
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d. Eddy Viscosity Profiles290

We diagnose the scalar eddy viscosity magnitude implied by the Reynolds stress and291

mean shear:292

κ =
|〈u⊥w〉|
|∂z〈u⊥〉|

, (12)

as well as directional angle defined by293

θκ = θ−uw − θuz , (13)

which represents the local misalignment of the stress and shear. The usual conception of294

local eddy viscosity assumes that the Reynolds stress 〈u⊥w〉 is oppositely aligned with the295

mean shear ∂z〈u⊥〉, hence that θκ = 0.296

In an Ekman layer without wave effects in case Nτ , κ(z) has a convex profile that extends297

over the whole of ho (and even somewhat beyond), and θκ(z) is small (Fig. 6).298

These characteristics are supportive of a full-turbulence (a.k.a. Reynolds Averaged Navier-299

Stokes, RANS) eddy viscosity parameterization scheme such as KPP, and the skill of this300

turbulence model is assessed in Sec. 4. In fact, θκ(z) is slightly positive except at the bound-301

ary layer edges10, but not to such a degree that an eddy-viscous KPP solution is inaccurate302

(Sec. 4).303

With wave effects in case SB, κ(z) is much larger and extends deeper. Both features304

are qualitatively consistent with Ekman layer scalings of ho ∼ u∗ com/f and κ ∼ u∗ comho ∼305

u2
∗ com/f using the composite velocity scale u∗ com in (2). However, the κ enhancement is by306

nearly a factor of 10 in Fig. 6, while the enhancement of (u∗ com/u∗)
2 is not even half as307

large, so there is a quantitative discrepancy. A much bigger discrepancy is a large positive308

spike of θκ in the Stokes layer and a broader but lesser maximum in the interior of the309

Ekman layer. This presents a significant challenge to a conventional eddy viscosity RANS310

parameterization.311

10The small value of θκ(z) is robustly nonzero with respect to computational parameters and statistical

averaging accuracy in case Nτ . We do not have an explanation.
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In anticipation of the RANS parameterization discussion in Sec. 4, we define alternative312

eddy viscosity profiles relative to the Lagrangian mean flow11, 〈uL⊥〉 = 〈u⊥〉+ ust:313

κL =
|〈u⊥w〉|
|∂z〈uL⊥〉|

, θLκ = θ−uw − θuL
z
. (14)

Without ust (e.g., in case Nτ), these quantities are the same as (12). They are plotted for314

case SB in Fig. 6. Near the surface κL is smaller than κ because the Lagrangian shear is315

larger, but it still is much larger than κ without wave effects12. κL has a depth structure316

that is smoothly distributed over the Ekman layer ho as a whole, and it has an evident317

suppression within the Stokes and breaker layers, e.g., compared to a linear interpolation318

between the mid-layer peak and the surface, which is characteristic of surface-layer similarity319

with κ ∼ u∗hoz when there are no wave effects. Furthermore, θLκ (z) has a very different320

structure than θκ with a small negative lobe through the Stokes layer13. This suggests that321

an eddy viscosity parameterization based on 〈uL⊥〉 might have more utility in the surface322

layer than an Eulerian one. In the interior of the Ekman layer where ust ≈ 0, both the323

conventional and Lagrangian eddy viscosity quantities are the same. So the interior behavior324

of θκ ≈ θLκ > 0 is also an issue for an eddy viscosity model. These ideas are assessed in Sec. 4.325

The explanation is a slower rotation with depth of the LCs than the mean shear (Sec. 3.e).326

11This is the short-time mean velocity averaged over an ensemble of parcels that move with ẋ = u(x) +

u⊥st(x) from random initial locations and release times, x(t0).
12The enhancement of κ near the surface is expected from a model of TKE injection by wave breaking

(Craig and Banner 1994). Our solutions indicate it is an ill-determined quantity because the mean shear

∂z〈u〉 is weak near the surface. In contrast, κL is well-determined; see (23).
13We explain θLκ < 0 in the Stokes layer by noting the Reynolds stress balance (3) if we assume u⊥st is

larger than 〈u⊥〉:

〈uw〉 ≈ u2
∗ − f

∫ 0

z

〈v〉 dz′ > 0

〈vw〉 ≈ − f
∫ 0

z

ust dz
′ < 0 .

〈vw〉 decreases rapidly, and θ−uw rotates clockwise rapidly, while θuL
z

rotates clockwise more slowly; both

effects are because ust is relatively large.
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e. Langmuir Circulations327

The turbulent eddies in a LES solution with vortex force have an organized LC structure,328

reminiscent of the well-organized longitudinal patterns often seen in surfactants in lakes and329

the ocean. Without ust the eddy patterns are quite different from LCs. Figure 7 shows330

turbulent LCs in the vertical velocity field in case SB. They have smaller horizontal and331

vertical scales near the surface, and their longitudinal axis rotates clockwise with depth as332

part of the Ekman spiral. The w extrema are asymmetric with larger downward speeds than333

upward. This asymmetry is measured by the skewness profile,334

Sk[w] =
〈w3〉(z)

〈w2〉3/2(z)
. (15)

The effect of the vortex force (S cases) is to make Sk[w] ≈ − 0.8 except within the breaker335

layer where it decreases toward zero. In contrast, the N cases have generally weaker skewness336

especially in the upper half of the layer. The eddy patterns are more complex than the337

idealized roll cells of linear instability theory (Leibovich 1983). In particular, the largest w <338

0 values occur more in isolated horizontal patches than along lines, although the elongated339

structure is evident at a lower amplitude.340

To educe the typical structure of a LC, a composite average of many individual events341

is employed. The vertical column is divided into fourteen zones with central depths zc to342

aggregate LCs with similar vertical structure; the zc are non-uniformly spaced to capture343

the finer scales near the surface. To detect a LC, a trigger criterion is defined to identify its344

central location. A normalized vertical velocity, w† = w(x, y, z)/rms[w](z), is used to enable345

detection across a broad depth range because the magnitude of w varies widely (Fig. 4).346

The trigger criterion is that w† is a local minimum with w† < −w†cr. Many snapshot 3D347

volumes are sampled, each temporally separated to ensure independent events. Within a348

snapshot volume the detected w† extrema are sorted by their magnitude, largest first. When349

an event is detected, a 3D local volume of size L(zc)
2 ·H(zc) is then used to “black out” any350

16



other nearby events to avoid redundant captures14. All detected events in a given zone are351

then averaged together to produce a 3D composite spatial pattern in uc(x, y, z) and a total352

detection number per volume nc(z) (i.e., per unit time). The horizontal mean is subtracted353

before calculating the composite fields.354

Pattern recognition is inherently a fuzzy analysis procedure with potentially ambiguous355

event detections. So we deliberately choose conservatively large values for w†cr, Lc, and Hc.356

This errs on the side of under-counting the LC population by including only the strongest357

events based on a presumption that they will have the cleanest spatial structure. We also test358

that the results are not highly sensitive to the detection parameter choices, except in the total359

event number. The results shown here are for w†cr = 4 for all zc and for black-out exclusion360

sizes that increase linearly with depth, Lc = Hc = 2.5 m - 0.3 zc, to match the increasing361

LC size (Fig. 7); e.g., at the deepest zc = −0.95u∗/f = −177 m, Lc = 0.29u∗/f = 53 m.362

The LC detection results in Figs. 9-11 are based on 80 temporal snapshots, with a total of363

11,600 detected events used in the composite averages.364

An example of a composite LC is Fig. 9 for a relatively shallow zc = − 8 m. It has a365

clean spatial structure of an elongated downwelling center along a horizontal axis rotated366

clockwise from the breaker direction, with weaker peripheral upwelling centers to the sides.367

The horizontal flow is forward along the rotated axis, with confluence in the rear and difluence368

in front15. In a vertical cross-section perpendicular to the axis, the primary extrema16 in369

14More precisely, we focus on excluding LCs with excessive lateral or vertical overlap by defining the

black-out volume of a candidate LC as the union of two rectangular volumes of sizes (2Lc)2 ·Hc and L2
c ·2Hc

each centered on the w† extremum.
15Fig. 9, left panel, is in the plane of the w† minimum, and it shows approximate fore-aft symmetry in

the horizontal flow. In planes above the LC center, the aft-ward confluent flow is much stronger than the

fore-ward difluent flow, especially at the surface.
16Because we base the detection on the locally normalized amplitude w†, it is not guaranteed that the

absolute amplitude of wc will be largest at zc, as it is in Fig. 9. In Fig. 11 (note the dots on the profile

curves), we see that the maxima in |wc| and κc occur at shallower depths than zc for the deepest detection

zones, although these maxima are deeper than for those for shallower detection zones. For the shallowest

17



wc < 0 and ũc > 0 (a tilde denotes a horizontally-rotated quantity; see Fig. 9 caption), occur370

at z = zc with approximately the same cross-axis and vertical scales that are somewhat371

smaller than |zc|. Cross-axis horizontal convergence occurs above the central depth, and372

divergence occurs below. These characteristics are as we expect for LCs, although the along-373

and cross-axis correlation lengths are not very large in a turbulent Ekman layer.374

The detected LC population density nc is in Fig. 10, together with the vertical distribution375

of zone centers zc and zone boundaries. The zone size expands with depth roughly matching376

the increase in size of the detected LCs. nc decreases with depth: there are fewer, bigger377

LCs deeper within the Ekman layer.378

The average momentum flux associated with a LC composite in a zone is defined by379

〈u⊥cwc〉(z) =
1

A

∫ ∫
dx dy u⊥c(x, y, z, zc)wc(x, y, z, zc) , (16)

where A is the horizontal area of the domain. We use its direction at z = zc to define the380

horizontal rotation angle θ−ucwc used in Fig. 9; this direction is aligned with the breakers in381

the shallowest zone, and it rotates clockwise with depth (Fig. 12). From the average flux,382

we define a LC-composite eddy viscosity magnitude and angle analogous to (12)-(13):383

κc(z) =
|〈u⊥cwc〉|
|∂z〈u⊥〉|

, θc(z) = θ−ucwc − θ∂zu . (17)

Analogous eddy-flux quantities κLc and θLc are defined with the Lagrangian mean shear as in384

(14).385

The total contribution of the detected LC population to any mean quantity is equal to386

the product of population density nc times the horizontal average of the composite quantity,387

summed over all zones. For example, the contribution to the vertical velocity variance388

profile is 〈w2〉(z) = Σc nc〈w2
c〉 with 〈w2

c〉(z, zc) = A−1
∫ ∫

dx dy w2
c (x, y, z, zc). Similarly,389

the contribution to the momentum flux is Σc nc〈u⊥cwc〉, and the contribution to the eddy390

viscosity is Σc ncκc. Figure 11 shows both the individual composite-zone and composite-391

total contributions to the 〈w2〉(z) and κL(z) profiles. In both quantities all zones show a392

zones, the profile maxima occur slightly above zc.
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similar shape varied by the peak magnitude and depth scale. So the composite-total profiles393

have a similar shape. Furthermore, they are essentially similar in shape to the LES total394

profiles, but with a smaller magnitude. The relative magnitude is somewhat larger for κL395

than for 〈w2〉, indicating that LCs are more efficient agents in momentum flux than their396

variance fraction would imply. We conclude that the statistical structure of Ekman layer397

turbulence is primarily the result of its coherent LCs. Because of the conservative design of398

the detection procedure to avoid false detections, we interpret the magnitude discrepancy as399

a consequence of an under-count of the LC population (nc too small). We hypothesize that400

this discrepancy would close with a more sophisticated detection procedure.401

A striking result in Fig. 6 is the positive eddy viscosity directions, θκ(z) ≈ θLκ (z) > 0,402

through the interior of the Ekman layer; i.e., the clockwise rotation with depth of the403

Reynolds stress direction lags that of the mean shear direction (cf., Figs. 2-3). This is404

alternatively shown in Fig. 12, with the addition of the Reynolds stress direction angle405

for the LC composite total, θ−ucwc . Both the Eulerian and Lagrangian shear angles differ406

substantially from the flux angle θ−ucwc . Near the surface the Eulerian shear is rotated far407

too much, while the Lagrangian angle is much closer but rotated too little. In the interior408

both shear angles are rotated too much, consistent with positive θκ and inconsistent with409

simple eddy viscosity. The LC-composite flux angle is very close to the total flux angle near410

the surface. In the interior the rate of clockwise rotation is very small for the LC flux, and411

over the bottom half it rotates too slowly compared to the total flux. We conclude that412

the detected LCs are the source of positive θκ. Evidently the remainder of the turbulent413

fluctuations (including undetected weaker LCs) have a more rotated flux angle on average,414

so the total flux angle value lies in between the LC flux and mean shear values. At the415

bottom of the Ekman layer (z < −ho), all four angles coincide, but of course there is not416

much mean flow, variance, or flux down there.417
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f. Breakers and Downwelling Jets418

To illustrate the 3D structure of a typical breaker, another composite average is con-419

structed from many transient events in case SB. The detection criterion is that the surface420

u in the breaker direction exceeds a positive threshold value Ucr, chosen as Ucr = 10u∗ =421

0.2 m s−1, over a connected area of Acr = 1.6× 10−3 (u∗/f)2 = 55 m2. Again, these choices422

are conservative ones that select the larger, stronger breakers. For composite averaging, the423

origin is placed at the position of maximum u > 0. The composite pattern in Fig. 13 has424

strong downwelling in the front and weaker upwelling in the rear. The horizontal velocity425

is stronger in u than v, divergent and confluent in the rear, and convergent and difluent426

in front. The depth scale is slightly bigger than hb because the composite is for relatively427

larger, stronger breakers. Notice that the y scale is wider for breakers than for upper-ocean428

LCs (Fig. 9). All of these characteristics are a response to the specified shape of the breaker429

acceleration events, A(x, y, z, t)x̂ (Sullivan et al. 2007). As with the LC composites, the430

composite breaker has a Reynolds stress with 〈uw〉(z) < 0 near the surface (z > −2hb);431

however, it is much weaker than for the LC composites.432

In the wavy Ekman layer, an interesting phenomenon emerges, viz., coherent, downward-433

propagating, downwelling jets. We detect them by a variant of the LC detection procedure434

(Sec. 3.e): for a large w† < 0 anomaly first detected within the top 3.5 m, a search is made for435

a another large anomaly in the local spatial neighborhood at a subsequent time 20 s later. If436

the new detection is successful, the process is continued in time, always searching in the local437

neighborhood of the latest detection. The detection sequence is terminated when no new438

local strong anomalies are found. This procedure yields many examples of downwelling jets439

that penetrate much of the way through the boundary layer (Fig. 14). They have a typical440

downward propagation speed of about 0.3u∗, which is a small fraction both of the r.m.s. w441

(Fig. 4) and of their own local w extremum and have a typical horizontal propagation speed442

of several times u∗, generally following the mean flow (Fig. 2). The downwelling jet extremum443

typically occurs along the horizontal axis of a LC, hence it contributes to the LC structure in444
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w more as an isolated extremum along the axis than as a longitudinally uniform distribution445

typical of roll cells (Fig. 7). Deep downwelling jets are much less frequently detected than446

either breakers or LCs separately, but they are much more frequent and coherent in case447

SB than any of the other cases in Table 1. In laboratory experiments on breaking waves448

without LCs, deep downwelling jets are not seen (Melville et al. 2002).449

Case SB also has the largest negative skewness among all the cases here, with Sk[w] ≈450

− 0.85 around z = − 0.15u∗/f (Fig. 8), although its distinction from other S cases abates451

into the interior. We interpret this as an incremental effect of the strong downwelling jets on452

top of the primary LC asymmetry in w. Thus, the jets arise out of an interaction between453

breakers and LCs through a vertical vorticity catalyzation process provided to LCs by the454

finite transverse scale of the breaker acceleration, in particular the opposite-signed vertical455

vorticity extrema on either side of the breaker center in Fig. 13, left panel. A vertical vorticity456

seed is tilted and stretched by Stokes drift and the mean current to grow into the longitudinal457

vorticity of a mature LC (Leibovich 1983; Sullivan et al. 2008). This phenomena is more458

pronounced with our choice of relatively young wave age with its larger breakers than with459

the older waves in full wind-wave equilibrium (Sec. 2). This catalyzation process is not, of460

course, the only way to generate a LC because many other vertical vorticity seeds are present461

in a turbulent boundary layer.462

g. Surface Drift463

A long-standing, practical oceanic question is the lateral drift of a buoyant object at the464

surface. Its simplest posing is as pure fluid drift, neglecting windage and other bulk forces on465

the object and surfactant rheological complexity. In the Ekman problem, we have defined the466

Lagrangian mean flow by 〈uL⊥〉 = 〈u⊥〉+ust. This is the velocity of an ensemble of randomly467

placed particles, averaged over short time periods before their spatial distribution becomes468

organized. However, Langmuir turbulence is famous for its “wind rows” with surfactants469

that collect in the convergence zones of LCs. Furthermore, the theoretical model of a roll cell470
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as a paradigm for a LC has a downwind surface velocity maximum along the convergence471

line (Leibovich 1983, Fig. 3) implying a positive drift anomaly for its trapped particles that472

cannot follow the downwelling flow into the interior.473

We ask whether an ensemble of surface-trapped particles has the same mean velocity as474

〈uL⊥〉(0) after long drift periods. Define X(t; X0, t0) as the Lagrangian horizontal coordinate475

of a particle released at a random location X0 at time t0. For t > t0 it moves with the local476

surface Lagrangian flow:477

dX

dt
= u⊥(X(t), 0, t) + ust(0) . (18)

(This is a wave-averaged trajectory that excludes orbital motion of surface gravity waves.)478

The long-time surface drift UL is defined as the ensemble average of (18) over many releases479

at (X0, t0) and their X(t) trajectories of long duration. Fig. 15-left is a snapshot for the wavy480

case SB of a set of X(t) positions with a large t− t0, calculated by (18) using LES u⊥ fields.481

The locations are organized into fragmented lines and apparently have lost any correlation482

with their original release locations by becoming trapped in convergence zones. For this case483

the mean drift velocities expressed in (u, v) components are 〈uL⊥〉 = (17.3, − 2.9)u∗ and484

UL = (17.1, − 3.3)u∗, with a large downwind ust(0) = 17.5 u∗ contribution. So, the short-485

and long-term Lagrangian drifts are relatively little different17. Similarly small differences486

are seen in our other LES cases.487

We calculate the composite-average surface horizontal flow conditioned on strong conver-488

gence (Fig. 15-right). There is little horizontal flow through the convergence center, which489

is where surface trajectories will spend most of their time once they become organized into490

wind rows. That is, the surface-traoped particles move into the LCs but do not move through491

them. This flow structure contradicts the roll cell paradigm with a positive downwind ve-492

locity anomaly extending along the cell axis. But it does partly explain why UL and 〈uL⊥〉493

are nearly the same in our LES solutions; i.e., at the surface particles and LC convergence494

17Nevertheless, their differences are statistically significant based on standard error estimates. Across the

S cases, the long-term drift is rotated more to the right than the short-term drift (i.e., ŷ · (UL−〈uL⊥〉) < 0).
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patterns move at the same speed on average as the overall Lagrangian mean flow. Weller and495

Price (1988) measures large positive downwind velocity anomalies near the LC convergence496

lines, which they interpret as consistent with the roll-cell paradigm; however, because they497

cannot precisely co-locate their velocity measurements with particle trajectories, it is not498

clear that this contradicts our results.499

Using the u∗-Ua relation in Sec. 2, we can re-express the mean drift velocity 〈uL⊥〉 ≈ UL
500

as about 0.02 Ua rotated 10o to the right of the wind direction for case SB. In the ocean an501

ensemble of surface drift measurements is difficult to control for varying conditions of wind,502

waves, and stratification, and commonly averages are made by lumping different situations503

together. Ardhuin et al. (2009) uses a combination of surface radar back-scatter and a504

numerical wave model to estimate mean surface drifts (comparable to 〈uL⊥〉 because they505

would not see particle trapping) of 0.01-018 Ua rotated 10 − 40o to the right of the wind,506

with higher speed and greater rotation when the stratification is strong. They explain that507

their speed may be an underestimate because some depth averaging is implicit in the radar508

back-scatter process near the surface where the Stokes shear is large. Given this caveat and509

their lumping of many situations, we do not see our answer for UL as notably inconsistent.510

However, there is a literature of empirical estimates of substantially larger surface drift speeds511

in excess of 0.03 Ua (e.g., Bye 1966; Wu 1983; Kim et al. 2009), which is not supported by512

our LES results nor by the measurements of Ardhuin et al. (2009); we will not attempt to513

reconcile these historical contradictions.514

4. Parameterization Implications515

Oceanic General Circulation Models (OGCMs) require full-turbulence (RANS) parame-516

terization of boundary layer turbulent fluxes to calculate upper ocean currents and material517

distributions. Because 〈u⊥〉(z) is quite different in cases SB and Nτ (Fig. 2), we conclude518

that presently used OGCM parameterizations are inadequate without wave effects. In par-519
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ticular, the parameterization influences on boundary layer depth, vertical mixing rate, and520

velocity profile shape need to be changed.521

A 1D RANS parameterization model for the Ekman layer with uniform density is a522

turbulence-averaged momentum equation for u⊥(z, t) with specified wind and wave forcing523

in the x-direction (τx, ust(z), and A(z)):524

∂u

∂t
+ f ẑ× (u + ustx̂) = Ax̂ +

∂F

∂z
, (19)

where F is the parameterization of the Reynolds stress, - 〈u⊥w〉(z). Boundary conditions525

are F = (τx/ρo)x̂ at z = 0 and u⊥ ,F → 0 as z → −∞. The KPP model for the unstratified526

Ekman layer is527

F(z) = κ(z)
∂u⊥
∂z

κ(z) = c1u∗hG(σ) , σ = − z

h
, h = c2

u∗
f

G(σ) = σ (1− σ)2 , σ ≤ 1, G = 0 , σ > 1 (20)

with constants c1 and c2 (McWilliams and Huckle 2006). Notice that there are no wave528

influences in this scheme for F.529

We test KPP for the classical Ekman layer without wave effects, i.e., case Nτ . First, we530

optimally fit the values of c1 and c2 to minimize R, the depth-integrated r.m.s. difference531

in u⊥(z) between LES and KPP, normalized by the r.m.s. magnitude of u⊥(z) from LES.532

The minimum value is R = 0.1 for c1 = 0.29 and c2 = 0.72. These constants are close533

to the values c1 = k = 0.4 for von Karman’s constant k and c2 = 0.7 previously proposed534

for an Ekman layer modeled with KPP, viz., McWilliams and Huckle (2006), but with c1535

somewhat smaller here. The quality of the KPP fit to u⊥(z) is good by boundary layer536

parameterization standards (Fig. 16). There are larger discrepancies in the shape of κ(z)537

than in u⊥(z), but eddy viscosity itself is not the important parameterization product for538

OGCMs except as a means to obtain u⊥. In particular, without stable density stratification,539

κ in LES does not vanish at depth as sharply as in the KPP model, but the deep value540
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of κ is evidently not very important in determining u⊥(z) after it has decayed to a small541

magnitude. What is most important for achieving a small value of R is matching the surface542

layer structure where u⊥ is large. The KPP recipe (20) is consistent with a wall-bounded543

similarity layer (a.k.a. log layer) where κ → c1c2u
2
∗/f |z| as |z| → 0; thus, the strongest544

constraint is on matching the product of c1c2 with the LES answer. A caution is that the545

similarity-layer shear is theoretically singular, ∂zu → ku∗/z; hence LES can only provide a546

discretely approximate standard for such a case, and LES-1D discretization differences also547

limit the degree of agreement in u⊥. The modest degree of non-alignment between 〈u⊥w〉548

and ∂z〈u⊥〉 (θκ > 0 in Fig. 6 for case Nτ) is evidently not a serious obstacle to a reasonably549

skillful fit with the KPP parameterization scheme. By practical parameterization standards550

for use in OGCMs, there is little motivation to try to do better in this wind-only case,551

apart from improving the precision of the calibration and OGCM implementation if these552

are important limitations.553

The comparative analyses with and without wave effects indicate that u⊥(z) is sub-554

stantially altered by waves (Sec. 3). At the least, the boundary layer depth needs to be555

deeper and the eddy viscosity κ magnitude be larger with wave effects (Table 1 and Fig. 6).556

McWilliams and Sullivan (2000) propose an amplified κ magnitude due to ust based on a557

case with a stratification-limited depth, and the formula (2) suggests a scaling for the am-558

plification of the turbulent velocity scale18 (but note the cautionary remark at the end of559

Sec. 3.a). Figure 6 shows θκ > π/2 for case SB around the Stokes layer. In a conventional560

relation of aligned flux and shear, F = κ∂zu, this implies locally negative diffusion, which is561

potentially ill-behaved in time integration of the 1D model (19). Recognizing the existence562

of flux-gradient misalignment in LES with waves, Smyth et al. (2002) propose the addition of563

non-eddy-viscous, counter-gradient flux profiles to a KPP scheme for F, in analogy with its564

successful application in a convective regime (where ∂z〈T 〉 and 〈wT 〉 have the same sign over565

18A consequence of larger κ is increased entrainment rate at the pycnocline (McWilliams et al. 1997). This

is likely to be a general behavior in stratified boundary layers with waves.
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much of the boundary layer). This proposal has the disadvantage of complexity by needing566

to specify a model for the vector profile shape and orientation, and unlike in the convective567

regime the eddy momentum flux here is not literally counter-gradient (i.e., θκ 6= π). A568

potentially simpler remedy to the ill-behavedness of a negative-diffusion scheme is suggested569

by the alternative of a stress-aligned Lagrangian eddy viscosity scheme,570

F = κL∂zu
L
⊥ (21)

with κL ≥ 0. Figure 6 shows that the problematic Stokes-layer structure in θκ is greatly571

diminished in θLκ in case SB.572

To assess the 1D representation of the wave effects, we solve (19) with the 〈A〉(z) and573

ust(z) profiles from Fig. 1 and a replacement for F with the generalized Lagrangian eddy574

viscosity profiles κL(z) and θLκ (z) defined in (14):575

F = κLR · ∂zuL⊥ with R =

cos θLκ − sin θLκ

sin θLκ cos θLκ

 , (22)

R(θ) is a horizontal rotation matrix representing the rotation of the shear direction into the576

Reynolds stress direction. In this expression, κL R(z) is an eddy viscosity tensor, dependent577

upon two scalar functions, κL(z) and θLκ (z). Using (22), we can reproduce the LES result578

for u⊥ with good accuracy (R = 0.05) for case SB using the LES-diagnosed profiles of κL579

and θLκ in Fig. 6. This can also be done with an analogous Eulerian viscosity form for F and580

LES-diagnosed Eulerian viscosities.581

Now we ask which aspects of the LES viscosity profiles are important by solving (19)582

with alternative profiles. Step 1: We re-fit the KPP formula (20) to the LES κ(z) in Fig. 6583

for a κL(1) by matching the interior shear layer shape near its peak. This match can be584

done better with Lagrangian κL than an Eulerian κ because its peak is deeper and more585

in the center of the layer, as in the KPP shape. The re-fitted coefficients are c1 = 0.8,586

c2 = 1.4, consistent with bigger κ and ho with waves. The resulting u⊥(z) with (κL = κL(1),587

θκ = 0) is a very poor fit to the case SB profile (R = 0.8), mainly due to very different588
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u(z) near the surface. Step 1 is thus necessary but insufficient. Step 2: Noting that the589

κL(1) is very much larger than the LES κL near the surface (because there is no similarity590

layer with waves), we derive a surface layer approximation to the x-momentum balance in591

(3) by neglecting Eulerian velocity compared to Stokes velocity in the aligned Lagrangian592

eddy viscosity model (21):593

κLsur(z) =

∫ 0

z
A(z′) dz′

∂zust(z) + So
≥ 0 . (23)

κLsur → 0+ as z → 0−, in the Stokes layer because the denominator is increasing while the594

numerator ≈ u2
∗, and even more so in the breaker layer because the numerator is also decreas-595

ing. So prevents divergence of κLsur as z → −∞, and the small value So = 0.0025 ∂zust(0)596

makes a smooth transition in a composite specification,597

κL(2)(z) = min[κLsur(z), κL(1)(z) ] , (24)

in the upper part of the boundary layer, with κL(2) = κL(1) in the lower part. Figure 17598

shows that κLsur, hence κL(2), are an excellent fit to the LES-derived κL above the blending599

point at z ≈ − 0.18u∗/f . In the interior shear layer, κL(2) is a modest misfit to the LES κL,600

to a similar degree as in case Nτ in Fig. 16. The 1D solution for u⊥ with (κL(2), θLκ = 0)601

has qualitatively the right profile shape (Fig. 18, left panel) with a moderate r.m.s. error of602

R = 0.27. Here, as with case Nτ , the deeper reach of κL in LES is not important for the603

u⊥ skill. Step 3: To further reduce the error, we include the misalignment effect with the604

smoothed and depth-truncated θ
L(3)
κ (z) profile in Fig. 17, which has a small negative lobe in605

the Stokes layer and a larger positive lobe in the interior shear layer, as discussed in Sec. 3.d.606

This choice together with the viscosity magnitude κL = κL(2) gives a very good fit in u⊥(z)607

with R = 0.09. The reduction in R between the second and third steps is due to both θLκ608

lobes, with the surface lobe the more beneficial. The transition depth between the lobes of609

θLκ is approximately the same transition depth as in (24), just below the Stokes layer.610

Appendix A.2 is the analytic Ekman layer solution for misaligned, Lagrangian eddy611

viscosity with constant viscosity κo and rotation angle θo. It provides an explanation for the612
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primary differences in u⊥(z) between the two panels in Fig. 18: near the surface where θLκ < 0,613

u is larger and − v is smaller, i.e., less clockwise rotation relative to the wind direction; and614

in the interior shear layer where θLκ > 0, the vertical decay length is shorter and the Ekman615

spiral is less pronounced. It also illustrates that there are ill-behaved solutions for θLκ values616

too different from zero (analogous to negative diffusion with the aligned-stress model (21)).617

The influence of breaker acceleration A (vs. surface stress τx) is only weakly evident in618

the shape of u⊥(z) in Fig. 18 as a weak positive shear in u and positive veering in θu (also in619

Fig. 2). The primary x-momentum balance in the breaker layer is between A and − ∂z(uw),620

not the Coriolis force ∝ fv. The most important A influence is a desingularization of the621

surface layer, compared to a surface stress boundary condition and its associated similarity622

layer. For z < −hb where
∫ 0

z
Adz′ = u2

∗, all of κL, u⊥ and the Reynolds stress profiles623

are smooth in z, and the limiting case hb → 0 is mathematically and computationally well624

behaved and physically meaningful. In contrast, a surface stress condition in combination625

with κ→ 0 is ill-behaved and ill-conceived in the presence of waves.626

Thus, we have demonstrated in three steps — the first the familiar KPP model for627

the interior shear layer with a wave-enhanced κ magnitude and depth scale; the second628

a derived dynamical approximation near the surface; and the third a qualitatively simple,629

albeit unfamiliar misalignment profile shape (which could easily be expressed in a formula)630

— that an accurate 1D model is achieved with Lagrangian eddy viscosity. This cannot be631

done as well with Eulerian eddy viscosity because there is no derivable analog of κsur for the632

Stokes and breaker layers, which therefore would have to be yet another empirically fitted633

aspect of the model; the Eulerian θκ shape is more convoluted (Fig. 6); and the fit to a KPP634

shape is less apt in the interior shear layer. One might argue that the first two steps alone —635

leaving out the θLκ 6= 0 profile specification — yield a significant improvement over existing636

parameterizations without wave effects. With or without the third step, this could become637

a useful framework for OGCM use.638

This demonstration does not yet yield a usable parameterization scheme, of course, be-639
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cause the few LES cases examined here do not comprise a regime scan of wind, wave, and640

buoyancy influences in the surface boundary layer19, with the extensive calibration and test-641

ing necessary for usability. Nevertheless, it is likely that the wave influences seen in the642

Ekman problem will be echoed more generally.643

5. Summary644

Under conditions close to wind-wave equilibrium, the influences of surface gravity waves645

are quite significant in the Ekman layer. The Stokes-Coriolis and vortex forces are the main646

influences, while the differences between breaker acceleration and surface stress are secondary647

and mostly localized near the surface. The Ekman layer as a whole approximately separates648

into three vertical sub-layers: the breaker layer where A is large, the Stokes layer where ust649

is large, and the interior shear layer underneath, with hb � hst � ho in the cases considered650

here. These distinctive sub-layers are evident in the mean current and Reynolds stress651

profiles, as well as the momentum and turbulent kinetic energy balances. The Ekman layer652

with waves is deeper and more energetic, and its surface current profile u⊥(z) is controlled653

by the shapes of A(z) and ust(z) — neither of which is easily measured in the ocean — acting654

through κsur (23) and the 1D momentum balance (3) with Stokes-Coriolis force. This is a655

different conception of Ekman surface layer dynamics than either Monin-Obukhov similarity656

or breaker energy injection (Craig and Banner 1994); breaker energy injection E(z) does657

occur distributed over hb, but it does not directly relate to the Reynolds stress F or eddy658

viscosity κ, hence not to the momentum balance and u⊥(z) profile. The cases with mean659

acceleration and energy injection profiles, 〈A〉(z) and 〈W 〉(z), give generally similar answers660

to those with stochastic A and W , and they are much simpler and more economical to661

19The Coriolis force with a non-vertical rotation axis is also influential in Ekman layers, especially in

the tropics. A KPP parameterization scheme is proposed in McWilliams and Huckle (2006), but as yet its

interplay with wave effects is unexamined.
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compute. The energy cycle is very different with forcing by either mean stress or breaker662

injection, so that latter is much to be preferred as a process depiction. The partial wave663

formulation of Stokes drift without breaker injection (case Sτ) is ill structured approaching664

the surface, with LCs developing very fine scales without the regularization provided by of665

breaker-augmented mixing and dissipation.666

Breaker acceleration creates transverse overturning cells near the surface, and shear in-667

stability and Stokes vortex force create longitudinal LCs whose scale expands and horizon-668

tal orientation rotates with depth. Both types of coherent motions contribute important669

Reynolds stress. These influences occasionally combine to create downward-propagating670

downwelling jets. In the surface layers, the large Stokes shear requires rapid rotation with671

depth of the Reynolds stress, and in the interior shear layer the LCs rotate clockwise (i.e.,672

have substantial vertical coherence) more slowly with depth than the mean shear (Ekman673

spiral); these behaviors create a moderate degree of stress-shear misalignment that is incon-674

sistent with down-gradient eddy viscosity. The mean surface Lagrangian drift of buoyant675

particles with waves is dominated by the Stokes drift velocity and rotated slightly rightward;676

this drift is only slightly different for short- and long-time particle trajectories in spite of677

particles become trapped within LC convergence zones.678

To both explore parameterization possibilities and test our comprehension of wave in-679

fluences, we solve a 1D model (19) with parameterized Reynolds stress F. Without wave680

effects (case Nτ), a KPP parameterization scheme is successful. With wave effects (case SB)681

several modifications are necessary for success: a KPP profile shape with a bigger, deeper682

eddy viscosity in the interior shear layer; a Lagrangian eddy viscosity scheme (23) in the683

breaker and Stokes layers; and a stress-shear misalignment profile with θLκ < 0 in the Stokes684

layer and > 0 in the interior shear layer.685

The ocean has a wide range of wind-wave conditions, as well as various buoyancy in-686

fluences. Often the transient evolution is more evident than a steady-state equilibrium in687

the surface boundary layer. So the wavy Ekman layer problem solved here, while central,688
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is hardly general. A good strategy is still needed for encompassing the general behaviors of689

the upper ocean in measurements and models.690
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APPENDIX697

A.1. Mean and Total Kinetic Energy Balances698

The energy analyses in Secs. 3.a and 3.c focus on the total work done by stress and breaker699

forcings,
∫
E tot dz, and on the turbulent kinetic energy (TKE; e defined in (1 contains both700

resolved-eddy and subgrid-scale energies) and its balance relation (7). To clarify the total701

energy context, we complement them here with the energy balance relation for the mean702

flow, i.e., MKE: e = 0.5 〈u⊥〉2. Their sum then gives a combined balance perspective for the703

total kinetic energy, etot = e+ e.704

In equilibrium the MKE balance relation is705

∂t e(z) = 0 = E + F + T − Pu . (A1)

With a steady, eastward wind stress acting as a delta function at the surface (z = 0), the706

mean stress and breaker acceleration injection is707

E(z) = δ(z) τx〈u〉(0)/ρo + 〈A〉(z) 〈u〉(z) , (A2)

while the fluctuating breaker acceleration A′ work and subgrid-scale injection W are assigned708

to the e balance in (8). The Stokes-Coriolis force provides an energy conversion with the709

surface gravity wave field (as does Stokes production, Pst in (9), for the e balance (7)):710

F(z) = f ẑ · 〈u⊥〉 × u⊥st = −f〈v〉ust . (A3)

The mean transport is711

T (z) = − ∂z
(
〈u⊥w〉 · 〈u⊥〉

)
, (A4)

whose vertical integral is zero. The shear production Pu defined in (9), is a conversion from712

e to e. Finally, notice that a mean dissipation rate associated with the subgrid-scale stress713

can be defined as714

ε(z) = −〈 τ siz〉 ∂z〈ui〉 , (A5)
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with index notation (i here is only horizontal because 〈w〉 = 0); however, it is already part715

of Pu in (9), so it does not contribute separately to the MKE balance.716

The total energy balance relation is the sum of (7) and (A1). It has depth-integrated717

sources from injection, E tot = E + E , Stokes-Coriolis conversion, F , and Stokes production,718

Pst, and a single dissipative sink from ε. This is shown diagrammatically in Fig. 19. Notice719

that all three sources contain a conversion with the surface wave field. The sum of sources720

equals the dissipation sink in equilibrium.721

We do not show a quantitative evaluation of the MKE balances but rather summarize722

them qualitatively from a volume-integrated perspective. With Stokes vortex forces (S723

cases), the primary e source is F > 0, and E is small because 〈u〉(0) is small, both of which724

are a consequence of the Stokes-Coriolis force. (The sign of F is clearly positive in (A3)725

because 〈v〉 < 0 by the southward Ekman transport constraint in (5).) However, Pst � F in726

all S cases, and E is even larger than Pst with breakers (B cases), so the two wave conversions727

acting directly in the TKE balance are the important sources, with the Pu conversion from728

MKE a minor effect. The wavy energy route is summarized as E + Pst → ε. This is very729

different from the Ekman layer without waves (case Nτ), where the MKE → TKE route is730

essential: E → Pu → ε.731

A.2. Analytic Solution with Misaligned Lagrangian Vis-732

cosity733

As an aid to interpreting the 1D solutions in Sec. 4, we pose the Ekman-layer problem734

with Stokes-Coriolis force, a misaligned Lagrangian eddy viscosity that is uniform with735

depth, an equivalent surface stress boundary condition (which is well behaved for constant736
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viscosity), and a velocity that vanishes toward the interior:737

f ẑ× u⊥
L = κoR(θo) ∂

2
zu⊥

L

κoR(θo) ∂zu
L
⊥(0) = x̂

τx

ρo
. (A6)

The analytic solution is readily obtained by recasting the problem as a second-order, complex738

differential equation for U = uL + ivL, using R = eiθo simply as a complex number. The739

result for the Eulerian velocity is740

u(z) = −ust(z) +
τx

ρo
√
fκo

ekz cos

[
`z − π

4
− θo

2

]
v(z) =

τx

ρo
√
fκo

ekz sin

[
`z − π

4
− θo

2

]
(A7)

, (A8)

with vertical decay and oscillation wavenumbers,741

k =

(
f

κo

)1/2

cos

[
π

4
− θo

2

]
and ` =

(
f

κo

)1/2

sin

[
π

4
− θo

2

]
, (A9)

when θo is in a range around 0 where k > 0. With ust = θo = 0, this is the classical Ekman742

solution. Otherwise, compared to the classical solution, u has a flow component opposite to743

ust; the vertical decay rate k is faster and the rotation rate ` is slower with θo > 0 (and vice744

versa if θo < 0); and some θo values are inconsistent with a boundary-layer solution (e.g.,745

θo = −π/4 where k = 0).746
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List of Tables804

1 The six cases used in this study. ho is defined as the depth at which the805

magnitude of the turbulent stress is 10% of its surface value. The third column806

is the total kinetic energy per unit area. The fourth and fifth columns are the807

total energy input rate
∫
E tot dz for τ and B cases, respectively. 40808
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Case ho f/u∗
∫
e dz fu−3

∗ ρ−1
o τx〈u〉(0) u−3

∗
∫
〈A · u+W 〉 dz u−3

∗

Nτ 0.46 0.98 14
N〈B〉 0.45 1.24 242
NB 0.46 1.14 265
Sτ 1.06 2.26 0.8
S〈B〉 1.06 2.49 234
SB 0.94 2.10 261

Table 1. The six cases used in this study. ho is defined as the depth at which the magnitude
of the turbulent stress is 10% of its surface value. The third column is the total kinetic energy
per unit area. The fourth and fifth columns are the total energy input rate

∫
E tot dz for τ

and B cases, respectively.
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List of Figures809

1 Normalized profiles of Stokes velocity ust(z) (left) and mean breaker accel-810

eration 〈A〉(z) (right). The dimensional length scales are hst = 13.2 m and811

hb = 1.4 m, each defined as the depth at which the profile is 10% of its812

maximum at the shallowest grid level in the model. 45813

2 Mean horizontal velocity profiles: directional components normalized by u∗814

(top) and magnitude and angle relative to east (bottom). Inset plots show815

detail near the surface. The two thick tick marks in the insets indicate non-816

dimensional hst and hb. All cases in Table 1 are included. The line color817

convention is Nτ = cyan; N〈B〉 = magenta; NB = blue; Sτ = green; S〈B〉818

= red; and SB = black. 46819

3 Mean profiles of turbulent vertical Reynolds stress: directional components820

(top) and magnitude (normalized by u2
∗) and angle θ−uw (radians counter-821

clockwise from east). Plotting conventions are as in Fig. 2. The angle curve is822

truncated below where the stress magnitude is less than 2% of its near-surface823

value. 47824

4 Large-eddy fluctuation velocity component variances and e profiles (including825

the subgrid-scale energy) normalized by u2
∗. The e plot is logarithmic. Plotting826

conventions are otherwise as in Fig. 2. 48827

5 TKE balances for cases SB (left) and Nτ (right) normalized by u2
∗f on a split828

log-log scale, where the sign of the axis quantities is listed explicitly. Individual829

terms in (7)-(11) are breaker work E (magenta), shear production Pu (red),830

Stokes production Pst (blue), transport T (green), and viscous dissipation − ε831

(black). Tick marks indicate z = −hst and −hb in the left panel. The top two832

grid cells are excluded where the discretization accuracy of the TKE diagnosis833

is dubious as judged from the residual of r.h.s. terms in (7). 49834
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6 Normalized eddy viscosity magnitude κ and angle θκ for cases SB (solid) and835

Nτ (dashed). Also shown are the Lagrangian eddy viscosity and angle for the836

SB case (dash-dot). The curves are truncated with depth as in Fig. 3. 50837

7 Snapshots of w/u∗ at depths of 3 m (left) and 32 m (right) for case SB. 51838

8 Profiles of vertical velocity skewness, Sk[w](z) defined in (15), for the same839

set of cases using the same color coding as in Fig. 2. 52840

9 Left: composite LC pattern for case SB plotted in a rotated plane (x̃, ỹ)841

at z = zc = − 8 m. The grid rotation is to the opposite direction from the842

horizontally-averaged composite stress at the zone center zc, θ−ucwc , whose843

value here is - 0.18 rad. The colors show wc/u∗, and ũ⊥c/u∗ is shown as844

vectors. The magnitude scale is indicated in the inset. Right: composite LC845

pattern in a rotated (ỹ, z) plane at x̃ = 0. The colors show ũc/u∗, and the846

(ṽc, wc)/u∗ velocities are shown as vectors. 53847

10 Number of LC detections nc per unit time within the domain for each ver-848

tical detection zone. Horizontal lines indicate zone centers (grey) and zone849

boundaries (dashed). 54850

11 Normalized LC composite nc〈w2
c〉 (left) and Lagrangian eddy viscosity mag-851

nitude ncκ
L
c (right) for case SB. Separate curves are for different detection852

zones, with the zone center marked by a dot. The inset plots show profiles853

for the composite summed over all zones (black) compared to the LES total854

profiles (red). 55855

12 Comparison of depth profiles for mean angles for case SB: Reynolds stress856

angle θ−uw (green); Eulerian shear angle θuz (blue); Lagrangian shear angle857

θuL
z

(red) ; and Reynolds stress angle from the LC composites θ−ucwc (black).858

Black tick marks indicate z = −hb and −hst. 56859
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13 Composite-average velocity in breaking waves for case SB. The plotting con-860

ventions are the same as in Fig. 9, except the horizontal grid is not rotated861

here. The horizontal plane is at z = -1.9 m, and the vertical section is at862

x = 0 relative to the breaker center. 57863

14 Examples from case SB of deep jets emanating from near the surface at their864

first detection time t0: (lower left) Hovmoller diagram in (z, t) of many jet865

centers (gray lines) with one particular jet trajectory (in black) selected for866

the other panels here; (lower right) w(z, t)/u∗ following the black trajectory at867

the horizontal location of its center; and (upper row) snapshots of w(x, y)/u∗868

for the same trajectory at depths of 10, 30, and 50 m with relative time869

separations of 190 and 270 s, using the same color bar. 58870

15 (Left) Snapshot of 5000 surface particle locations X at a time t − t0 = 103
871

s = 0.1 f−1 after random releases within the (x, y) domain between ±250872

m in each direction. Notice the spreading and mean eastward and south-873

ward drifts. (Right) Composite-average surface velocity vectors, u⊥(x, y)/u∗874

(arrows), conditioned on a surface convergence extremum by a procedure oth-875

erwise similar to the breaker detection in Sec. 3.f. The composite-average876

convergence fields are contoured with an interval of 0.02 f−1, with a central877

maximum of 0.1 f−1. The surface velocity is nearly zero at the center of878

convergence. These plots are for case SB. 59879

16 Normalized profiles of mean velocity 〈u⊥〉(z) (left) and eddy viscosity κ(z) for880

case Nτ without wave effects, comparing the LES result (dashed) with the881

KPP model (20) with optimally fit constants c1 = 0.29 and c2 = 0.72 (solid).882

After the fit the r.m.s. depth-integrated relative difference in u⊥ between LES883

and KPP is R = 0.1. κ(z) for LES is again truncated below where the884

Reynolds stress magnitude is less than 2% of its near-surface value. 60885
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17 Lagrangian eddy viscosity profiles for the comparisons in Fig. 18. (Left) κL(z)886

for KPP (Step 1), the surface model (23), the LES diagnostic using (14), and887

the blended profile κL(2) in (24). (Right) θLκ (z) from the LES diagnostic and888

a smoothed fit θ
L(3)
κ above z ≈ −1.2u∗/f . 61889

18 u⊥(z) comparisons for case SB between the LES mean and the 1D model890

with Lagrangian eddy viscosity: (left) Steps 1-2 with κL(2) and θLκ = 0 and891

(right) Steps 1-3 with θ
L(3)
κ 6= 0. The respective r.m.s. differences with the892

LES profile are R = 0.27 and 0.09. 62893

19 Diagram of the volume integrated turbulent and mean kinetic energy balances894

in (7) and (A1). Quantities are defined in the text. 63895
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Fig. 1. Normalized profiles of Stokes velocity ust(z) (left) and mean breaker acceleration
〈A〉(z) (right). The dimensional length scales are hst = 13.2 m and hb = 1.4 m, each defined
as the depth at which the profile is 10% of its maximum at the shallowest grid level in the
model.
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Fig. 2. Mean horizontal velocity profiles: directional components normalized by u∗ (top)
and magnitude and angle relative to east (bottom). Inset plots show detail near the surface.
The two thick tick marks in the insets indicate non-dimensional hst and hb. All cases in
Table 1 are included. The line color convention is Nτ = cyan; N〈B〉 = magenta; NB =
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magnitude is less than 2% of its near-surface value.
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Fig. 5. TKE balances for cases SB (left) and Nτ (right) normalized by u2
∗f on a split log-log
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are breaker work E (magenta), shear production Pu (red), Stokes production Pst (blue),
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Fig. 7. Snapshots of w/u∗ at depths of 3 m (left) and 32 m (right) for case SB.
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Fig. 8. Profiles of vertical velocity skewness, Sk[w](z) defined in (15), for the same set of
cases using the same color coding as in Fig. 2.
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Fig. 9. Left: composite LC pattern for case SB plotted in a rotated plane (x̃, ỹ) at
z = zc = − 8 m. The grid rotation is to the opposite direction from the horizontally-
averaged composite stress at the zone center zc, θ−ucwc , whose value here is - 0.18 rad. The
colors show wc/u∗, and ũ⊥c/u∗ is shown as vectors. The magnitude scale is indicated in the
inset. Right: composite LC pattern in a rotated (ỹ, z) plane at x̃ = 0. The colors show
ũc/u∗, and the (ṽc, wc)/u∗ velocities are shown as vectors.
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Fig. 10. Number of LC detections nc per unit time within the domain for each vertical
detection zone. Horizontal lines indicate zone centers (grey) and zone boundaries (dashed).
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Fig. 11. Normalized LC composite nc〈w2
c〉 (left) and Lagrangian eddy viscosity magnitude

ncκ
L
c (right) for case SB. Separate curves are for different detection zones, with the zone

center marked by a dot. The inset plots show profiles for the composite summed over all
zones (black) compared to the LES total profiles (red).

55



−1.5

−1.0

−0.5

0.0

θ

zf
/
u
∗

π π/2 0− −

θ ucwc−

θuL
z

θ uw−

θuz

Fig. 12. Comparison of depth profiles for mean angles for case SB: Reynolds stress an-
gle θ−uw (green); Eulerian shear angle θuz (blue); Lagrangian shear angle θuL

z
(red) ; and

Reynolds stress angle from the LC composites θ−ucwc (black). Black tick marks indicate
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Fig. 13. Composite-average velocity in breaking waves for case SB. The plotting conven-
tions are the same as in Fig. 9, except the horizontal grid is not rotated here. The horizontal
plane is at z = -1.9 m, and the vertical section is at x = 0 relative to the breaker center.
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Fig. 14. Examples from case SB of deep jets emanating from near the surface at their first
detection time t0: (lower left) Hovmoller diagram in (z, t) of many jet centers (gray lines)
with one particular jet trajectory (in black) selected for the other panels here; (lower right)
w(z, t)/u∗ following the black trajectory at the horizontal location of its center; and (upper
row) snapshots of w(x, y)/u∗ for the same trajectory at depths of 10, 30, and 50 m with
relative time separations of 190 and 270 s, using the same color bar.
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Fig. 15. (Left) Snapshot of 5000 surface particle locations X at a time t−t0 = 103 s = 0.1 f−1

after random releases within the (x, y) domain between ±250 m in each direction. Notice
the spreading and mean eastward and southward drifts. (Right) Composite-average surface
velocity vectors, u⊥(x, y)/u∗ (arrows), conditioned on a surface convergence extremum by
a procedure otherwise similar to the breaker detection in Sec. 3.f. The composite-average
convergence fields are contoured with an interval of 0.02 f−1, with a central maximum of
0.1 f−1. The surface velocity is nearly zero at the center of convergence. These plots are for
case SB.
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Fig. 16. Normalized profiles of mean velocity 〈u⊥〉(z) (left) and eddy viscosity κ(z) for
case Nτ without wave effects, comparing the LES result (dashed) with the KPP model (20)
with optimally fit constants c1 = 0.29 and c2 = 0.72 (solid). After the fit the r.m.s. depth-
integrated relative difference in u⊥ between LES and KPP is R = 0.1. κ(z) for LES is again
truncated below where the Reynolds stress magnitude is less than 2% of its near-surface
value.
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Fig. 17. Lagrangian eddy viscosity profiles for the comparisons in Fig. 18. (Left) κL(z)
for KPP (Step 1), the surface model (23), the LES diagnostic using (14), and the blended

profile κL(2) in (24). (Right) θLκ (z) from the LES diagnostic and a smoothed fit θ
L(3)
κ above

z ≈ −1.2u∗/f .
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Fig. 18. u⊥(z) comparisons for case SB between the LES mean and the 1D model with
Lagrangian eddy viscosity: (left) Steps 1-2 with κL(2) and θLκ = 0 and (right) Steps 1-3 with

θ
L(3)
κ 6= 0. The respective r.m.s. differences with the LES profile are R = 0.27 and 0.09.
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Fig. 19. Diagram of the volume integrated turbulent and mean kinetic energy balances in
(7) and (A1). Quantities are defined in the text.
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