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ABSTRACT

Numerical solutions are examined for the nearly adiabatic, large-scale ocean circulation in a midlatitude,
rectangular domain with steady wind driving. The model used is the balance equations and its various subsets;
hence, dynamical effects at finite Rossby number are included. The solutions are steady ones, and the necessary
transports by the missing mesoscale eddies are parameterized, in part, using the authors’ previous proposal for
isopycnally oriented mixing of tracers and isopycnal thickness or static stability. This yields qualitatively credible,
quasi-adiabatic solutions for realistic magnitudes for the subgrid-scale transport coefficients. Among these solutions
are ones with nearly homogeneous fields of potential vorticity on upper-thermocline isopycnal surfaces, even
though the parameterized eddy mixing does not act directly to this end.

1. Introduction

In this paper, we reexamine a classical problem of
oceanography: the adiabatic, wind-driven time-aver-
aged circulation in a midlatitude basin of simple shape
and with a simple equation of state. The novel aspect
her\e is a parameterization of mesoscale-eddy buoyancy
transports that we have previously proposed (Gent and
McWilliams 1990; hereafter abbreviated as GM90),
namely, a quasi-adiabatic mixing along isopycnal sur-
faces of the static stability or, equivalently, the thickness
between isopycnal surfaces. In addition, we use con-
ventional parameterizations for subgrid-scale momen-
tum transports: a horizontal eddy viscosity representing
the mesoscale eddies and simple stress laws for the top
and bottom planetary boundary layers. Given these
parameterizations, the only relevant solutions for
steady wind driving are steady ones; otherwise, the
transient eddies would be, redundantly, both calculated
and parameterized. Steadiness is assured by choosing
the transport coefficients large enough such that the
steady solutions are stable; however, they are not so
large that the solutions are linear for a wind stress of
realistic magnitude.

We obtain our solutions from the balance equations
(BE) and their subset, the linear balance equations
(LBE), which we believe may be sufficiently accurate
models for the oceanic general circulation with its finite
Rossby number. The LBE and BE are more accurate
than the simpler quasigeostrophic equations (QG),
whose approximations to the Coriolis force, in partic-
ular, are too severe in large basins, and they excise the
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extraneous degrees of freedom present in the more
commonly used primitive equations. Batanced solu-
tions that resolve the mesoscale eddies for this problem
are presented in McWilliams et al. (1990; hereafter
abbreviated as MNGH ) and they can be viewed as ex-
tensions of many analogous solutions obtained with
QG (e.g., Holland 1986).

In some sense it is a step backwards to examine
steady (eddyless) solutions for a problem where eddy-
resolving solutions are feasible. Nevertheless, our mo-
tivations for doing so are threefold: 1) the quality of
an eddyless solution with parameterized eddy trans-
ports provides a measure of our understanding of their
effects in the general circulation; 2) there are very few
published, eddyless solutions for the baroclinic, wind-
driven circulation in a simple basin that provide a
framework for understanding its dynamics (but some
examples are Welander 1966; Young and Rhines 1982;
Ierley and Young 1983); and 3) it is not yet, and for
many years will not be, computationally feasible to
routinely calculate eddy-resolving solutions for the
more general problem of the fully diabatic circulation
with unsteady forcing in the complex geometry of the
global ocean with the real equation of state. Thus, use-
ful eddy parameterizations are needed for models of
the general circulation, and the solutions herein allow
at least a partial assessment of the GM90 proposal. In
doing so, we can also make an assessment of the related
proposal for a parameterized vertical eddy viscosity
(Greatbatch and Lamb 1990), and we further show
that there can be similarity in the effects of isopycnal
mixing with the various proposals that eddies mix po-
tential vorticity (PV ) in wind-driven circulation (Mar-
shall 1981, 1984; McWilliams and Chow 1981; Rhines
and Young 1982a; Holland et al. 1984).
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The idea of PV mixing by eddies has numerous an-
tecedents, primarily within the QG approximation
(e.g., Rhines 1977), and it has many advocates. To
date, however, there has been no parameterization
proposal that extends this idea to the finite Rossby
numbers of the general circulation.! In particular,
choices must be made both for the particular definition
of potential vorticity to be mixed (i.e., at what order
of Rossby number it is to be approximated) and for
the partition of its mixing terms between the buoyancy
and momentum equations since no model at finite
Rossby number is complete entirely within a potential
vorticity equation. The GM90 parameterization form
has nonconservative terms in the buoyancy equation.
By itself it is not necessarily inconsistent with PV mix-
ing, but with the simple form of momentum diffusion
we use here, it is inconsistent. Perhaps a further re-
finement of GM90 to establish consistency with PV
mixing may be attractive in the future, but our more
immediate purpose is to address the following essential
dynamical requirement for the general circulation.

The depth-averaged, or barotropic, circulation is
strongly constrained to be close to the simple Sverdrup
solution (Sverdrup 1947) on large horizontal scales,
but the determination of the baroclinic structure of the
circulation is more problematic. Consideration of the
integral vorticity budget indicates that the surface wind
torque must be balanced through horizontal and bot-
tom boundary stresses; however, unless the flow is to
be singularly trapped against the upper surface, some
process must act to convey the circulation downward
to make contact with, hence support a stress against,
the lower boundaries. In an eddyless solution, it is per-
haps natural to posit a vertical eddy viscosity for this
process, representing the subgrid-scale vertical Reyn-
olds stress. However, an estimate for the required vis-
cosity, v, ~ hr/V, is on the order of 1 m? s™! for typical
magnitudes of the wind stress and circulation depth
scale and speed (see section 4), and this is larger by
many orders of magnitude than observational estimates
of v, (Gregg 1987). The GM90 parameterization rep-
resents an alternative regulator of the baroclinic struc-
ture, sometimes referred to as isopycnal form stress
(because it arises from differential pressure forces on
the convoluted surfaces of constant density). A differ-
ent view of this process is that the parameterized eddy
fluxes maintain an ageostrophic circulation that acts
through the Coriolis force to effect the downward pen-
etration of the circulation. The required transport coef-
ficients for this isopycnal mixing process are not un-
physically large.

This mechanism is missing in standard, eddyless
oceanic general circulation models, and its lack is

! We exclude the planetary geostrophic approximation, with its
linear diagnostic momentum balance, as insufficiently accurate, par-
ticularly in boundary currents.
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compensated for, usually not by resort to unphysically
large »,, but rather by inclusion of horizontal (rather
than isopycnal) tracer diffusivities. The latter coincides
with our isopycnal mixing parameterization to leading
order in Rossby number, but it has the undesirable and
often substantial diabatic consequence of diffusing
away the buoyancy stratification due to the tilting of
isopycnal surfaces at the finite Rossby numbers of the
large-scale circulation. Furthermore, a simple rotation
of the tracer diffusivity tensor to be tangent to isopycnal
surfaces (Redi 1982) would not suffice for achieving
an equilibrium vorticity balance, since its dynamic ef-
fect disappears when buoyancy is a function of only
one tracer (as with our simple equation of state here).

2. Balanced and quasigeostrophic equations

Here we present the equations and boundary con-
ditions for the BE in nondimensional, continuous form
and then identify the subsets of the BE that make up
the simpler models LBE and QG. The formal properties
of balanced models are analyzed in Gent and Mc-
Williams ( 1983a,b). Particular examples of consistent
boundary-value problems and numerical solution
methods are presented for the BE in a horizontally
periodic, B-plane domain in Norton et al. (1986) and
for the LBE in a closed domain with general f{ y) in
MNGH. The presentation here parallels section 2 of
MNGH but is generalized to the BE with the isopycnal
mixing parameterization.

The nondimensionalization is of the classical QG
type. The fundamental scaling quantities are /, for
horizontal coordinates (x, y), /. for vertical coordinate
z, V, for horizontal velocities (u, v), f; for Coriolis
frequency, and N, for mean (i.e., horizontally aver-
aged) buoyancy (Brunt-V4iisild ) frequency. (The sub-
script asterisk denotes a dimensional value.) These
scales are combined in the nondimensional Rossby and
Burger numbers,

R- Ve B=(N*h*>2
Lol Sals
Other quantities are made nondimensional by appro-

priate combinations of the fundamental scales; for ex-
ample, the time ¢ is scaled by [, /V.

(1)

a. Velocity and buoyancy fields

The horizontal velocities are decomposed into ro-
tational and divergent components,

u= —Kby—Rszs UI\PX—RXyz, (2)

with streamfunction ¥ and velocity potential X. (In-
dependent variable subscripts denote derivatives.) The
vertical component of vorticity { is v, — u,; thus, (2)
implies

VA =1, (3)
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where V? is the horizontal Laplacian operator. The
vertical velocity w is scaled by V 2h,/fl%. The in-
compressibility relation can thus be written as

U+ 0,

= V2X,.
R

w; = (4a)
This has a simple vertical integral consistent with no
flow through the vertical boundaries:

w=VX. (4b)

The buoyancy field is assumed to be proportional
to the temperature field here, and T is decomposed
into a horizontally averaged component O(z, t), with
dimensional scale 4, N2 /g, Ay, and its deviation com-
ponent 8(x, v, z, t), with scale [, Vy/ g.hy Ay, Where
8« = 9.8 m s 2 is the gravitational acceleration and A4,
=2 X 107 K ~! is the coefficient of thermal expansion
in the linear equation of state. In addition, these fields
are related to the arta-averaged stability profile .S and
the geopotential ¢:

T=§e+a, S=BO, ¢,=6. (5)
We need not be concerned with an area-averaged geo-
potential function in hydrostatic balance with O, be-
cause no motion is associated with it.

b. Vorticity equation

The horizontal momentum balance in the BE is
supplanted by its curl and divergence. The former is
the vorticity equation,

G=—JW, {+o)+V - fVX,
+ RV -(VHVX, - V2XVY,)+ & + F,, (6a)

where Jand V are the horizontal Jacobian and gradient
operators, respectively. Other quantities in (6a) are de-
fined by

S=14+RB(y— y.),

of = B(y = ye)s
g = th2§‘,
F =i, (6b)

where § is the y gradient of the Coriolis frequency f,
V. is the meridional midpoint of the domain, and the
v are horizontal and vertical viscosities. The domain
isrectangular with0 < x < L,,0<y<L,0<z<H.

On the horizontal boundary 68, the boundary con-
ditions associated with (6a) are the inviscid conditions
of no normal flow,

¥=0 X,=0, (6¢c)

and the viscous condition of tangential stress propor-
tional to tangential velocity, |
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lpnn = _a‘pm (6d)

where (n, s) is a rotation of (x, y) oriented outwardly
normal to the horizontal boundary. Vertical boundary
conditions associated with (6a) are the inviscid con-
dition of no vertical flow and the viscous conditions
associated with wind stress 7 at the top and turbulent
boundary-layer drag at the bottom:

X(0)=X(H)=0, F(H)=curlr,
F(0) = €(0),

where e is the bottom drag rate.

(6¢)

¢. Thermal balance equation

The divergence of the horizontal momentum equa-
tion yields the defining balance relation for the BE. Inh
our formulation we need consider only its vertical de-
rivative, which we call the thermal balance equation:

V¥ =V-fVy,+ 2R a%.J(xlxx, ¥),  (72)

with its associated horizontal boundary condition,

On =S ¥nz, (7b)

on 88, and integral_normalization condition [n., (5 )],

1
(6= L.L, ff dxdy8 = 0.

For uniform validity in an expansion in R, there should
be an extra term in (7b) (viz., —RX,,; on the right-
hand side); however, to avoid a technical difficulty in
our solution method, we do not include it here (and,
as will be shown, the accuracy of our present solutions
with respect to R is not in doubt).

(7¢)

d. Buoyancy equations’

The buoyancy balance is decomposed, just as T in
(5), into area-averaged and deviation equations. The
former is

BO, = —R*(wb). + R(Q),

while the latter is
6, = =J(¢, 0) — Sw + R[V-0VX, — (wh), + {wb),]
+Q-(0). (9

The “quasi-adiabatic” buoyancy forcing term Q is dis-
cussed in section 3. No incremental boundary or in-
tegral conditions are required for (8) and (9) beyond
those specified above. The boundary conditions of no
normal flow (6¢c,e) and mass conservation (4b) imply
that w(0) = w(H) = 0 and (w) = 0.

(8)

e. Simpler models

The LBE are obtained from the BE [Eqgs. (2)-(9)]
simply by deleting the terms that appear in Eqgs. (6a)
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and (7a) with an explicit coefficient R. The QG model
is a much smaller subset of the BE, defined by setting
R =0and f=1in (6)-(9), while retaining of ¥ 0.
The QG model has some substantial simplifications
over LBE. For example, in this limit (7a) and (8) can
be integrated explicitly:

0=y, ~ <¢z>a 6(2, )= 8(2, 0),
assuming { Q) = 0 (see below).

(10)

3. Isopycnal mixing parameterization

The parameterization scheme in GM90 represents
isopycnally oriented fluxes of material properties by
mesoscale eddies. This scheme is pointwise diabatic,
in that material properties are not conserved on re-
solved-scale trajectories, but integrally adiabatic. For
the present situation of the linear, single-component
equation of state implicit in (5) and no tracers other
than temperature, the parameterization reduces to a
divergence in isopycnal coordinates of an isopycnally
oriented flux in the mass-conservation equation. This
flux is the density derivative of the product of a dif-
fusivity, «; times the horizontal gradient of the height
of an isopycnal surface [see (6) and (15) of GM90].
This is equivalent to a source term Q = (; in the buoy-
ancy equations (8)-(9) of the form

VT VT

0 = V[KVT]__Z[ T

], (11)

where all derivatives are in Cartesian coordinates (x,
¥, z). As discussed in GM90, this term usually acts on
the resolved-scale motions to reduce horizontal differ-
ences in the thickness between neighboring isopycnals,
to reduce available potential energy in a way that mim-
ics baroclinic instability, and to transfer horizontal
momentum vertically in a way that mimics isopycnal
form stress. In particular, for spatially uniform «; in
the QG approximation and away from vertical and
horizontal boundaries, (11) contributes to the govern-
ing potential vorticity equation isomorphically to mo-
mentum diffusion ¥, in (6a,b) with a nondimensional
vertical viscosity,

vo(2) = «i/S8(z). (12a)

In the QG approximation (as R = 0), the second term
in (11) is neglected, and Q; acts like a horizontal tem-
perature diffusion, with { Q;) = 0 given the boundary
condition (13) below.

This correspondence between », and «; in QG also
has an approximate analog for the planetary geo-
strophic equations (PG),

A )
N3(x,py,z,0) "

where N? = S(z) + Rf,. This led Greatbatch and Lamb
(1990) to propose a vertical momentum diffusion pa-

y =

(12b)
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rameterization for mesoscale eddy transports with the
indicated spatial dependence for v,. This approximate
correspondence requires both that terms of O(v2) be
neglected and that in certain instances Rdf be neglected
compared to 1 or f. Furthermore, it applies only to the
forcing of the potential vorticity equation and thus not
to the solution as a whole. Finally, even this approxi-
mate correspondence fails for more general models
such as the BE. Our preference is for isopycnal buoy-
ancy flux rather than vertical momentum flux as a pa-
rameterization basis, for the reasons indicated in the
Introduction, even though comparable solutions, re-
lated by (12a,b), may often be quite similar in certain
aspects (see section 4c).

The diabatic term (11) allows conservation of all
the integral moments of the buoyancy field, f dvolT™,
with suitably insulating boundary conditions. Here we
use a consistent alternative to what was suggested in
GMD90 that is particularly suited to the discrete imple-
mentation of (11):

kT,=00néB, x,=0onz=0,H. (13)

The horizontal condition here is to be interpreted not
as an extra condition on 7 but as a constraint on the
discrete form of Q; on the horizontal boundary. This
is a less severe constraint than setting x; = 0 on 4.8,
which would also assure (13), although in practice so-
lutions with these alternative boundary conditions are
little different. The formulas (11) and (13) imply a
systematic loss of potential energy:
K,VG V0

—-—fdvolwﬂ—fd S R,

for PE = —R™! [ dvolzT. The integrals here are to be
taken as volume averages.

Finally, we also include, in some calculations, a fully
diabatic component of @ for horizontal buoyancy dif-
fusion on the top and bottom boundaries:

On=V [, VT){8(2) + 6(z — H)},

(14)

(15)

where § is equal to one when its argument is zero and
zero otherwise. This term is not consistent with con-
servation of the integral moments of the buoyancy field.
Its dynamical rationale is the following. Although 6
=0 at z = 0 and H is a correct solution to the fully
adiabatic problem (see MNGH), it is not a unique
one. If nonzero boundary 6(x, y, t) arises either through
initial conditions (but not the ones we use here) or
computational errors (which are inescapable at some
level), or if there are quasi-adiabatic effects of Q; for
k; and R # 0, then the isothermal boundary solution
will not be selected. Once present, the boundary 4 field
will evolve approximately as a passive tracer in the
two-dimensional, nondivergent flow associated with the
boundary ¢ field (i.e., to leading order in R, there is
no dynamical coupling to the interior fields). This
evolution is a cascade to small scales, hence growth of
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y 2 Ly '

0

0 X L,
FIG. 1. Plot of Y(x, y, z;) at t = 200 and / = 6 and 1 for the LBE
solution of section 4a. The contour intervals are 0.1 and 0.005, re-

spectively; negative and positive contours are dashed and solid lines,
respectively; and the contour values symmetrically straddle zero.

( (V0)2>. The role of (15), then, is to absorb this cas-
cade by dissipating tracer variance and to establish a
smooth boundary 6 in a quasi-steady-state solution (i.e.,
one with only a slow dissipative evolution associated
with a small «, # 0). The physical rationale for (15)
1s that it represents horizontal mixing by the 3D tur-
bulence within the top and bottom planetary boundary

. VOLUME 24

layers. As we shall see (section 4b), Q) is neither nec-
essary for computational stability nor is its feedback
onto the interior fields quantitatively significant here.

Discretization formulas for Q; and O, that have the
desired integral properties are presented in appen-
dix B.

4. Solutions
a. A representative solution

First we examine a solution for typical parameter
values. With the North Atlantic Ocean in mind, we
consider a rectangular ocean basin with dimensions
4000 km X 5000 km X 5 km, centered at 38°N latitude,
and driven by a steady, meridionally symmetric wind
stress with a peak amplitude 79, = 10™* m? s~2. The
initial buoyancy profile exponentially decays with
depth on a scale of 800 m and has an associated first
baroclinic radius of deformation of 45 km (which will
be below the usual grid resolution scale of 100 km—
see below). The horizontal viscosity is vz = 0.75 X 104
m? s™!; this is a large value appropriate to an eddyless
solution. The horizontal boundaries have zero stress
(i.e., « = 0), and the velocity coeflicient for bottom
stress is €, = 2.65 X 10™* m s™!. Only the vertical
viscosity and diabatic diffusivities remain to be specified
(see below).

The characteristic scales for nondimensionalization
represent the large-scale circulation for the problem
stated above:

lg =500km, V,=0.1ms"', A&, =800m,

£ =090X10*s™", N, =7.63X103s"".

(16)

These scales are used as in MNGH to define the non-
dimensional parameters that appear in the equations
in section 2:

L,=8, L,=10, H=6.25,
R=222%X10"3% B=0018, =422,
v, =0.15, ¢=1.66, a=0. (17)
The surface wind stress is
Ty = €470 cos[Zw(L—yy—-%)], (18)
with 75 = 6.25. The initial buoyancy profile is
O(z,0) = 77 + O, (19)

where O, is a dynamically inconsequential constant;
the dimensional, top to bottom temperature difference
implied by (19) is 23 K, given (16). Other initial con-
ditions are Y = 6 = 0, representing an impulsive start-
up from a state of no motion. The spatial discretization
is on a grid of 40 X 50 X 6, unless stated otherwise.
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Thus, the horizontal grid spacing is everywhere da
= 0.2 (i.e., 100 km) and the staggered, stretched vertical
grid levels are either z; = {2.07, 3.73, 4.62, 5.24, 5.70,
6.08},/=1,-+-, 6, for the ¢y and u variables or z,
= {0, 3.06, 4.22, 4.95, 5.48, 5.90, 6.25}, k = 0, - -,
6, for the T and X variables. The time-step size is dt
=0.017 (i.e., 1 day).

We now examine an LBE solution for a problem as
specified above. We choose to focus at first on the sit-
uation with no vertical viscosity, an isopycnal diffusiv-
ity not much larger than the critical value at which the
solution approaches a steady state at late time, and as
small a horizontal diffusivity as yields a marginally
smooth boundary temperature field at late time;
namely,

v, =0, x; =0.03 «,=0.0l. (20)

The « have the same nondimensionalizing factor as v,
[ie., Vily =5 X 10* m? s7! from (16)]; thus, the ef-
fective Prandtl numbers v/« are large here, 5 for the
isopycnal mixing and 15 for the horizontal mixing on
the boundary. Neither these x nor the v, above are
inconsistent in magnitude with observational estimates
for lateral diffusivities by mesoscale eddies (Mc-
Williams et al. 1983).
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The spinup from rest is relatively rapid, occurring over
an interval of Az ~ 100 [i.e., about 16 yr from (16)],
and we will analyze the nearly steady-state solution at ¢
= 200. The horizontal patterns of circulation are shown
in Fig. 1 for both the shallowest and deepest levels. In
the upper ocean, there is the familiar double gyre system,
reflecting the pattern of wind driving ( 18). There is some
enhanced recirculation near the western boundary; the
latter is much stronger in the subtropical gyre because of
the greater surface intensification of the flow there due
to meridionally asymmetric effects of the Coriolis force
or, equivalently, to the stronger stretching of planetary
vorticity where f( ) is larger (see also the discussion in
MNGH). At the deepest level (Fig. 1b), however, the
wind-driven gyres are absent, and there is only western-
boundary recirculation, most intensely in a subpolar cy-
clonic gyre. These enhancements of near-boundary re-
circulation are nonlinear dynamical effects (cf. section
4d and appendix A). B

The depth-averaged circulation ¢* (Fig. 2a) shows
only a weak meridional asymmetry (again as in
MNGH). Furthermore, in all regions except near the
western boundary, ¥? corresponds quite well to the
Sverdrup transport streamfunction v, (Sverdrup
1947),

Y |
0 /4Lx
X

Lx

X

FIG. 2. The depth-averaged streamfunction, ¥*(x, y), and its difference from ¥, [see (21)]
in the western quarter of the domain. The contour interval is 0.02.
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o)

) - L
FIG. 3. The mean horizontal recirculation in the meridional plane,

V' (3,2), ~with geometrically increasing contours beginning
at +V10 X 10~* and increasing in magnitude by the factor vio.

‘kw(x’ ,V) = _Csv(l - L_x);) sin [271' y;yyc] ’
2wL,
Csv =—ﬁlrﬁiﬂ, (21)
Yy

as can be seen in Fig. 2b. The total circulation in each
gyre is H-Ay? ~ 1.0 [i.e., about A/, V, = 40 X 106
m>s~! from (16)], of which about one-third is an
enhanced western-boundary recirculation above the
Sverdrup circulation. A linear boundary-layer solution
(appendix A) corresponds well to Fig. 2b in its spatial
scale and location of extrema; however, the amplitude
of the secondary extremum at Ax =~ 0.4, relative to
the wall extremum, is underestimated by about 30%.
One clear deficiency of our eddyless solution, compared
to eddy resolving solutions as in MNGH, is that
the separated western-boundary current, the “Gulf
Stream,” does not leave the coast in only a narrow
latitude range nor does it penetrate very far in the zonal
direction. Associated with this deficiency are recircu-
lation zones and deep jets that also have excessively
meridional orientations. A possible remedial approach
is illustrated in section 4f.

The baroclinic structure of the gyres can be seen in_

meridional (Fig. 3) and zonal (Fig. 4) cross sections
for ¢, where the average is taken in the perpendicular
horizontal coordinate. We note that the circulations
are roughly exponential in their vertical profiles, with
a depth scale that is somewhat larger in the subpolar
gyre than in the subtropical one and that increases
strongly from east to west. This depth scale is somewhat
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smaller than 1 [i.e., <800 m from (16)], and its ab-
solute magnitude is substantially controlled by the ini-
tial stratification (19). Note that the depth scale deep-
ens to the north in the subtropical gyre and vice versa
in the subpolar gyre, as predicted in Rhines and Young
(1982b). .

There is also a divergent circulation (u,, vz, W), rep-
resented by the potential X in (2) and (4); it is weaker

(a) south

Tp—

I

Lx
X

FIG. 4. The mean horizontal recirculation in the zonal planes,
¥*(x, z), for the southern and northern halves of the domain, with
geometrically increasing contours beginning at £V10 X 1073 and
increasing in magnitude by the factor v1o.
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0

0 . Ly

0 < Ly

FIG. 5. The mean overturning circulations (a) in the meridional plane, £ 2 from (22), and,
in the zonal planes, £ *? from (23) for the (b) southern and (c) northern halves of the domain.
The contours being at +V10 X 1072 and increase in magnitude geometrically by the factor v1o.

than the ¥ circulation by a factor of R but nevertheless
plays an essential role in the dynamics. The mean me-
ridional part of this circulation can be expressed in
terms of a cross-sectional streamfunction £ ?(y, z),
defined by

92 9? d J
— 4+ — |0 = — X — = ¥
[ayz 322]2 az" e
£0 = 0 on y, z boundaries, (22)
where v, = —JX,, [see (2)]. Analogously, the mean,

zonal, divergent circulation can be expressed in terms
of a £*I(x, z), defined by

R 0y 9 _,

[ax2 * 822]2 az T
£?) = 0 on x, z boundaries, (23)
where u,; = —X,.. When the horizontal average in (22)
or (23) spans the basin, ¢ defines the mean cross-sec-
tional circulation exactly. We use such an average for
the meridional circulation (22) in Fig. 5a, but we
choose to separately average over the southern and
northern halves of the domain for the zonal circulations
(23) in Figs. 5b,c; since the basin midline coincides
with curl[7,] = O from (18) and approximately with
a line of symmetry for the solution (see Figs. 1-5a),
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T | .186
U
KE =0153 | °
€
0002

f wé | 125
} Ki
PE =188 123

F1G. 6. Volume-integrated energetics at # = 200: kinetic and po-
tential energy values are inside the boxes, and the labeled arrows
denote the sign and magnitude of the work done by the associated
processes. Definitions are as in MNGH, plus (14).

the part of the mean zonal circulation not represented
in £*?_that is, the degree to which the half-basin
mean flow is not x, z nondivergent—is negligibly small.
The sense of the £ is such that the circulation is coun-
terclockwise around a positive extremum.

In the meridional circulation for our solution (Fig.
5a), we see cells that are analogous to the Ferrel cell
of the atmospheric jet stream (e.g., Lorenz 1967) or
that of the Antarctic Circumpolar Current (Mc-
Williams and Chow 1981): poleward flow beneath an
upward-intensified eastward flow that undergoes baro-
clinic energy losses (here due to Q;). This is the flow
configuration that occurs in the central latitudes of the
domain here, and its reverse occurs in the regions of
westward flow on the edges. The zonal circulations (Fig.
Sb,c) are approximately antisymmetric between the
gyres, and within each gyre the strongest cell is driven
by vertical motions in the upper portion of the western-
boundary currents; the upward boundary motion in
the subtropical gyre is somewhat stronger and more
surface-intensified than its downward counterpart in
the subpolar gyre. These features are also found in the
linear boundary-layer solutions in appendix A. In ad-
dition, there is a weaker and wider cell of the opposite
sign in each gyre, with distinct extrema in the deep
western and in shallow eastern boundary currents.

The quasi-steady energy balance for this solution
(Fig. 6) shows a kinetic energy cycle of wind work
balanced about one-third by viscous dissipation
(mostly horizontal because the deep circulation is so
weak here; Fig. 1b) and two-thirds by conversion to
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potential energy. The potential energy is fed by the
latter conversion process slightly in excess of its loss
through the isopycnal mixing term (14), and the small
imbalance is due, indirectly, to the action of Q, from
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FIG. 7. Large-scale potential vorticity, PV = [T, at ¢ = 200, with
contours at an interval of 150 straddling the average value: (a) PV (x,
Y, z4) for z, = 5.48; (b) PV(x, y, T,) for T, = 3.8 (the average
height of this 7", surface is 5.48).
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(15). Here @y has no direct contribution to the energy
balances in the sense that there is no term proportional
to ;. However, the geostrophic tilting of interior iso-
therms away from horizontal planes and the connec-
tion to the vertical boundaries through «; establish T’
gradients there to be mixed by Q. This has the effect
of diminishing the overall stratification, hence increas-
ing PE, and it enters into the energy balance equations
implicitly through the fw@ conversion from KE to PE.
The ultimate end state would be an isothermal ocean,
although for the small «, in (20) the rate of approach
is very slow, consistent with the small imbalance in
the PE budget in Fig. 6. For this eddyless solution, we
interpret the losses due to v, and «; as surrogates for
the eddy generation terms in an eddy-resolving solution
with smaller transport coeflicients. In this sense the
energy cycle in Fig. 6 is qualitatively plausible.
The large-scale potential vorticity is defined by

PV =fN?/R=R7'[1+ Réf(y)][S(z)+ Rb.]. (24)

There is an expectation that PV should be homoge-
neous (i.e., spatially uniform) on isopycnal surfaces
for the wind-driven circulation. The bases for this ex-
pectation are 1) the extrapolation to large horizontal
scales and finite R of the QG results in adiabatic eddy
mixing sometimes homogenizing potential vorticity on
level surfaces (McWilliams and Chow 1981; Rhines
and Young 1982a; Holland et al. 1984) and 2) the
empirical demonstration that PV has only weak vari-
ations on isopycnal surfaces in the upper thermocline
in midlatitude gyres (McDowell et al. 1982). For the
present solution, the vertical region in which Q is most
homogeneous is indeed the upper thermocline, and its
horizontal distributions are shown in Fig, 7. Somewhat
contrary to the expectation, however, PV is more ho-
mogeneous on a level surface (Fig. 7a) than on a nearby
isopycnal surface (i.e., with constant T'; see Fig. 7b).
Of course, since our present solution lacks eddies but
has their parameterized effects of &, #, and Q in forms
that do not mix PV in any direct fashion, we have not
biased a priori the degree of homogenization here. This
issue is examined further in section 4e.

The temperature fields on the vertical boundaries
are of particular interest in this nearly adiabatic context
since they necessarily have 8 # 0 due to Q; (see section
3). On the bottom surface (Fig. 8a), the temperature
contrast is very slight, with AT ~ 0.003 [i.e., about
0.01 K, from (5) and (16)]. On the top surface (Fig.
8b), however, the contrast is much larger, with AT
=~ 1.5 (i.e., about 4 K). The large-scale pattern is one
of warm temperatures in the subtropical gyre and cold
in the subpolar gyre; this reflects mixing from the sub-
surface fields with a similar pattern (i.e., resembling
in Fig. 1a). There are, however, two smaller-scale fea-
tures: a cold pool in the southwestern portion of the
subtropical gyre and a front across the gyre boundary
that is much sharper in surface temperature than in
streamfunction (Fig. 1a). The latter reflects the fron-
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Fi1G. 8. Plot of 6(x, y) at ¢ = 200 on the vertical boundaries, z = 0
and H, with contour intervals 1 X 10~* and 0.05, respectively.

togenetic tendency for a passive-scalar gradient in a
deformation velocity field, and it is likely relevant to
the real ocean. The former has some structural simi-
larity to, for example, annual-mean Sargasso Sea tem-
peratures, but no credible claim for its relevance can
be made in the absence of diabatic surface forcing.
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b. Solution sensitivities

Here we briefly report on the robustness of the pre-
ceding solution to various numerical and physical pa-
rameter variations and to the choice of dynamical
model. The particular sensitivities associated with v,,
nonlinearity, S(z, 0), and «; (x, y) are deferred to sec-
tions 4c-f.

The solution in section 4a is largely insensitive to
variations in the numerical resolution in both space
and time. The most substantial effect of finer spatial
resolution is an intensification of the western boundary
vertical-velocity extremum, as expected from its “delta-
function™ character (appendix A).

The solutions for the BE and LBE models are vir-
tually indistinguishable for the present eddyless solu-
tions, as might be expected from the smallness of their
R{/ fvalues (i.e., everywhere less than 0.05) that mea-
sure the divergent vorticity advection present in the
BE. From this we infer that primitive equation solu-
tions would also match the present ones nearly exactly,
although we have not made the calculations to check
this. For the simpler QG model, though, there are
modest quantitative differences in almost all aspects of
the solution. Compare, for example, the shallow and
deep horizontal circulation patterns in Fig. 9 with their
counterparts in Fig. 1. The qualitative differences in
QG are an exact symmetry between the subtropical
and subpolar gyres for the symmetric wind forcing
(18)—the principal source of gyre asymmetry in LBE/
BE is a more accurate treatment of the Coriolis force
(see MNGH )—and the occurrence of isothermal top
and bottom boundaries even with x; # 0, because of
the absence of the second term in (11), which makes
any «; # 0 irrelevant.

The stress/slip coefficient « in the viscous horizontal
boundary condition (6d) and the horizontal viscosity
v, influence the near-boundary flow profile as in the
linear boundary-layer solution [e.g., (A6)], but they
do not have a significant influence on the large-scale
circulation. For these eddyless solutions with margin-
ally inertial boundary currents, there is not the strong
control of the separation dynamics seen in eddy-re-
solving solutions (Haidvogel et al. 1992). Similarly,
an asymmetry in the strength of the wind between the
two gyres simply affects each of the gyres internally,
since there is not an inertial collision of the boundary
currents at the line curl7,; = 0 as found in eddy-resolv-
ing solutions (MNGH). These insensitivities can be
seen, therefore, as weaknesses of the parameterizations
in the eddyless solutions.

Reductions in isopycnal diffusivity x; from its value
in (20) lead to unstable, hence unsteady, solutions be-
low a critical value of around 0.02 [i.e., 103 m?s™'
from (16)]. Increases in «;, on the other hand, lead to
greater linearity of the solution, weaker energies and
rates of working, larger boundary temperatures, and
deeper penetration of the ¢ and £ circulations (e.g.,
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FiG. 9. Plot of Y(x, y, z;), = 6 and 1 for a QG solution at z = 200
analogous to the LBE solution in section 4a. The contour intervals
are 0.1 and 0.005, respectively.

Fig. 10), but with little change in the barotropic com-
ponent. The value of «; also influences the western
boundary-layer profile (appendix A). These tendencies,
though, do not alter the qualitative character of the
solutions.
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Lx

X

FIG. 10. Plot of Y{x, y, z;), | = 6 and 1 for a LBE solution analogous
to the one in section 4a, except for a larger x; = 0.15. The contour
interval is the same as in Fig. | for / = 6, but it is twice as large, 0.01,
for / = 1. The time is ¢ = 200.

Finally, we can put the boundary buoyancy diffu-
sivity k, to zero with virtually no change in the vertically
interior circulation. This makes the solution adiabatic
in an integral sense (i.e., quasi-adiabatic; see section
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3) and, hence, exactly steady at late times: the small
imbalance in P vanishes (cf. Fig. 6), but otherwise the
energy budget is unchanged. However, the boundary
temperature gradients forced by x; # 0 undergo the
advective cascade to the smallest available horizontal
scales without any limiting diffusion (section 3), and
thus 8( H) has a larger extremum than in Fig. 8b by
about a factor of 3 and is highly nonsmooth at late
times. Together these properties clearly indicate the
weakness of any influences of the boundary tempera-
ture on the interior circulation.

¢. Solutions with vertical viscosity

As described in section 3, vertical viscosity can be
expected to play a similar role to isopycnal diffusion.
Here we consider solutions analogous to the one in
section 4a, but with x; = 0 and », # 0. Again there is
a critical value for steadyness at late times, somewhat
above v, = 3 [i.e., v, =~ 0.4 m? s~ for a dimension-
alization factor of V,h%/l, = 0.13 m? s™! from (16)].
For v, values above critical, the solutions are indeed
grossly similar to ones with «; # 0, but the correspon-
dences are not quantitatively close. For example, for
v, = 3.5, the streamfunction field exhibits less gyre
asymmetry and much weaker abyssal flow than in Fig.
1; larger v, would diminish vertical shear and thus ex-
acerbate the former and ameliorate the latter.

The correspondences become stronger when the QG-
equivalent form (12a) is used in LBE or BE solutions.
Furthermore, with the PG-equivalent form (12b), the
¥ field becomes very much like Fig. 1. Other solution
properties differ, though. The energy balance (Fig. 11)
is remarkably similar in all aspects except that kinetic
energy dissipation by the vertical viscosity replaces

T | .87
L
Y, 060
—m| KE=0I5]
: €
—
0002
fwe 0002
PE=166

FIG. 11. Volume-integrated energetics at ¢ = 200 for the solution
in section 4c with a PG-equivalent vertical viscosity.
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baroclinic conversion and potential energy dissipation
by the isopycnal diffusivity. Note also that the imbal-
ance in the potential energy budget [i.e., the temporal
trend in PE associated with boundary diffusion of by
Ky in (15)] is an order of magnitude smaller than in
Fig. 6. This is because the top-boundary 6 field is much
weaker here (Fig. 12) than in Fig. 8. Its source in (9)
occurs only at O(R). When Q; = 0 as here, the only
source is the nonlinear divergent advection terms, since
the O( 1) rotational advection and diffusion terms cause
only horizontal transport. Besides being weaker, the
pattern in Fig. 12 differs from that in Fig. 8b by a pos-
itive extremum in the southwestern subpolar gyre; this
greatly diminishes the strength of the gyre-boundary
thermal front. We defer any assessment of which pat-
tern is more correct, since as yet no boundary tem-
perature fields from an eddy-resolving solution have
been published. The overturning circulations for this
solution with a PG-equivalent vertical viscosity (Fig.
13) are similar to those in Fig. 5, even though x; = 0
requires that they be due entirely to advective forcing
here. The meridional circulation (Fig. 13a) lacks a
central positive extremum in £77, but there is the same
four-extremum pattern in the upper-ocean vertical ve-
locity as in Fig. 5a; other differences here are less intense
motions at the meridional boundaries and greater gyre
asymmetry. The zonal circulations £* (Figs. 13b,c)
are rather similar to those in Figs. 5b,c in the upper
ocean, particularly away from the eastern boundary,
but are much weaker in the deep ocean.

On the whole we find it remarkable that there is so
much similarity in the ¢ fields, given that the corre-
spondence between spatially uniform isopycnal mixing
and its “equivalent” vertical viscosity is formally only
O(1) (section 3) and other O(R) effects that distinguish
QG and LBE/BE solutions are clearly significant. The
similarity is even more remarkable in both the £ and
boundary 6 fields, where the isopycnal mixing terms
make such a strong contribution when «; ¥ 0. When
k; = 0 and », # 0, nonlinear advection must provide
the balances both to the rotational advection and hor-
izontal diffusion of boundary temperature variations
and to vertical velocity in the interior (hence £)in (9);
thus, for more linear solutions as 74 — 0 (see section
4d), both (0, H) and £ are O(73), whereas ¢ is O(7¢).
In contrast, for «; # 0, £ is O(7¢) because of the linear
first term in (11), although 6(0, H) remains O(73)
since the nonlinear second term in (11) is the only con-
tributor from Q; on the vertical boundary, given (13).

d. A linear, quasigeostrophic analog

The parameters of the representative solution (sec-
tion 4a) imply that the western-boundary currents are
too strong for a linear solution to be accurate and the
meridional extent of the basin is too large for a QG
solution to be accurate (cf. Figs. 1 and 9). Nevertheless,
even with both of these simplifications, many of the
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FIG. 12. Plot of 6(x, y) at t = 200 and z = H. For the solution in
section 4¢ with a PG-equivalent vertical viscosity (12b), the contour
interval is 0.05.

essential effects of x; are incorporated, and the solutions
of the physically more accurate model differ more in
degree than kind.

We can assure linear dynamics by making 7 suffi-
ciently small, and 7, = 0.0625 suffices. The resulting
solutions for QG have the streamfunction patterns
shown in Fig. 14. They are, of course, symmetric be-
tween the gyres (as in Fig. 9 also). Compared to both
Figs. 1 and 9, in the linear solution there is a greater
degree of surface intensification, an approximate sep-
arability of the functional dependences in x and y [as
in the Sverdrup solution (21)}], and no visible recir-
culation near the western boundary in the upper ocean
but an enhanced recirculation in the deep ocean (rel-
ative to the weaker boundary current there). The cir-
culations near the western boundary conform quite
closely to the boundary-layer solutions of appendix A,
given the ¥(y, z) that results from the interior dynam-
ics of surface wind forcing and isopycnal mixing. Al-
though there are quantitative differences with the non-
linear LBE and QG solutions of sections 4a,b, even
beyond the rescaling in amplitude proportional to 7o,
the overturning circulations and energetics in the linear
solution are qualitatively similar. Of course, the
boundary # fields are zero here (because R = 0), and
the weakness of the circulation precludes the occur-
rence of any appreciable homogeneity in the large-scale
potential vorticity (24).

e. Stratification and potential vorticity homogeneity

The tendency toward homogeneity in PV from (24)
can be understood qualitatively from the gross structure
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F1G. 13. The mean overturning circulations in the meridional and zonal planes for the solution

in section 4c with a PG-equivalent vertical viscosity at £ = 200: (a) £

b) and (c) £ for the

southern and northern halves of the domain. The contours begin at V10 X 1072 and increase in

magnitude geometrically by the factor V10.

of 6 in the gyres: its magnitude is largest in the ther-
mocline; in the subtropical gyre, 6 is mostly positive,
hence T, is enhanced, hence the reduction in PV due
to a smaller f( ) in the south is opposed by a larger
T3; in the subpolar gyre, T is smaller but f'is larger,
so again their tendencies are opposing in Q. If one
evaluates PV on an isopycnal surface, however, another
effect comes into play: isopycnal surfaces are depressed
in the subtropical gyre, and, if S(z) is monotonically
increasing with z, as in (19), then 7, will be corre-
spondingly diminished there, thus countering the en-
hancement discussed above (and vice versa in the sub-
polar gyre). Thus, we interpret the considerable ho-

mogeneity of Q on level surfaces (Fig. 7a) as due to
the first effect, and the lesser homogeneity on 7 surfaces
(Fig. 7b) as a consequence of the second effect.

This suggests the hypothesis that S(z) can influence
strongly the homogenization of PV. (In our solutions,
S is largely determined from its initial condition. Its
fundamental origin is in the long-time diabatic dy-
namics neglected here.) To explore this hypothesis, we
obtain a solution analogous to the one in section 4a
but with an altered ©(z, 0). The alteration is to create
an isolated thermocline, such that its gradient .S is en-
hanced below z = z, = 5.5 and diminished above, with
a shape such that the gravest baroclinic deformation
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radius is unchanged from 45 km (see the inset panel
in Fig. 15). This shape is qualitatively more realistic
than the simple exponential form in (19); it also will
reverse the second effect on PV due to variations in a
T-surface depth discussed above. The resulting solution
is qualitatively quite similar to the earlier one, except
that the surface intensification of the circulation is di-
minished above the thermocline. Strikingly, though,
PV is now much more homogeneous on an upper-
thermocline 7 surface (Fig. 15b) than on a nearby z
surface (Fig. 15a). Thus, the hypothesis of control of
homogeneity by stratification is confirmed, and we
have provided a cautionary illustration about inferring
eddy mixing of potential vorticity from its approximate,
large-scale homogeneity. [ A quite different cautionary
example is given in Williams (1991).]

| Spatially variable diffusivities

Mesoscale eddy energy levels and diffusivities have
substantial spatial variability in the ocean (e.g.,
McWilliams et al. 1983); therefore, an accurate pa-
rameterization should go beyond the uniform diffusiv-
ities we have considered thus far. Here we briefly ex-
amine two forms of nonuniform «; for their influence
on one of the major deficiencies of the solution in sec-
tion 4a, namely, the excessively broad meridional in-
terval of separation for the upper-ocean western
boundary currents (Fig. 1a).

A heuristically plausible form for «; is to be larger
where the large-scale currents are stronger, presuming
that the eddies that effect the mixing are stronger there
because of enhanced instabilities. Thus, we consider

ki (x,y,z)=0.01 +0.1ke(x, y, z), (25)

where ke = 1 (V¢)2. [Marshall (1984) made a similar
proposal using independently diagnosed eddy potential
enstrophy density instead of mean kinetic energy den-
sity.] The spatial maximum achieved by (25) is 0.42
in the narrow region of the upper, western-boundary
current where the flow is strongest, and its minimum
is close to 0.01 in the deep interior regions; thus, its
values bracket the constant value in (20). In the di-
mensional form of (25), the coeflicient of the last term
isatime, r = 0.1/, /V, ~ 6 days. We do not know how
to interpret this value beyond meeting the general re-
quirement for some integral measure of «; to be large
enough for the steady circulation to be stable. A com-
parison of solutions with (20) and (25) (i.e., Figs. 16a
and 16b, respectively) shows that the separation struc-
ture is made worse, by being broader, with the ke-de-
pendence in (25). The upper-ocean transport is also
weaker with (25), which is consistent with the «x; mag-
nitude dependence in section 4b and Fig. 10.

In MNGH it was found that the baroclinic energy
conversion from mean currents to eddies was generally
positive in the interior and negative near the western
boundary. Thus, an alternative plausible form for «; is
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FIG. 14. Plot of Y(x, y, z;), | = 6 and 1 for a QG solution analogous
to the LBE solution in section 4a, except for a 7o = 0.0625 smaller

by a factor of 0.01. The contours are correspondingly reduced by a
factor of 0.01 relative to those in Fig. 1.

to be diminished near the boundaries. (We avoid re-
gions of k; < 0, for now at least, because of its possible
ill-posedness in time integrations.) Another advantage
of this form is that it smoothly approaches the hori-



JANUARY 1994

zontal boundary condition in (13), in contrast to the
abrupt approach for uniform diffusivity; this has the
effect of broadening and weakening the vertical veloc-
ities in the boundary current (see appendix A). We
achieve this form with taper functions near the hori-
zontal boundaries:

ki(x,y)=0.03W(x)W(Lx— x)W(y)W(Ly,— ),
(26)

where the interior magnitude is as in (20) and the taper
functions are defined by

W (s) = tanh [i] (27)
with A = 0.6 [i.e., 300 km from (16)]. The resulting
solution (Fig. 16¢) has a better (narrower) separation
structure and larger upper-ocean transport [ consistent
with smaller overall «; in (27)].

We can also examine the combination of these in-
fluences with the following diffusivity form:

ki (X, y, z) = [0.01 + 3.0ke(x, y, )] W (x)

X W(Lx = x)W(»)W(Ly,—y), (28)

where there is an even more severe taper function near
the western boundary; namely,

W(s)=0,s<A

A
= tanh (fA—),s> A, (29)

with the same A = 0.6. The spatial maximum value
for (28)is 0.17 and it occurs in a broad offshore region
(centered at x ~ 34, y ~ L,/2); the spatial minimum
value, of course, is zero near the western boundary.
The larger coefficient for ke in (28), compared to (25),
arises because the region in which «; is most important
is now offshore where ke is much smaller; again, the
primary consideration appears to be having big enough
k; in some integral sense. The separation structure of
the solution (Fig. 16d) is now even better (narrower
and stronger) than with a taper alone (Fig. 16c), and
the ke dependence aids in this rather than opposes it
as when it acts alone [as in (25) and Fig. 16b].

Thus, there is an appreciable sensitivity to spatial
variations in diffusivity, and there is good reason to
explore this behavior further.

F1G. 15. Large-scale potential vorticity (24) at ¢ = 200 for the
solution with an isolated thermocline in O(z, 0) [see inset, which
also includes (19)]: (a) PV(x, y, z,) for z, = 5.48; (b) PV(x, y,.
T,) for T, = 4.2 (the horizontal average height of this 7', surface
is 5.44). The contours have an interval of 150 and straddle the average
value.
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FIG. 16. Near-surface circulation, ¥(x, y, z¢), in a region near the central western boundary (0 < x < 3, 2 < y < 8) for solutions with
different «;(x, y): (a) constant [as in section 4a; see (20)]; (b) dependent upon kinetic energy density [see (25)]; (¢) tapered near the
boundary [see (26)-(27)]; and (d) with both effects as in (28)-(29). The contours have an interval of 0.2 and straddle zero.

5. Discussion

The solutions presented in section 4 show that the
isopycnal-thickness mixing parameterization of GM90
with a realistic diffusivity magnitude can quasi-adi-
abatically balance the surface wind driving with a large-
scale circulation pattern of approximately the right
magnitude and horizontal and vertical scales. Fur-
thermore, the suite of solutions examined shows that
this behavior is robust with respect to model and pa-
rameter variations. Also, as in MNGH, it is found that
the greater dynamical fidelity of balanced dynamics,
compared to the simpler quasigeostrophic dynamics,
provides a significant improvement in accuracy for the
oceanic general circulation. Additional, specific find-
ings are the following: our isopycnal parameterization
and an unphysically large vertical viscosity with the
particular functional dependence in (12a) can yield
broadly similar circulation patterns, and the mean
static-stability profile significantly influences the degree
of homogeneity of large-scale potential vorticity on
level and isopycnal surfaces.

Our broad goals in this context are to develop me-
soscale eddy parameterizations suitable for use in re-
alistically configured, eddyless, oceanic general circu-
lation models and to develop balanced models both as
a conceptual framework and as a possible computa-
tional basis for these dynamics. The present results
contribute to both goals. There remains, however, an
important missing element even in the idealized prob-
lems solved here. A parameterization is accurate only
if its eddyless solutions correspond closely to the spa-
tially and temporally filtered component of eddy-re-
solving solutions. We make no such claim for the pres-
ent eddyless solutions and have avoided making any
detailed comparisons here. It is clear that in certain
gross features, such as the separation dynamics of the

western boundary current and the eddy-driven recir-
culation zone, there are substantial discrepancies be-
tween eddyless and eddy-resolving solutions. The
missing element in the present parameterizations is
spatial and/or flow-configuration dependence of the
diffusivities. No doubt this property is as necessary for
vy, as for k; since the horizontal Reynolds stresses by
mesoscale eddies are also quite inhomogeneous in their
effects (e.g., see MNGH). We have shown some aspects
of solution sensitivity to nonuniform diffusivities (sec-
tion 4f) but, as yet, do not have a serious proposal for
what form this dependence ought to take. We hope to
address this issue in the future, along with the many
other extensions required to move from highly idealized
problems to more realistic ones for oceanic general cir-
culation models.
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APPENDIX A
Linear Western Boundary Layers

Here we present solutions with the approximations
of time-independence and linearity and with a bound-
ary-layer structure near the western boundary. Such
solutions are extensions of the classical, barotropic so-
lutions of Stommel (1948) and Munk (1950) to our
baroclinic situation with nonzero e, vy, «, k;, and/or
v,, and we will show that they contain several features
also found in the 3D nonlinear solutions of section 4.

We define a boundary-layer coordinate, 5 = x/u with
u < 1 and assume that the solution in the vicinity of
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x = 0 is a multiscale function of (x, 1, y, z), such that
all (x, y) derivatives are negligible compared to 5 de-
rivatives. Thus, we can write the local streamfunction
as

Yx, m, ¥, 2) = ¥(2) + W, 2), (A1)

where ¥ is the streamfunction profile just outside the
boundary layer as established at this particular y by
the interior dynamics related to the wind driving; thus,
any mutual dependencies between the boundary layer
and interior are neglected in this analysis. Since v, is
relatively large among the various diffusivities, we
use it to define the boundary-layer scale u = (v,/8)'/?
[= 0.153 for the parameters in (17)], as in the Munk
solution. The resulting boundary value problem for
¥ is the following:

LRV a({ 1 9
— L = — —_ K s
am* oy oz (S(z) oy (1 2)
d\ X
+V — , (A2
(n, z) an> P (A2)
with boundary conditions
- LR Wy R
=-¥, ——=4—-, K——/=0 at 3=0
4 > 9 I’ 0z9dn an
fb =0 as n—> ©
3%y 0%y
=E—%, K=0 at z=
0zon2 " om>’ at z=0
Y
—X_ =0, K=0 at z=H,
920’ 0, at z
(A3)
where
V=vu’lvy, A=ap,
K=’ /vy, E=e’/vy (A4)

Associated with  are the meridional and vertical ve-
locities,

) g_1 9 9%
v=pt=, =—-——|K(n,

oo T LS(2) o ( (n2) 5 om
Note that w, hence £“? in (23), can be nonzero in
this dynamics only if x; # 0.

For the special case of V' = K = E = 0, the solution
of (A2)-(A4) has an n dependence as in the Munk
solution with only a parametric dependence on z:

). (A5)

¥ = —\I/(z)e"”z(cos —+ =

(A6)

For any of V, K, or E nonzero, the boundary-value
problem is fully two-dimensional, hence analytically
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difficult, and we obtain numerical solutions based upon
the same spatial-discretization formulas used for the
general model.

For E # 0 but V' = K = 0, then only at the lowest
level is Y changed from (A6), and the primary effect
is to expand the boundary-layer width. However, for
the parameter values in (17), E = 0.26, and the de-
panure_szfrom (A6) are quite modest.

For ¢ , all effects from K and V disappear; thus, the
boundary-layer prediction for the barotropic stream-
function only differs from (A6) [with ¥ = ¢, (0, y)]
by a negligible correction proportional to E.

The «; value of (20) implies K = 0.00466. A bound-
ary-layer solution with these K and E values is shown

0.5

Hvnzo

n

0.015 — —

0 \/

5
g
Ed
L oos |

-0.03 —— . . :

0 2 4 6 8 10
n

FIG. Al. Boundary-layer velocity profiles v(7, z,), I = 6 and 1 for
both a Munk-like solution (A6) and one with ¢ and «; # 0 (i.e., E
=0.26 and X = (0.00466). The interior profile ¥(z) is taken from
the middle latitude of the subpolar gyre in the solution of section 4a.
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in Fig. Al. Relative to (A6), the upper-ocean velocity
profile is weaker and broader in distance to the first
stagnation line and is weaker in its secondary extrema.
In the deep ocean, in contrast, the velocities are
strengthened relative to (A6 )—greatly, in this instance,
because ¥(z) decays so strongly with depth, by ~1073
between top and bottom—narrower between stagnation
lines, and relatively much stronger in the secondary ex-
trema. The associated vertical velocity (AS) has [ dnw
= 0 from the boundary conditions in (A3). The =0
boundary condition also implies a strong forcing for w
at the boundary, since neither K nor dy¢/dn smoothly
approaches zero as # — 0; at all interior grid points,
however, K(d}/dn) is smoothly varying, and therefore
w is much smaller. Thus, there is a “delta-function”
character to w(n), with strong motion of one sign at
the boundary and a broad interval of weaker motion of
the opposite sign in the interior (as in Figs. 5b,c); as the
grid interval is reduced, the magnitude of the wall ex-
tremum increases but its contribution to the vertical
transport does not. [ Note that this delta-function forcing
does not appear in the potential vorticity equation (A2)
for ¢, which is only evaluated at interior grid points
since the boundary value problem is of Dirichlet type
in .] The vertical structure of w is controlled by that
of ¥ through . Because of the S~! factor in (AS), an
exponential profile for ¥ with decay scale Az ~ 1 im-
plies a w with only weak depth dependence; thus, the
surface intensification of w (Figs. 5b,c) is a consequence
of ¥ being more surface intensified than e* .

These effects are typical, varying only in degree with
K and ¥. In particular, the relatively stronger deep
horizontal circulation in the subpolar gyre (Fig. 1b),
as well as the relatively deeper zonal overturning cir-
culation there (Figs. Sb,c), are qualitatively captured
in our boundary-layer solutions as a consequence of

_L

V-CVD| i jpeiry = (da)’
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the lesser degree of surface intensification of the sub-
polar gyre.

For K = K(7) increasing smoothly from zero at the
boundary to a uniform interior value, the w profile
loses its delta-function character and becomes inde-
pendent of grid resolution for fine grids. However, the
signs of the near-boundary and interior w are the same
as for uniform K.

Finally, solutions with K = 0 and V from (12a) are
quite similar in both y and v to the profiles in Fig. A1
(as in section 4c), but.they differ grossly in w, which
is zero with K = 0 by (A5).

APPENDIX B
Discretization Formulas for Q; and Q,

In this section the discrete forms of the BE diabatic
terms in (8)-(9) are presented using the operator no-
tation presented in MNGH appendix A. We review
only those operators from MNGH that are used in our
definitions of the discrete forms of (11) and (14). The
first is the vertical difference operator

s’
yP[C] =2—j;’;(ck+1 ~Ciet), k=1,2,+++,N,— 1
32 Ck—ls k= Nz
@) ds
vidicr= (B1)
7;;ka+1’ k=05

where C is any dependent variable, s is the vertical
stretching function in MNGH (23), and k is the dis-
crete vertical k grid defined in the text that follows
MNGH (23).

We use two horizontal operators to describe (11)
and (14):

D; )+ (Cioyj+ C )(Dimy; — Dy j)

+(Cij1 + Ci)(Di jo1 — Dij) + (Cijoy + Ci j)( Dy j-1 — Di )1 = DI[C, D],

V-CVD| i jyeipy = Cus +

1
2(da)? [2(
+ (Cn,s—l + Cn,s)(Dn,s—l

V- CVD' G, Nefey = Cn,x+1 + Cn,s)(Dn,s+l

1
@
and

1
VC'VD| GNe{ly = E(d_a)z {(
+ (Cijs1r — Ci ) (Di ji1

VC-VD| g jyepy =

VC’ VD| G.J)e{c} = 0,

n-l,s)(Dn—l,_v - Dn,s) + (Cn,s+l + Cn,s)(Dn,s-H - Dn,s)
- Dn,s)]
- Dn,s) + (Cn,s—l + Cn,s)(Dn,s—l - Dn,s)]» (B2)
Ci+l,j - Ci,j)(Di+l,j - Di,j) + (Ci—l,j - Ci,j)(Di—l,j - Di,j)
= Di ;) +(Cijoy — Ci)(Dij1 — D )} = Z[C, D]
1
(da)’ Co-1,5Dp—15
(B3)
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where {I} is the set of all horizontal interior points;
{b} is the set of all horizontal boundary points, ex-
cluding corner points; { ¢} is the set of all corner points;
n is the outward normal index; and s is the counter-
clockwise tangential index.

Discrete forms of (11) and ( 14) are thus represented
on the k grid as follows:

2T, T
Q =D[«;, T]+ LV(Z)[%W] , (B4)
O = Dk, T1{b0x + dn,,}- (B3)
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