
APPLIED MATHEMATICS REPORT
AMR03/26

THE PROPAGATION OF WATER WAVES

ACROSS A SHEARING CURRENT

W.D. McKee

September, 2003



THE PROPAGATION OF WATER WAVES

ACROSS A SHEARING CURRENT

W. D. McKee

Department of Applied Mathematics
School of Mathematics

University of New South Wales
Sydney, NSW, 2052

Australia

26 August, 2003

Abstract

This paper studies surface gravity waves propagating across a shearing current in water of
constant depth according to linear theory. The approach adopted is to represent the current
by a series of vortex sheets separating regions of constant velocity. In each such region the
method of solution employed is one of expansion in terms of eigenfunctions. These are then
matched at the boundaries between regions. This results in a large set of linear algebraic
equations to solve for the coefficients. The results are then compared with those obtained
using simpler semi-analytic theories which neglect the evanescent modes and can be described
as analogues and generalisations of the mild-slope equation. The general conclusion is that
these simple approaches are accurate when the wavelength of the incident waves is much less
than the lateral length scale over which the current varies but become less and less accurate
as the wavelength increases.

1 Introduction

This investigation is concerned with the problem of the propagation of water waves across
a horizontally-sheared current. Even the full linear problem is intractable so various simpli-
fications have been introduced over the years. At one extreme, current changes have been
modelled as one or more vortex sheets as in Evans [1], McKee and Tesoriero [4], Kirby,
Dalrymple and Seo [2] and two papers by Smith ([8] and [9]). At the other extreme, the
currents have been assumed to be slowly-varying on the scale of a wavelength which leads
to WKB-type solutions or extensions thereof (see McKee [5] and Mei [7]). In particular
McKee [5] derived an analogue in this context of the celebrated mild-slope equation used by
coastal engineers to study the progagation of waves over slowly-varying bottom topography
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which he called the mild-shear equation. In a later paper [6] he sought to extend this to
currents which are more rapidly varying by including some terms which depend explicitly
on the first and second derivatives of the current velocity. Both these equations neglect the
contributions of the evanescent modes. It is the aim of this paper to test the validity of these
simple semi-analytic approaches by approximating the current by a large number of vortex
sheets separating regions of constant current. The contributions of the evanescent modes are
explicitly included. Rather than following the approach used in the case of a single vortex
sheet by Evans [1] and McKee and Tesoriero [4] of reducing the problem to one of solving two
integral equations at each vortex sheet, a method involving multiplication by eigenfunctions
will be used in which the pressure-continuity condition at each vortex sheet is multiplied
by the eigenfunctions relevant to one side of the vortex sheet and then integrated from top
to bottom whereas the kinematic condition is treated analogously using the eigenfunctions
relevant to the other side of the vortex sheet. This method of dealing with the two matching
conditions at a discontinuity of depth and/or current was used by Kirby, Dalrymple and Seo
[2] in studying the propagation of waves across a trench in the presence of piecewise-constant
currents and seems to date back to Takano [10] who considered depth variations only and
studied wave propagation across a ridge of rectangular cross-section in the sea floor. In each
of [2] and [10] there were only two points of discontinuity of depth and/or current. Here,
there are an arbitrary number of such points but, to simplify matters, it will be assumed
that the depth is constant.

2 The basic equations

As in [5] and [6] we consider wave motion in an inviscid fluid of constant density ρ. The x
and z axes are taken horizontal with the y axis vertically down. The undisturbed free surface
is at y = 0 and the bottom at y = H . In order to concentrate on the effects of the current,
it will be assumed that H is constant. The basic current is a shear flow (0, 0, W (x)). Wavy
perturbations to this basic state are now considered in which all perturbation quantities are
proportional to exp i(nz −ωt) where ω > 0. If W varies with x on a length scale L, we scale
x and z with L, y and H with g/ω2, W with g/ω, n with ω2/g and the perturbation pressure
due to the waves with ρga where a is a typical free-surface amplitude of the waves. This
scaling uses velocity, wave number and depth scales appropriate to waves in deeper water.
As shown in [5], the dimensionless pressure perturbation, p, on linear theory satisfies the
equations

(px/Ω2)x + ε 2 py y/Ω2 − n2ε 2p/Ω2 = 0 , (1)

py + Ω2p = 0 at y = 0 , (2)

py = 0 at y = H , (3)

where all variables are now dimensionless,

Ω(x) = 1 − nW (x) and ε = ω2L/g .
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The parameter ε is a measure of how rapidly the current changes on the scale of the waves.
Smaller values of ε signify a more rapidly-changing current. As discussed in [5], values of ε
of order 100 or more are to be expected in most offshore oceanographical situations because
of the large lateral length scales over which most ocean currents vary. In such situations, the
following analogue of the mild-slope equation, called the mild-shear equation and hereinafter
referred to as the MSE, was derived in McKee [5]

d

dx
(Γ(x)

dη

dx
) + ε 2 (k2(x) − n2)Γ(x)η = 0 , (4)

where k(x) is the local total wavenumber and is the unique positive root of the local dispersion
relation

Ω2(x) = k(x) tanh (k(x)H) . (5)

In this equation, it is assumed that

p = η(x)Z(y; x) , (6)

where

Z(y; x) =
cosh (k(x)(y − H))

cosh (k(x)H)
(7)

is the local surface wave eigenfunction and

Γ(x) = Ω−2(x)
∫ H

0
Z 2(y; x) dy .

The quantity η can be interpreted as the dimensionless free surface deformation due to the
waves. This approach completely neglects the contributions of the evanescent modes. In
principle, (6) can be extended to include the evanescent modes, but the resulting system of
ordinary differential equations for the amplitudes is stiff and the more evanescent modes are
included the stiffer it becomes.

The MSE was later generalised by McKee [6] to include some extra terms on the right
of (4) which depend upon the first and second derivatives of W . This equation, hereinafter
called the extended mild-shear equation (EMSE), would be expected to be more accurate
than the MSE since it does not assume that ε is large, yet it still makes the assumption (6)
and so neglects the evanescent modes.

In the case of rip currents or tidal flows between closely-spaced islands, values of ε of
O(1) or smaller are to be expected. The aim of the present work is to develop an essentially
numerical method of solution which, although it is computationally more intensive than
solving the MSE or EMSE, can be used to investigate the circumstances under which those
two methods give accurate results as well as being a numerical method of general applica-
bility. We will investigate the situation where waves are incident with angle of incidence
θ from still water at x = ∞ towards a current. Thus W (∞) will be assumed to be zero.
The two canonical current profiles of interest are a jet-type current which will here generally
be modelled by a Gaussian current profile W = β exp (−x2) and a shear layer which will
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generally be modelled by W = 1
2
β (1− tanh x). Figure 1 depicts the situation for a jet-type

current. Without loss of generality, it may be assumed that 0 ≤ θ ≤ π/2. If W > 0 the
waves are entering a following current. If W < 0 they are entering an opposing or adverse
current.

3 The numerical method

If we assume that the current velocity W is piecewise constant, (1), (2) and (3) can be solved
by the usual separation of variables technique and the solutions matched at the vortex sheets
separating the different regions by enforcing the physically correct matching conditions at the
discontinuities. This approach is analogous to that of Mattioli [3] for water wave propagation
over a series of steps in the bottom.

To attack the problem using this formulation, let us suppose that the discontinuities in
W occur at x = ξk for k = 1, . . . , L. In (ξk, ξk+1), let W = Wk and Ω = Ωk = 1 − nWk.
In (−∞, ξ1), let W = W0 and Ω = Ω0 = 1 − nW0 and in (ξL,∞), let W = WL+1 and
Ω = ΩL+1 = 1 − nWL+1 where we may take WL+1 = 0 since the current velocity is assumed
to tend to zero as x → ∞. Then the solution in (ξk, ξk+1) is

pk(x, y) =
∞∑

m=0

Φ(k)
m (x)Ψ(k)

m (y) (8)

where

Ψ
(k)
0 (y) =

cosh (Kk(y − H))

cosh (KkH)
, Ψ(k)

m (y) = cos (κk m(y − H)) ,

Φ
(k)
0 = F

(k)
0 exp (−ilk(x − ξk+1)) + B

(k)
0 exp (ilk(x − ξk)) ,

Φ(k)
m = F (k)

m exp (σk m(x − ξk+1)) + B(k)
m exp (−σk m(x − ξk)) ,

lk = ε
√

K2
k − n2 , and σk m = ε

√
κ2

k m + n2 .

In these equations, Kk is the unique positive root of

Ω2
k = Kk tanh (KkH)

and κk m is the m th positive root of

Ω2
k = −κk m tan (κk mH) .

The use of x−ξk+1 and x−ξk in the exponential terms rather than just x lessens the possible
consequences of loss of significant figures which can occur when very large and very small
exponentials appear in an expression. If we introduce fictitious points ξ0 = ξ1 and ξL+1 = ξL

then the above formulation can be said to hold in all intervals if we take B(0)
m = 0 for all

m with F (L)
m = 0 for all m > 0 and F

(L)
0 = 1 being the amplitude of the wave incident

from +∞. In terms of the angle of incidence θ, n = KL+1 sin θ. The infinite sum in (8) is
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truncated at m = M . At a discontinuity of W , the correct matching conditions are that p
and Ω−2 ∂p/∂x are continuous. The first of these is necessary to avoid infinite accelerations
of the particles on the vortex sheet and the second follows from integrating (1) across the
vortex sheet. Evans [1] gave equivalent conditions in terms of velocity potential not pressure.
These conditions were applied at a typical point of discontinuity ξk as follows. First, the
expressions for pk and pk−1 are equated at x = ξk. This expression is then multiplied by
Ψ(k−1)

m (y) and integrated from y = 0 to y = H . This is done for m = 0, . . . , M to give M +1
simultaneous linear equations linking the unknown amplitudes. Some of the coefficients are
zero because of the orthogonality of the eigenfunctions. Next, the expressions for Ω−2

k ∂pk/∂x
and Ω−2

k−1 ∂pk−1/∂x and are equated at x = ξk and treated analogously, except that we
multiply by the eigenfunctions Ψ(k)

m (y) this time to give a further M + 1 simultaneous linear
equations. Doing this at each of the ξk for k = 1, . . . , L gives a total of 2L(M +1) equations
for the 2L(M + 1) coefficients. It was found that the method conserved wave action flux
exactly, to within the limitations imposed by round-off error. The method can handle critical
layers (where Ω = 0) and caustics provided the nodes ξk are chosen so that none of them
coincides with the location of the actual critical layer. A slight modification is required for
a shear-layer profile if Ω(−∞) < 0. As pointed out in [4], group velocity considerations

show that we must then take F
(0)
0 = 0 instead of B

(0)
0 = 0 in order to satisfy the radiation

condition of no incoming energy at x = −∞. In such a situation there is a critical layer and
possible over-reflection of the incident waves. Such a regime would be unlikely to occur in
oceanographical applications.

Although the method conserves wave action flux, the results of course depend upon the
order of truncation used. As a general rule, it was found that the method converged quite
quickly and it was only necessary to use a few evanescent modes in the expansions. In all
the figures presented here sufficient modes and nodes were used to ensure convergence to
the accuracy required for graphical presentation. Except for the case of waves encountering
opposing currents so strong as to be beyond the range of physical relevance, the method did
not suffer from the problem of ill-conditioning.

An example of the convergence of the method is shown in Figure 2 for a jet current
W = β exp (−x2) when H = 1, θ = 45◦ and ε = 0.25. In calculating these results, the
current was assumed to be zero outside [−B, B] and this interval divided up into a large
number (typically 99) of subintervals of equal length. In each such subinterval the value of
W was taken as that of β exp (−x2) at the mid-point. A value of B = 3 proved sufficient
and using more than four evanescent modes or more than 99 nodes gave results graphically
indistinguishable from those shown. As a general rule, the smaller the value of ε, the more
evanescent modes were required. This is as expected since smaller values of ε imply a more
rapidly-varying current. It is worth observing here that only relatively small values of β are
likely to be of importance in applications since the velocity scale adopted is gτ/2π where τ
is the wave period in seconds. Thus for τ = 10 and a strong current of 2 meters per second,
the value of β is only about 0.13.

The method is not strictly applicable when the depth is infinite since the sum over the
evanescent modes is then replaced by an integral over a continuous spectrum. Nevertheless,
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as shown in Figure 3, results for increasingly large values of the non-dimensional depth H
tend to settle down relatively quickly to values which can be considered to be representative
of infinite depth. The normalisation adopted here of the surface wave eigenfunction by
dividing by cosh (KkH) ensured that no numerical problems such as ill-conditioning arose
for large values of H .

The present method can also be used to deal with the problem of a single vortex sheet.
Evans [1] treated this problem in the case of infinite depth by formulating it as one requiring
the solution of two singular integral equations of the first kind. He then sought approximate
solutions of these in terms of two-term Galerkin expansions using the surface wave eigen-
functions on the two sides of the vortex sheet. This technique was extended to the case of
finite depth by McKee and Tesoriero [4] who also included some evanescent modes in the
Galerkin expansions. The present method is numerically superior to their method in that it
is far less prone to ill-conditioning. Smith ([8] and [9]) discusses other possible approximate
methods of solution for this problem. Evans in fact gave two formulations of the problem;
one in which the unknown in the integral equations is essentially the potential on the vortex
sheet and the other in which it is the horizontal velocity. Figure 4 compares the results of
both these with the numerical solution using a large value of H for an angle of incidence of
θ = 60◦. Both the potential and velocity approaches are seen to be really very good indeed.

4 Some numerical results

The main aim of this work is to use the numerical method outlined above to investigate the
circumstances under which the MSE and the EMSE will give accurate predictions of the
reflection and transmission of waves crossing a shearing current. In all cases we will consider
a wave of unit amplitude incident from x = +∞ with angle of incidence θ. The other
parameters of interest are the dimensionless water depth H and the current-scale parameter
ε as well as the maximum current strength for which we will use the symbol β. Figure 5 shows
the amplitude reflection coefficient as a function of β for a jet with velocity W = β exp (−x2)
when H = 1, θ = 45◦ and ε = 1. As can be seen, the EMSE is in excellent agreement with
the numerical solution for small values of β (which are the only ones of physical relevance)
whereas the MSE is not nearly so accurate.

Many such figures have been produced. The general picture which emerges is that the
larger the value of ε the better the agreement between both the MSE and EMSE with the
EMSE generally being more accurate. This is just what one would expect.

With so many parameters in the problem, it is difficult to know the best way to present
the results. The basic aim of this work is to investigate the circumstances under which
the MSE and EMSE are accurate. One would expect that the MSE would be accurate for
large ε since the current would then be slowly-varying on the scale of the waves and less
accurate for smaller values of ε. The derivation of the EMSE, on the other hand, made no
explicit assumption as to the size of ε yet it also neglected the evanescent modes. Hence it
would seem sensible to present results as functions of ε for representative values of the other
parameters.
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Figure 6 shows the amplitude reflection coefficient as a function of ε for a jet with velocity
W = 0.2 exp (−x2) when H = 1 and θ = 45◦. Both the MSE and EMSE are in excellent
agreement with the numerical solution for large values of ε but as ε decreases the MSE loses
accuracy. The EMSE is quite accurate except for very small values of ε where it erroneously
predicts that R → 1 as ε → 0.

Similar behaviour is shown in Figure 7 which shows the amplitude reflection coefficient
as a function of ε for waves encountering an adverse jet with velocity W = − exp (−x2) in
shallow water (H = 0.1) and θ = 45◦ and in Figure 8 in which the velocity profile is a shear
layer W = 0.1 (1− tanh x). In the latter case the EMSE tracks the exact numerical solution
almost perfectly until ε reaches a value of about 0.1 below which it again erroneously predicts
that R → 1 as ε → 0. The general behaviours exhibited in Figures 6, 7 and 8 have been
found in all examples investigated.

We conclude with some contour plots (Figures 9, 10 and 11) of the amplitude reflection
coefficient as a function of β and ε when H = 10 and θ = 45◦ for three different current
profiles. In Figure 10 we have the standard Gaussian jet profile W = β exp (−x2) whereas
the current in Figure 9 is β cos 2(x) for |x| ≤ π/2 and zero otherwise. In Figure 11 the profile
is W = β exp (−|x| x2). These three figures are generally quite similar, except where the
reflection is weak, which indicates that the maximum current strength is more important
than the precise shape of the current in determining the amount of energy reflected.

5 Discussion

This work has developed a general method of finding solutions, albeit numerical ones, to the
general linear problem of water wave propagation across a vortex sheet. The method could
be applied to any current profile, including one observed in field or laboratory experiments.
The main thrust of this investigation, however, is to investigate the circumstances under
which the simple semi-analytic approaches of [5] (which leads to the MSE) and [6] (which
leads to the EMSE) are accurate. The general conclusion reached is that both are accurate
for large values of ε. In such situations, the waves are short when measured against the
lateral length scale over which the current is changing. As ε decreases the MSE, unlike the
EMSE, gradually loses its accuracy. For very small values of ε, the MSE is still inaccurate
but the EMSE experiences a catastrophic failure in that it predicts complete reflection of the
incident waves. From a practical point of view, this is probably not a major problem since the
EMSE requires a knowledge of the first and second derivatives of the current profile W (x).
These, particularly W

′′
, would be very difficult, if not impossible, to estimate accurately

from laboratory or field data. Thus the EMSE, though of theoretical interest and value,
is probably not useful in laboratory of fieldwork situations. The MSE, on the other hand,
requires only a knowledge of the current velocity, not any of its derivatives, and so would be
less prone to errors introduced by the uncertainties in measurements.
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Figure 1: Definition diagram for waves incident from still water at x = ∞ with angle of
incidence θ upon a laterally-sheared current.
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Figure 2: The amplitude reflection coefficient as a function of the dimensionless maximum
current strength β for a jet current W = β exp (−x2). The dimensionless water depth is
H = 1 and the angle of incidence is θ = 45◦. The parameter ε has the value 0.25. The three
lines are for calculations using zero, two and four evanescent modes.
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Figure 3: The amplitude reflection coefficient as a function of the dimensionless depth H .
A) W = 0.1 exp (−x2), θ = 60◦ and ε = 3; B) W = 0.1 exp (−x4), θ = 60◦ and ε = 2;
C) W = 0.2 exp (−x2), θ = 45◦ and ε = 3; D) W = 0.2 exp (−x2), θ = 60◦ and ε = 0.25.
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Figure 4: The amplitude reflection coefficient for infinite depth for a single vortex sheet
of strength β when θ = 60◦. The potential and velocity approximations of Evans [1] are
compared with a numerical solution for large H which is shown by the thin sold line.
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Figure 5: The reflection coefficient as a function of the dimensionless maximum current
strength β for a jet current W = β exp (−x2) with H = 1, θ = 45◦ and ε = 1. The results
for the mild-shear equation are shown by a thick solid line, those for the extended method
by a thin solid line and those for the purely numerical solution by a dotted line.
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Figure 6: The amplitude reflection coefficient as a function of the scale parameter ε for a
jet current W = 0.2 exp (−x2). The dimensionless water depth is H = 1 and the angle of
incidence is θ = 45◦. The MSE is shown by a thick solid line, the EMSE by a thin solid line
and the numerical results by a dotted line.
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Figure 7: The amplitude reflection coefficient as a function of the scale parameter ε for an
adverse jet current W = − exp (−x2). The dimensionless water depth is H = 0.1 and the
angle of incidence is θ = 45◦. The MSE is shown by a thick solid line, the EMSE by a thin
solid line and the numerical results by a dotted line.
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Figure 8: The amplitude reflection coefficient as a function of the scale parameter ε for a
shear-layer current W = 0.1 (1 − tanh x). The dimensionless water depth is H = 1 and the
angle of incidence is θ = 45◦. In this case, the MSE is shown by a thick solid line, the EMSE
by a dotted line and the numerical results by a thin solid line.
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Figure 9: The amplitude reflection coefficient as a function of the scale parameter ε and
maximum current β for a jet current in which W = β cos 2(x) for |x| ≤ π/2 and zero
otherwise. The dimensionless water depth is H = 10 and the angle of incidence is θ = 45◦.
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Figure 10: As for Figure 9 except that the current profile is W = β exp (−x2).
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Figure 11: As for Figure 9 except that the current profile is W = β exp (−x2|x|).
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