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The propagation of water waves across a laterally sheared current
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Abstract

This paper studies surface gravity waves propagating across a shearing current in water of constant depth according to linear theory. The
approach adopted is to represent the current by a series of vortex sheets separating regions of constant velocity. In each such region the method
of solution employed is one of expansion in terms of eigenfunctions. These are then matched at the boundaries between regions. This leads to a
large set of linear algebraic equations to solve for the coefficients. The results are then compared with those obtained using simpler semi-analytic
theories which neglect the evanescent modes and can be described as analogues of the mild-slope equation. The general conclusion is that these
simple approaches are accurate when the wavelength of the incident waves is much less than the lateral length scale over which the current varies
but become less and less accurate as the wavelength increases.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This investigation is concerned with the problem of the
propagation of water waves across a horizontally-sheared
current. Even the full linear problem is intractable so various
simplifications have been introduced over the years. At one
extreme, current changes have been modelled as one or more
vortex sheets as in Evans [1], McKee and Tesoriero [4],
Kirby, Dalrymple and Seo [2] and two papers by Smith [8,
9]. At the other extreme, the currents have been assumed to
be slowly-varying on the scale of a wavelength. This leads
to WKB-type solutions or extensions thereof (see McKee [5]
and Mei [7]). In particular McKee [5] derived an analogue
in this context of the celebrated mild-slope equation used
by coastal engineers to study the progagation of waves over
slowly-varying bottom topography which he called the mild-
shear equation. In a later paper [6] he sought to extend
this to currents which are more rapidly varying by including
some terms which depend explicitly on the first and second
derivatives of the current velocity. Both these equations neglect
the contributions of the evanescent modes. One of the aims
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of this paper is to test the validity of these simple semi-
analytic approaches by means of an alternative method which
approximates the shear current by a large number of vortex
sheets separating regions of constant current. The contributions
of the evanescent modes are explicitly included. Rather than
following the approach used in the case of a single vortex sheet
by Evans [1] and McKee and Tesoriero [4] of reducing the
problem to one of solving two integral equations at each vortex
sheet, a method involving multiplication by eigenfunctions will
be used in which the pressure-continuity condition at each
vortex sheet is multiplied by the eigenfunctions relevant to one
side of the vortex sheet and then integrated from top to bottom
whereas the kinematic condition is treated analogously using
the eigenfunctions relevant to the other side of the vortex sheet.
This method of dealing with the two matching conditions at

a discontinuity of depth and/or current was used by Kirby,
Dalrymple and Seo [2] in studying the propagation of waves
across a trench in the presence of piecewise-constant currents
and seems to date back to Takano [10] who considered depth
variations only and studied wave propagation across a ridge of
rectangular cross-section in the sea floor. In each of [2] and [10]
there were only two points of discontinuity of depth and/or
current. Here, there are an arbitrary number of such points but,
in order to concentrate on the effects of the current shear, it
will be assumed that the depth is constant. The case of variable
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depth, but no current, was treated by Mattioli [3] using the same
methodology.

2. The basic equations

As in [5,6] we consider wave motion in an inviscid fluid of
constant density ρ. The x and z axes are taken horizontal with
the y axis vertically down. The undisturbed free surface is at
y = 0 and the bottom at y = H . In order to focus on the
effects of the current, H will be assumed to be constant. The
basic current is a shear flow (0, 0, W (x)). Wavy perturbations
to this basic state are now considered in which all perturbation
quantities are proportional to exp i(nz −ωt) where ω > 0. If W
varies with x on a length scale L , we scale x and z with L , y and
H with g/ω2, W with g/ω, n with ω2/g and the perturbation
pressure due to the waves with ρga where a is a typical free-
surface amplitude of the waves. This scaling uses velocity, wave
number and depth scales appropriate to waves in deeper water.
As shown in [5], the dimensionless pressure perturbation, p, on
linear theory satisfies the equations

(px/Ω2)x + ε2 py y/Ω2
− n2ε2 p/Ω2

= 0, (1)

py + Ω2 p = 0 at y = 0, (2)
py = 0 at y = H, (3)

where all variables are now dimensionless,

Ω(x) = 1 − nW (x) and ε = ω2L/g.

The parameter ε is a measure of how rapidly the current
changes on the scale of the waves. Smaller values of ε signify
a more rapidly-changing current. As discussed in [5], values
of ε of order 100 or more are to be expected in most offshore
oceanographical situations because of the large lateral length
scales over which most ocean currents vary. In such situations,
the following analogue of the mild-slope equation, called the
mild-shear equation and hereinafter referred to as the MSE, was
derived in McKee [5]

d
dx

(
Γ (x)

dη

dx

)
+ ε2 (k2(x) − n2)Γ (x)η = 0, (4)

where k(x) is the local total wavenumber and is the unique
positive root of the local dispersion relation

Ω2(x) = k(x) tanh (k(x)H). (5)

In deriving this equation, it is assumed that

p = η(x)Z(y; x), (6)

where

Z(y; x) =
cosh (k(x)(y − H))

cosh (k(x)H)
(7)

is the local surface wave eigenfunction and

Γ (x) = Ω−2(x)

∫ H

0
Z2(y; x) dy.

The quantity η can be interpreted as the dimensionless
free surface deformation due to the waves. This approach
Fig. 1. Definition diagram for waves incident from still water at x = ∞ with
angle of incidence θ upon a laterally-sheared current W (x).

completely neglects the contributions of the evanescent modes.
In principle, (6) can be extended to include the evanescent
modes, but the resulting system of ordinary differential
equations for the amplitudes is stiff and the more evanescent
modes are included the stiffer it becomes.

The MSE was later generalised by McKee [6] to include
some extra terms on the right of (4) which depend upon the first
and second derivatives of W . This equation, hereinafter called
the extended mild-shear equation (EMSE), would be expected
to be more accurate than the MSE since it does not assume that
ε is large, yet it still makes the assumption (6) and so neglects
the evanescent modes.

In the case of rip currents or tidal flows between closely-
spaced islands, values of ε of O(1) or smaller might be
expected. The aim of the present work is to develop an
essentially numerical method of solution which, although
computationally more intensive than solving the MSE or EMSE
numerically, can be used to investigate the circumstances under
which those two methods give accurate results as well as being
a numerical method of general applicability. We will investigate
the situation where waves are incident with angle of incidence
θ from still water at x = ∞ towards a current. Thus W (∞)

will be assumed to be zero. The two canonical current profiles
of interest are a jet-type current which will here generally be
modelled by a Gaussian current profile W = β exp(−x2)

and a shear layer which will generally be modelled by W =
1
2β (1 − tanh x). Fig. 1 depicts the situation for a jet-type
current. Without loss of generality, it may be assumed that
0 ≤ θ ≤ π/2. If β > 0 the waves are entering a following
current. If β < 0 they are entering an opposing or adverse
current.

3. The numerical method

If we assume that the current velocity W is piecewise
constant, (1)–(3) can be solved by the usual separation of
variables technique and the solutions matched at the vortex
sheets separating the different regions by enforcing the
physically correct matching conditions at the discontinuities.
This approach is analogous to that of Mattioli [3] for water wave
propagation over a series of steps in the bottom.

To attack the problem using this formulation, let us suppose
that the discontinuities in W occur at x = ξ j for j = 1, . . . , L .
In (ξ j , ξ j+1), let W = W j and Ω = Ω j = 1 − nW j . In
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(−∞, ξ1), let W = W0 and Ω = Ω0 = 1−nW0 and in (ξL , ∞),
let W = WL+1 and Ω = ΩL+1 = 1 − nWL+1 where we may
take WL+1 = 0 since the current velocity is assumed to tend to
zero as x → ∞. Then the solution in (ξ j , ξ j+1) is

p j (x, y) =

∞∑
m=0

Φ( j)
m (x)Ψ ( j)

m (y) (8)

where

Ψ ( j)
0 (y) =

cosh (K j (y − H))

cosh (K j H)
,

Ψ ( j)
m (y) = cos (κ j m(y − H)),

Φ( j)
0 = F ( j)

0 exp (−il j (x − ξ j+1)) + B( j)
0 exp (il j (x − ξ j )),

Φ( j)
m = F ( j)

m exp (σ j m(x − ξ j+1)) + B( j)
m exp (−σ j m(x − ξ j )),

l j = ε

√
K 2

j − n2, and σ j m = ε

√
κ2

j m + n2.

In these equations, K j is the unique positive root of

Ω2
j = K j tanh (K j H)

and κ j m is the mth positive root of

Ω2
j = −κ j m tan (κ j m H).

The use of x − ξ j+1 and x − ξ j in the exponential terms
rather than just x lessens the possible consequences of loss of
significant figures which can occur when very large and very
small exponentials appear in an expression. If we introduce
fictitious points ξ0 = ξ1 and ξL+1 = ξL then the above
formulation can be said to hold in all intervals if we take
B(0)

m = 0 for all m with F (L)
m = 0 for all m > 0 and F (L)

0 = 1
being the amplitude of the wave incident from +∞. In terms of
the angle of incidence θ , n = KL+1 sin θ . The infinite sum in
(8) is truncated at m = M . At a discontinuity of W , the correct
matching conditions are that p and Ω−2∂p/∂x are continuous.
The first of these is necessary to avoid infinite accelerations of
the fluid particles on the vortex sheet and the second follows
from integrating (1) across the vortex sheet. Evans [1] gave
equivalent conditions in terms of the velocity potential not
pressure. These conditions are applied at a typical point of
discontinuity ξ j as follows. First, the expressions for p j and
p j−1 are equated at x = ξ j . This expression is then multiplied
by Ψ ( j−1)

m (y) and integrated from y = 0 to y = H . This is done
for m = 0, . . . , M to give M + 1 simultaneous linear equations
linking the unknown amplitudes. Some of the coefficients
are zero because of the orthogonality of the eigenfunctions.
Next, the expressions for Ω−2

j ∂p j/∂x and Ω−2
j−1∂p j−1/∂x are

equated at x = ξ j and treated analogously, except that we
multiply by the eigenfunctions Ψ ( j)

m (y) this time to give a
further M + 1 simultaneous linear equations. Doing this at
each of the ξ j for j = 1, . . . , L gives a total of 2L(M + 1)

simultaneous linear equations for the 2L(M + 1) coefficients.
All the integrals are found analytically.

It was found that, irrespective of the order of truncation,
the method conserved wave action flux exactly to within the
round-off error. The method can handle critical layers (where
Fig. 2. The amplitude reflection coefficient as a function of the dimensionless
maximum current strength β for a jet current W = β exp (−x2). The
dimensionless water depth is H = 1 and the angle of incidence is θ = 45◦.
The parameter ε has the value 0.25. The three lines (thick, thin and dotted)
are for calculations using zero, two and four evanescent modes respectively.
The convergence is demonstrated by the fact that the latter two are virtually
indistinguishable.

Ω = 0) and caustics provided the nodes ξ j are chosen so
that none of them coincides with the location of the actual
critical layer. A slight modification is required for a shear-layer
profile if Ω(−∞) < 0. As pointed out in [4], group velocity
considerations show that we must then take F (0)

0 = 0 instead
of B(0)

0 = 0 in order to satisfy the radiation condition of no
incoming energy at x = −∞. In such a situation there is a
critical layer and possible over-reflection of the incident waves.
Such a regime would be unlikely to occur in oceanographical
applications.

Although the method conserves wave action flux, the results
of course depend upon the order of truncation used. As a
general rule, it was found that the method converged quite
quickly and it was only necessary to use a few evanescent
modes in the expansions. In all the figures presented here
sufficient modes and nodes were used to ensure convergence
to the accuracy required for graphical presentation. Except for
the case of waves encountering opposing currents so strong as
to be beyond the range of physical relevance, the method did
not suffer greatly from the problem of ill-conditioning.

An example of the convergence of the method is shown
in Fig. 2 for a jet current W = β exp (−x2) when H = 1,
θ = 45◦ and ε = 0.25. In calculating these results, the current
was assumed to be zero outside [−B, B] and this interval
divided up into a large number (typically 99) of subintervals
of equal length. In each such subinterval the value of W was
taken as that of β exp (−x2) at the midpoint of the subinterval.
A value of B = 3 proved sufficient and using more than
four evanescent modes or more than 99 nodes gave results
graphically indistinguishable from those shown. As a general
rule, the smaller the value of ε, the more evanescent modes were
required. This is as expected since smaller values of ε imply a
more rapidly-varying current. It is worth observing here that
only relatively small values of β are likely to be of importance
in applications since the velocity scale adopted is gτ/2π where
τ is the wave period in seconds. Thus for τ = 10 and a strong
current of 2 m/s, the value of β is only about 0.13.
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Fig. 3. The amplitude reflection coefficient for infinite depth for a single vortex
sheet of strength β when θ = 60◦. The potential and velocity approximations
of Evans [1] are compared with a numerical solution for very large H which is
shown by the thin sold line.

The method is not strictly applicable when the depth
is infinite since the sum over the evanescent modes is
then replaced by an integral over a continuous spectrum.
Nevertheless, results for increasingly large values of the non-
dimensional depth H tend to settle down relatively quickly
to values which can be considered to be representative of
infinite depth. The normalisation adopted here of the surface
wave eigenfunction by dividing by cosh (K j H) ensured that
no numerical problems such as ill-conditioning arose for large
values of H .

The present method can also be used to deal with the
problem of a single vortex sheet. Evans [1] treated this
problem in the case of infinite depth by formulating it as one
requiring the solution of two singular integral equations of
the first kind. He then sought approximate solutions of these
in terms of two-term Galerkin expansions using the surface
wave eigenfunctions on the two sides of the vortex sheet. This
technique was extended to the case of finite depth by McKee
and Tesoriero [4] who also included some evanescent modes
in the Galerkin expansions. The present method is numerically
superior to this method in that it is far less prone to ill-
conditioning. Smith [8,9] discusses other possible approximate
methods of solution for this problem. Evans in fact gave two
formulations of the problem: one in which the unknown in
the integral equations is essentially the potential on the vortex
sheet and the other in which it is the horizontal velocity. Fig. 3
compares the results of both these with the numerical solution
using a large value of H for an angle of incidence of θ = 60◦.
Both the potential and velocity approximations used by Evans
are seen to be really very good indeed.

4. Some numerical results

One aim of this work is to use the numerical method outlined
above to investigate the circumstances under which the MSE
and the EMSE will give accurate predictions of the reflection
and transmission of waves crossing a shearing current. In all
cases we will consider a wave of unit amplitude incident from
x = +∞ with angle of incidence θ . The other parameters of
interest are the dimensionless water depth H and the current-
scale parameter ε as well as the maximum current speed for
Fig. 4. The reflection coefficient as a function of the dimensionless maximum
current strength β for a jet current W = β exp (−x2) with H = 1, θ = 45◦

and ε = 1. The results for the mild-shear equation are shown by a thick
solid line, those for the extended method by a thin solid line and those for
the purely numerical solution by a dotted line. The latter two are virtually
indistinguishable except for β < 0.5 approximately.

which we will use the symbol β. Fig. 4 shows the amplitude
reflection coefficient as a function of β for a jet with velocity
W = β exp (−x2) when H = 1, θ = 45◦ and ε = 1.
As can be seen, the EMSE is in excellent agreement with the
numerical solution for small values of β (which are the only
ones of physical relevance) whereas the MSE is not nearly so
accurate.

Many such figures have been produced. The general picture
which emerges is that the larger the value of ε the better the
agreement between both the MSE and EMSE with the EMSE
generally being more accurate. This is just what one would
expect.

With so many parameters in the problem, it is difficult to
know the best way to present the results. The basic aim of
this work is to investigate the circumstances under which the
MSE and EMSE are accurate. One would expect that the MSE
would be accurate for large ε since the current would then be
slowly-varying on the scale of the waves and less accurate for
smaller values of ε. The derivation of the EMSE, on the other
hand, made no explicit assumption as to the size of ε yet it also
neglected the evanescent modes. Hence it would seem sensible
to present results as functions of ε for representative values of
the other parameters.

Fig. 5 shows the amplitude reflection coefficient as a
function of ε for a jet with velocity W = 0.2 exp (−x2) when
H = 1 and θ = 45◦. Both the MSE and EMSE are in excellent
agreement with the numerical solution for large values of ε but
as ε decreases the MSE loses accuracy. The EMSE is quite
accurate except for very small values of ε where it erroneously
predicts that R → 1 as ε → 0.

Similar behaviour is shown in Fig. 6 in which the velocity
profile is a shear layer W = 0.1(1 − tanh x). In this case the
EMSE tracks the exact numerical solution almost perfectly until
ε reaches a value of about 0.1 below which it again erroneously
predicts that R → 1 as ε → 0. The general behaviours
exhibited in Figs. 5 and 6 have been found in all examples
investigated.

We conclude with some contour plots (Figs. 7–9) of the
amplitude reflection coefficient as a function of β and ε when
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Fig. 5. The amplitude reflection coefficient as a function of the scale parameter
ε for a jet current W = 0.2 exp (−x2). The dimensionless water depth is H = 1
and the angle of incidence is θ = 45◦. The MSE is shown by a thick solid line,
the EMSE by a dotted line and the numerical results by a thin solid line. The
latter two are virtually indistinguishable except for very small values of ε.

Fig. 6. The amplitude reflection coefficient as a function of the scale parameter
ε for a shear-layer current W = 0.1 (1 − tanh x). The dimensionless water
depth is H = 1 and the angle of incidence is θ = 45◦. The MSE is shown by a
thick solid line, the EMSE by a dotted line and the numerical results by a thin
solid line. The latter two are virtually indistinguishable except for very small
values of ε.

H = 10 and θ = 45◦ for three different current profiles.
In Fig. 8 we have the standard Gaussian jet profile W =

β exp (−x2) whereas the current in Fig. 7 is β cos2(x) for
|x | ≤ π/2 and zero otherwise. In Fig. 9 the profile is W =

β exp (−|x |x2). These three figures are generally quite similar,
except where the reflection is weak, which indicates that the
maximum current strength is more important than the precise
shape of the current in determining the amount of energy
reflected.

5. Discussion

This work has developed a general method of finding
solutions, albeit numerical ones, to the linear problem of
water wave propagation across a laterally-sheared current in
water of constant depth. The method could be applied to any
current profile, including one observed in field or laboratory
experiments. The main thrust of this investigation, however, is
to investigate the circumstances under which the simple semi-
analytic approaches of [5] (which leads to the MSE) and [6]
(which leads to the EMSE) are accurate. The general conclusion
reached is that both are accurate for large values of ε. In
Fig. 7. The amplitude reflection coefficient as a function of the scale parameter
ε and maximum current β for a jet current in which W = β cos2(x) for
|x | ≤ π/2 and zero otherwise. The dimensionless water depth is H = 10
and the angle of incidence is θ = 45◦.

Fig. 8. As for Fig. 7 except that the current profile is W = β exp (−x2).

Fig. 9. As for Fig. 7 except that the current profile is W = β exp (−x2
|x |).

such situations, the waves are short when measured against
the lateral length scale over which the current is changing. As
ε decreases the MSE, unlike the EMSE, gradually loses its
accuracy. For very small values of ε, the MSE is still inaccurate
but the EMSE experiences a catastrophic failure in that it
predicts complete reflection of the incident waves. Attempts to
establish this behaviour rigorously using perturbation methods
for ε → 0 have not been fruitful. From a practical point of view,
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this behaviour of the EMSE for very small ε is probably not
a major concern since the EMSE requires a knowledge of the
first and second derivatives of the current profile W (x). These,
particularly W ′′, would be very difficult, if not impossible,
to estimate accurately from laboratory or field data. Thus the
EMSE, though of theoretical interest and value, is probably not
useful in laboratory or fieldwork situations. The MSE, on the
other hand, requires only a knowledge of the current velocity,
but not any of its derivatives, and so would be less prone to
errors introduced by the uncertainties in measurements.

The method could be readily extended using the method
of Kirby, Dalrymple and Seo [2] to deal with the case where
the water depth H also varies with x . Another direction into
which the present work could be extended would be to consider
depth-dependent currents. Except in a few simple cases, such
as currents varying linearly with depth, the eigenfunctions used
in the expansion (8) would have to be determined numerically.
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