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Stability of water waves

By R. S. MacKay! axp P. G. SAFFMAN?

! Mathematics Institute, University of Warwick, Coventry CV4 TAL, U.K.
2 Applied Mathematics, California Institute of Technology, Pasadena,
California 91125, U.S.A.

(Communicated by E. C. Zeeman, F.R.S. — Recewved 31 January 1986)

We apply some general results for Hamiltonian systems, depending on
the notion of signature of eigenvalues, to determine the circumstances
under which collisions of imaginary eigenvalue for the linearized problem
about a travelling water wave of permanent form are avoided or lead to
loss of stability, up to non-degeneracy assumptions. A new superharmonic
instability is predicted and verified.

INTRODUCTION

Following the studies by Stokes (1847), many authors have investigated periodic
uniformly travelling water waves. Various instabilities are known and understood,
but there remain many questions about their stability. In particular, as one varies
parameters, for example the wave steepness, there are sometimes apparent
crossings of eigenvalues for the linearized problem about the wave (see, for
example, Longuet-Higgins 1978a; McLean et al. 1981; McLean 1982; Chen &
Saffman 1985). On closer inspection these often turn out to be either ‘avoided
crossings’ (figure 1) or ‘bubbles of instability ’ (figure 2). In this paper we apply
results for general Hamiltonian systems that explain why crossing of eigenvalues
is rare, and that predict one or other of the above possibilities depending on the
‘signatures’ of the eigenvalues.

Let {(x, y, t) be the vertical displacement of the surface of an inviscid fluid of
infinite depth and constant density p above point (x, y) at time ¢, @(x, ¥, 2, t) be
the velocity potential at height z for an irrotational flow moving under the
influence of a uniform gravitational field ¢ and surface tension 7', and ¥ (z, y, t) be
the velocity potential on the surface. ‘

For periodic uniformly travelling waves propagating at velocity ¢, in the
z-direction, with period L in z, and independent of the transverse direction y, we

have
&y (@ yt)= (glt’ 'ﬁﬂ) &),
(&0 ¥) E+L) = (8, ¥,) (8),
§=z—c,t.

They come in families, as indicated by the parameter y, which could represent
amplitude. In particular, there is a family connected to the zero solution, say at

= 0, with
# ¢ = (g/k+Tk/p},

where k = 2n/L, which can be taken as another free parameter.
' [ 115 ]



116 R. S. MacKay and P. G. Saffman

Im (o)
Y/
F1GURE 1. An avoided crossing.
]
Im (o)
Re (o)
#

FIGURE 2. A bubble of instability.

To examine the linear stability of a periodic uniformly travelling wave, one
considers the linearized equations for infinitesimal perturbations, in a frame
travelling with the wave. Since the equations are periodic in § and independent
of y, they leave invariant the subspaces 2,, ,, p, ¢€R, of functions of the form

elPe+a) (AL, Ay) (£),

with Ag, Ayr L-periodic (note that Vme Z, Q,,, .. o = 2,4)- Thus we can treat the
subspaces 2, , independently, although for real solutions we should take them in
pairs Q, ,, 2_,, _,. The eigenvalues of the linearized problem are the values of &
such that there is a non-trivial solution with time-dependence e (an eigenmode).

The spectrum is easy to evaluate when 4 = 0. As is well known (see, for example,
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Whitham 1974), the general solution of the linearized equations about the rest state
can be written as a sum over p’, g€ R of the following modes:

@ = 1, eIPTHAD g2,
{=¢, el(P'ztgy—ot)
where
K="+
—iwg, = ky,,
iy, = (g+Tx*/p) &,
w=8Q(k),s==%1,
Q(x) = (g +Tx*/p):.
Thus in a frame moving at velocity ¢, in the z-direction, and writing

p’ = p+mk,
the eigenmodes in &, , are

(Ag, AY) = (k, —is A(x)) et™*kE
for meZ, s = +1, with eigenvalues
o8, = —i(sQ(k)—c,p’)-

All the eigenvalues lie on the imaginary axis, so we say that the rest state is
spectrally stable.

As pisincreased, the eigenvalues can move around. For a wave that is symmetric
about some crest or trough, the linearized equations are invariant under ¢ ——¢,
0y —>—38Y, so the spectrum must be invariant under o—>—o. Actually, this
conclusion follows even for non-symmetric waves, from the Hamiltonian nature
of the system. Thus an eigenvalue cannot leave the imaginary axis unless it is
accompanied by its reflection in the imaginary axis. So a necessary condition for
a periodic uniformly travelling wave to lose spectral stability is that two
eigenvalues on the imaginary axis collide.

This is not a sufficient condition, however. There are cases in which two
eigenvalues collide but do not fall off the imaginary axis. In this paper we give
a stronger necessary condition for instability, based on the Hamiltonian nature
of the system, and we analyse the typical behaviour of eigenvalues near coilisions.

HAMILTONIAN FORMULATION

Following Zakharov (1968), the water wave equations can be written in
Hamiltonian form:

3L/ot = 0H/owr, Oy /ot = —SH/SE,

where H is the average total energy per unit horizontal area. We can adapt this
for a frame travelling at velocity ¢ by using

H=K+V—cP,
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where K is the kinetic energy in the rest frame, P the momentum in the rest frame
(uniquely defined in water of infinite depth without mean shear), and V the
potential energy (gravitational plus capillary). A uniformly travelling wave is an
equilibrium of this system in the frame travelling with the wave.

There is a well-developed theory that describes how the eigenvalues of an
equilibrium @y of a Hamiltonian system with Hamiltonian H(®) can move as
parameters change (for areview see MacKay 1986). If 7 is a pure imaginary non-zero
eigenvalue for the linearized problem about the equilibrium, then the second
derivative of the energy D>H,, (0@, &) is a non-degenerate quadratic form on the
real invariant space I, associated to the pair of eigenvalues o, —¢. If the
eigenvalues are simple, then the quadratic form is definite, either positive or
negative. This is called thé stgnature of the eigenvalue o. It is preserved as
parameters vary as long as the eigenvalue does not collide with another one. Then
the fundamental result is:

THEOREM 1. Iftwo pure imaginary simple eigenvalues of the same signature collide
at a point other than zero, then they cannot leave the imaginary axis.

The proof is basically that when the signatures are the same, energy conservation
prevents perturbations from growing arbitrarily large. Thus a necessary condition
for loss of spectral stability is collision of two eigenvalues of opposite signature
or at zero.

This result has appeared in many places under various guises. It goes back
essentially to Weierstrass (1858); see also Wintner (1935) and the appendix to
Moser (1958). Nayfeh & Mook (1979) treat the problem of the stability of a rotating
oscillator by using the same idea. In the context of waves, the importance of the
signatures (= the sign of the ‘small signal energy’) has been appreciated for quite
some time (see, for example, Sturrock (1958), Hasegawa (1975) and references
therein, and Cairns (1979)), but has always been limited to situations near the flat
state, involving the dispersion relation. We give here applications for which the
equilibrium state @y is not the flat state and thus the usual theory of negative
energy waves does not apply.

An important question for applications is what are the typical behaviours of
eigenvalues near collisions. Williamson (1936) worked out normal forms for all
cases of linear Hamiltonian systems with multiple eigenvalues, and Galin (1975)
(for a summary in English, see Arnol’d (1978), Appendix 6) computed their
codimensions and miniversal unfoldings. Galin also gave bifurcation diagrams for
all cases of codimension less than or equal to 2. The cases of interest here, namely,
existence of a double pure imaginary eigenvalue with diagonal Jordan normal form,
turn out to be codimension 3, and the bifurcation diagrams have been worked out
by MacKay (1986). The results show that crossing of eigenvalues is exceptional
in one-parameter families, and typically unfolds under perturbation into an
avoided crossing in the case of eigenvalues of the same signature, and into a bubble
of instability in the case of opposite signature. Thus all we have to do to explain
the observations is to calculate the signatures of the appropriate eigenvalues.

One should be aware, however, that one is not guaranteed to see the typical case.
Further calculations are necessary to check that various coefficients are non-zero.
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Symmetries may force some of them to be zero. For example, for the linearized
equations about uniformly travelling periodic waves, modes belonging to different
Q,, ,do not interact. More seriously, many of the waves considered are symmetric
about some crest or trough. This restricts the linearized equations to a special class
of Hamiltonian systems known as ‘reversible’. In the space of linear reversible
Hamiltonian systems existence of a double pure imaginary eigenvalue with
diagonal Jordan normal form is only codimension 2, but its unfolding still gives
rise to avoided crossings or bubbles of instability in typical one-parameter families,
according to the signatures (Jiménez & MacKay 1986).

The case of multiple eigenvalues at zero is also covered by the theory, but we
shall not discuss it here as it does not depend on signature, though it does include
the Benjamin—Feir (1967) instability.

There are more related results. For example, if one adds small positive definite
dissipation, then the pure imaginary eigenvalues of positive signature move into
the left half plane (damped), whereas those of negative signature move into the
right half plane (unstable).

A parallel theory has also been developed for stability of periodic orbits of
Hamiltonian systems (see Moser (1958), Appendix 29 of Arnol’d & Avez (1968) and
references therein, Yakubovich & Starzhinskii (1975), and Howard & MacKay

(1986)).

CALCULATION OF SIGNATURES

Let us evaluate the signatures for the water wave problem when x = 0. By
continuity, the signature of an eigenvalue will be conserved as far as its first
collision with another eigenvalue, as x is increased. The definition requires us to
consider the energy on the real invariant space associated to the pair of eigenvalues
o, —o. This means that we have to add the complex conjugates to the previous
expressions for ¢ and {.

Averaged over unit area in «, y, we have the standard results for the energy and
momentum in the rest frame (to second order)

K= j 3P0/ 0z) de dy = pklr,|?,
V= f(%pg? +TV0)dady = (9+ Tk*/p) |&,[*

P, = f pE@p/0x)dxdy = ip'p(Y, &F — ¥ &y)-
Substitute
¥, = —iwgy/k.
E=K+V—c,P,

= 2pw(w—cop’) &I
The disturbance is moving with speed w/p’ in the rest frame. Thus the energy in
a moving frame of a disturbance to the steady state is negative if it is going in the same

Then
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direction as the moving frame but slower, and positive if it is going faster or in the
opposite direction.

Actually, it was not necessary to calculate the energies and momentum to see
this. It follows from the Lagrangian formulation that a disturbance moving with
speed ¢’ in the z-direction has kinetic energy

K=1iP. ¢,
and hence its energy in a frame moving with speed ¢ is
E=2K(1—c/c)+(V—-K).

This reduces to the same results on remembering that V— K is of third order in
the amplitude of the disturbance from the flat state.

Given T/p, g, and k (and ¢, = Q(k)/k), we can calculate the wave velocity for
the eigenvalues o5, and hence their signatures. For example, for 7= 0, p = 0,
q = 0 (i.e. two-dimensional superharmonic disturbances to gravity waves), we get
the eigenvalues

o5 = i(m—slmlt) (gh)3,
with wave speed

w/p’ = scolmlt/m.

Thus o7}, has positive signature for sm < — 1, and negative signature for sm > 2.
Note that the cases sm = 0 and 1 have ¢ = 0, and correspond to change of the
mean level and to horizontal translation, respectively.

NUMERICAL VERIFICATION

The predictions of the theory from such calculations of the signature are
supported perfectly by numerical results for three-dimensional disturbances (i.e.
with arbitrary p and q) to gravity waves (7' = 0) (McLean efal. 1981 ; McLean 1982),
and to capillary waves (g = 0) (Chen & Saffman 1985), on water of infinite depth.
In the first case, all collisions found for 4 = 0 were between eigenvalues of opposite
signature and led to loss of spectral stability for 4 > 0. In the second case, collisions
were found between eigenvalues of opposite signatures and between eigenvalues
of the same signature; for 4 > 0, the former led to loss of spectral stability, while
the latter became avoided crossings.

A non-trivial example which predicts a new instability is provided by super-
harmonic two-dimensional instabilities of Stokes waves. In figure 3 we show the
values of Im (0%,) (= m —s|mf: at 4 = 0) as functions of x (in this case the wave
steepness ka) calculated by Longuet-Higgins (1978a). We have normalized tog = 1
and k = 1, and our notation is slightly different. There are four collisions in this
figure, three of opposite signature and one at zero.

The collision marked (i) at x = 0 between modes (m, s) = (1, —1) and (4,1) does
not lead to loss of stability; the eigenvalues avoid each other. This appears to be
an exception, but in fact is not, as will be explained below. The collision (ii) at
4 =~ 0.2456, Im (o) =~ 3.3533, we found on close examination appears to be
actually a bubble of instability. Figure 4 shows results of detailed numerical cal-
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Frcure 3. Results of Longuet-Higgins (1978 a) for eigenvalues o labelled by (m, s) plotted against
wave amplitude for superharmonic two-dimensional disturbances. Circles (i), (i) and (iii)
mark intersections of eigenvalues of opposite signature. The intersection at zero (iv) is the
Tanaka instability. Values of Im (o) at ka = 0 are given by m —s|m/}.

culations in the neighbourhood of the crossing (cf. Chen & Saffman 1985, figure 1).
The instability can be interpreted as a fourth-order resonance, i.e. proportional
to (ka)* = 1074, so the smallness of the growth rate and of the range of unstable
steepnesses is not unexpected. These results were obtained by using two entirely
different codes and satisfy the usual tests of reliability. The values shown in the
figure are due to Mr J. A. Zufiria.

The value of ka at crossing (iii) is too large for our codes to demonstrate
instability reliably, but it is believed to be present for reasons to be given shortly.
Crossing (iv) at u ~ 0.4292, Im (o) = 0, is the Tanaka (1983) instability; see
Saffman (1985) for a simple proof of Tanaka’s empirical finding that this occurs
when the rest frame wave energy K+ V is a maximum. Note, however, that it is
not the least steep superharmonic instability ; crossing (ii) is a less steep one.

These results are implicit in the work of McLean et al. (1981). They studied
numerically the x4 > 0 stability diagram in the p, ¢ plane. A sketch of typical
results is shown in figure 5. The instabilities were separated into two classes: class
I when the collisions were between modes (p+ M, q) and (p— M, q), and class 1T
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Fiaure 4. Eigenvalues in a neighbourhood of crossing (ii) of figure 3, showing the instability
region suggested by the apparent intersection of modes of opposite signature. Symbol in
parenthesis shows signature. Note that the signature of the more rapid disturbance has
changed across the instability, confirming an instability and not an avoided crossing.

between (p+ M, q) and (p— M —1, q). The sketch shows bands of instability for the
class I, M = 2 and the class II, M = 1. (The class I, M = 1 collision (not shown)
is the Benjamin—Feir long-wave modulational instability and is not treated here.)
The solid lines show the collision loci for = 0. Note that these intersect the p-axis
(two-dimensional disturbances) at p = 3 and p = 1 respectively. As u increases
these broaden into bands that get wider and move to the left.

Consider first the class II, M = 1. It moves away from p = 3, ¢ = 0, so there is
apparent stabilization of the (i) crossing, but only because the analysis was
restricted to superharmonic disturbances. In fact this collision leads to instability.
As p increases, the band widens vertically and intersects the p-axis at p = 4 when
4 = 0.4050, givingrise to asubharmonic wavelength doubling instability discovered
by Longuet-Higgins (1978b). As g continues to increase, the intersection with the
p-axis gets larger and meets p = 1 when x4 & 0.4292. This is the Tanaka instability
of crossing (iv).

Consider now the class I, M = 2 results. As g increases, this band moves to the
left and for 0.245645 < u < 0.245675 includes p = 4. The wave numbers of the
colliding modes are 4+ 2 and 4—2, i.e. 6 and 2, and this is the (ii) intersection in
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Ficure 5. Sketch of instability bands in the p, ¢ plane for gravity waves. Solid lines show
collisions for ka = 0; shaded regions show values of p, ¢ for which modes are unstable. The
two-dimensional superharmonic results can be understood in terms of movement of the
bands through integer values on the p-axis.

figure 3. As 1 continues to increase, the band crosses p = 3 when u is approximately
0.4; the colliding modes are then 3+2 and 3—2, i.e. 5 and 1, and this is the
collision (iii).

ALTERNATIVE CALCULATION OF SIGNATURE

There is an alternative definition of signature (Moser 1958), which is equivalent
to the one given here (MacKay 1986) and simpler to calculate. A Hamiltonian
system can be expressed in the form

dd/dt = JDH,,

where @ describes the state at time ¢, H is the Hamiltonian, DH, is the derivative
of the Hamiltonian at @, and J is an isomorphism between linear forms and
tangent vectors, induced by a symplectic form w, (see Arnol’d 1978, §37). For the
water wave problem, @(t) is (§, ¥) (x, y, t) and

o0, 3Y), (8o, Br)} = f (801, 8, — 81, 88,) d dy.
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Given a pair of pure imaginary non-zero eigenvalues o, — o, choose Im (o) > 0.
Let E_ be the corresponding eigenspace. Then

iw,(0B, 0d*), DK,

is a non-degenerate, real quadratic form, and has the same signature as
D2H(0®, 0®) on I,. Equivalently one can use

—iw, (0D, 0D*), D E._,.

So let us evaluate the signatures this way. Averaged over unit area,

i f (OYoL* — oyr*8¢) dw dy = 2skQ(k),

which has the sign of s. So the signature is the sign of s Im (o). This agrees with
the previous result, since w has the sign of s and Im (o) has the sign of (w—c,p’).

We used this method to calculate the signature of the modes that cross at (ii).
The results show that the signatures of the two modes, ordered by the value of
Im (o), are exchanged. This confirms the instability shown in figure 4, as the
signature would be unchanged in an avoided crossing, though this argument does
not exclude the possibility that the eigenvalues pass through each other without
interaction.

CONCLUSION

We have shown that for a uniformly travelling periodic water wave to lose
spectral stability, it is necessary that there be for the linearized problem about it
a collision of eigenvalues of opposite signature or at zero. For waves that can be
traced back to zero amplitude, the signature of an eigenvalue is negative if when
traced back to zero amplitude the corresponding disturbance moves in the same
direction as the wave but slower, and positive if it moves faster or in the opposite
direction. If the signatures are the same we predict an avoided crossing; if they
are opposite we predict a bubble of instability.

It will be interesting to confirm the predictions of this paper for cases with both
T and g non-zero by numerical calculation, when rich phenomena are expected.
Also, the case of finite depth is expected to show interesting properties. Another
physical problem to which these ideas may well be of use is the resonance of Kelvin
waves on a straight vortex filament in a weak straining field (Moore & Saffman
1975; Tsai & Widnall 1976).

We thank the London Mathematical Society and the Science and Engineering
Research Council for sponsoring the 1984 Durham Bifurcation Theory Symposium,
which stimulated this work. P.G.S. also thanks the Office of Naval Research
(N00014-79-C-0412, NR062-639) for support, and R.S. M. the Nuffield Foundation
for travel expenses to discuss this work. Last, but not least, thanks to Peta
McAllister for typing the paper.
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