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ABSTRACT

Transfer rates and times of nonlinear resonant interactions within the oceanic internal wave field
are evaluated analytically for the mechanisms which dominate the transfers within the Garrett-Munk
spectral models (the elastic scattering, the induced diffusion, and the parametric subharmonic-
instability mechanism). The analytic transfer rates assume that the interacting wave components are
widely separated in wavenumber and/or frequency, and they are shown to agree well with the exact
numerically calculated transfer rates. The analytic expressions are used to discuss conveniently and
explicitly possible equilibrium states and the extent to which high-wavenumber internal waves can
be treated in the weak-interaction limit. The Garrett-Munk spectral models are in equilibrium with
respect to the elastic scattering, close to equilibrium with respect to the induced diffusion, and not in
equilibrium with respect to the parametric subharmonic-instability mechanism. For an overall dissipation
time scale of 30 days, waves with wavelength down to 5 m are weak.

1. Introduction

Nonlinear resonant interactions among oceanic
internal waves are an important dynamical process,
believed to determine the spectral shape of the in-
ternal-wave field and the efficiency by which internal
waves diffuse mass and momentum. Nonlinear inter-
actions redistribute energy and momentum among
the various wave components. For a homogeneous,
weakly interacting wave field the rate of change at a
given wavenumber can be computed by using the
random-phase approximation as a closure hy-
pothesis; it is given by (Hasselmann 1966, 1967).
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where A(k) is the action-density spectrum, k the
wavenumber, o = w(k) the frequency, and T+
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and T~ are transfer functions depending on k, k'
and k”. Explicit expressions for the transfer func-
tions are given by Miiller and Olbers (1975) and
Oibers (1976).

The transfer equation (1) can be interpreted in
terms of two colliding wave or antiwave components
creating or annihilating a third wave or antiwave
component with collision cross sections 7+ and T™.
The & functions assure that the collision process
conserves momentum and energy.

The transfer integral has been evaluated by
Olbers (1976) for the Garrett-Munk (1972, 1975)
model spectra (henceforth, GM72 and GM75) and
by McComas and Bretherton (1977, henceforth,
MB) for the GM75 and GM76 (Cairns and Williams,
1976) model spectra. Olbers established the basic
time scales of resonant nonlinear interactions in the
energetic low-wavenumber part of the GM72 and
GM7S spectra. MB extended the calculations to the
higher shear-containing wavenumbers and, most
importantly, discovered that much of the complex
transfer can be understood in terms of three simple
interaction mechanisms; the elastic scattering, the
induced diffusion and the parametric subharmonic-
instability mechanism. In a subsequent paper Mc-
Comas (1977) showed that the GM spectra are in
approximate equilibrium with respect to the induced-
diffusion and elastic-scattering mechanisms and
that small perturbations rapidly relax.
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Fic. 1. Schematic representation of (a) elastic scattering, (b)
induced diffusion and (c) parametric subharmonic instability
triads. :

Except for trivial spectra, the transfer integral in
(1) has to be evaluated numerically. This requires
considerable effort and care. Here we evaluate the
transfer integral analytically for the three dominant
transfer mechanisms by systematically exploiting
the fact that the interacting wave components have
largely different wavenumbers and/or frequencies
for these mechanisms. The analytic approximations
are shown to agree well with the ‘‘exact’’ numeri-
cally calculated transfer rates. We use the analytic
expressions to discuss conveniently and explicitly
the possible equilibrium states for these mechanisms
and the question raised by Holloway (1980) as to
what extent high-wavenumber internal waves can be
treated in the weak interaction limit. The analytic
approximations also provide a convenient tool to
assess the dynamical role of nonlinear interactions
in the energy balance of deep-ocean internal waves.
This is more fully discussed by McComas and
Miiller (1981, abbreviated henceforth as MM).

2. Elastic Scattering

Elastic scattering denotes the vertical backscatter-
ing of a downward propagating, high-frequency wave
(k', «') into an upward propagating, high-frequency
wave (k, w) by a low-frequency near-inertial wave
(k", »")—see Fig. 1a. As in familiar Bragg scattering,
the low-frequency component with twice the verti-
cal wavelength, i.e., k3" ~ 2k;’ ~ 2k, is the most
efficient scatterer. Elastic scattering transfers energy
out of the more energetic of the high-frequency
waves to the other, until their energies are equal.
The low-frequency wave participates only weakly in
the energy exchange, and can be considered as a
given external field.

An analytic approximation to the transfer integral
for this interaction process can be obtained by
assuming w, o’ > " = f (f = Coriolis parameter)
and A(k), A(k') < A(k"), and retaining only the
lowest-order terms in an associated perturbation
expansion. The first inequality is characteristic of
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the elastic-scattering mechanism; the second in-
equality is characteristic of the GM spectra, where
most of the energy and action is concentrated at
low frequencies. Under these assumptions the trans-
fer integral is dominated by contributions from
small horizontal wavenumbers " = 0, and can
adequately be approximated by setting A(k")
= A(k;")8(a"). The transfer integral then reduces to

0 Ala, ky) — Aa, —ks
—AKk) = - (@, ks) ,(a a) ’ @
ot 27(K)
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where I(B)d(IngB) = fBA(B)d(InB) is the mean-
square shear content in the logarithmic interval
d(InB), § = [+= I(B)d(InB) is the total mean-square
shear, and Ri is the Richardson number N2/S. Here
B denotes the magnitude of the vertical wavenum-
ber, v(k) the group velocity and N the Brunt
Vaisala frequency. ,

The elastic scattering mechanism attenuates verti-
cal asymmetries of the high-frequency wave field
with the characteristic decay time 7. This decay time
depends on the Richardson number and on the ratio
of the shear content of the low-frequency scatterer
to the total shear. Clearly, the smallest decay time
possible is 7 = 4 Rimz™'w™', when all the shear is at
the length scale of the scatterer. We then find wr
= 4/ = O(1)for Ri = 1. This is inconsistent with the
weak-interaction limit which formally requires wr
> 1. For the GM spectra, however, I(8) « 7 with
p €[, 1] and B € [0, B.], so that except for
B ~ B. the weak interaction limit can be expected
to be valid, even for such small Ri.

The dependence of 7 on the vertical wavenumber
B and the aspect ratio o/ (« = magnitude of hori-
zontal wavenumber) is shown in Fig. 2 for the GM76
spectral model with N =5 X 1073s™! and f =7
X 1075 s71. The Richardson number reaches one at
B.. The decay time decreases from a few days at
low wavenumbers to a few minutes at high wave-
numbers. Only at the very high wavenumbers does
the transfer time become smaller than the period.?

Fig. 3 shows the relaxation time for the decay
of a 10% perturbation to vertical symmetry in the
GM76 spectrum, as obtained by evaluating the
complete transfer integral numerically. Fig. 3 re-
places Fig. 6 of McComas (1977), which is incorrect

3 The shaded area depicts wr < 1. Since the period 7, = 27/w
this region then formally corresponds to 7/7, < (2m)™1,
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F1G. 2. Contour plot of the analytically calculated interaction
time for the elastic scattering mechanism. This and the follow-
ing plots have been evaluated for the GM76 spectral model with
N=5§x107s"? and f=7 X 1073 s}, corresponding to a
latitude of 30°. The aspect ratio o/B is equivalent to a fixed
frequency, as the internal wave frequency depends only on the
wave number slope o/B8. Lines of constant horizontal wave-
number are straight lines with a — 1 slope. B, is the cut-off
wavenumber where the inverse Richardson number content be-
comes 1. In the shaded area the interaction time is smaller
than the wave period.

because of a coding error. The agreement between
our analytical approximation and the exact numeri-
cal calculation is good. Note that the analytical
approximation is only valid for w? > f2. The nu-
merical calculation also shows that asymmetries of
near-inertial oscillations do not relax. This is con-
sistent with the observed asymmetry of near-
inertial oscillations (Leaman and Sanford, 1975;
Leaman, 1976; Miiller et al. 1978).

The ratio R'(k) of the numerically calculated
decay rate of asymmetries and the numerically cal-
culated transfer rate in the (vertically symmetric)
GM76 spectrum is shown in Fig. 4 [which replaces
McComas’s (1977) Fig. 7]. This ratio highlights
those regions in the spectrum where elastic scatter-
ing is a dominant process. The figure indicates that
high-frequency waves are strongly affected by the
elastic-scattering mechanism, whereas inertial oscil-
lations are not.

The elastic-scattering mechanism describes the
backscatter of high-frequency internal waves by
low-frequency (inertial) currents. High-frequency
waves also are backscattered by low-frequency
density fluctuations, i.e., by the irreversible fine-
structure of the density stratification. This process
has been studied by Mysak and Howe (1976) by de-
composing the Brunt-Viisili frequency into a mean
component N? and a finestructure component SN2,
Again, a downward propagating high-frequency
wave (a, k3, w) is scattered into an upward propagat-

C. HENRY McCOMAS AND PETER MULLER

141

ELASTIC SCATTERING

10 —T T

TRANSFER TIME [s]

ASPECT RATIO

A
]

] !
t ]
1 !
!
HE
[}

| W

H |
10-3 10-2 107!

VERT. WAVENUMBER [m-1] "¢

F1G. 3. Numerically calculated decay time of a 10% perturba-
tion to vertical symmetry in the GM76 spectrum. Negative
values (dashed) indicate that asymmetries grow.

ing wave (a, —ks, @) by the Fourier component
2k; of 8N? (assumed to be horizontally uniform
and time independent). In the hydrostatic limit
(w* < N?) the decay rate of asymmetries is glven by
(Miilter and Olbers, 1975)

(k) = VamoN—EQ2p) = YamwCFQRID, (5)

where F(8) d(Inp) is the finestructure variance con-
tent in the loganthmxc interval d(lnﬁ) D = ((8N2y?)
= [ F(B)d(Ing) is the total variance of the finestruc-
ture, and C is the Cox number D/N? of the
irreversible finestructure. The form of the decay
time 74, closely resembles the form of 7, with density
shear replacing current shear and the Cox number
replacing the Richardson number. For typical mid-
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FiG. 4. Ratio of the numerically calculated decay rate of
asymmetries to the numerically calculated interaction rate in
the unperturbed GM spectrum.
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ocean conditions current and density (temperature)
spectra have similar vertical-wavenumber slopes
and a comparable Richardson and Cox number
(Ri ~ C ~ 1). The two scattering processes are
hence of comparable efficiency. A detailed comparison
requires a model of the vertical wavenumber
spectrum of the irreversible finestructure. This is not
readily available from observations with temperature-
profiling instruments that measure both the low-
frequency irreversible finestructure and the reversi-
ble displacements of isotherms induced by high-fre-
quency internal waves.

The elastic scattering at inertial currents and
irreversible finestructure attenuates vertical asym-
metries of the high-frequency wave field. The
vertically symmetric GM spectral models are in
equilibrium with respect to this process.

3. Induced diffusion

~ The scattering of a high-wavenumber, high-
frequency wave (k, w) by a low-wavenumber, low-
frequency wave (k”, ") into another nearby high-
wavenumber, high-frequency wave (k’, ') (Fig. 1b)
leads to a diffusion of wave action (not wave energy)
in wavenumber space. This result can be obtained
either from a perturbation expansion (Fokker-Planck
limit) of the transfer integral in Eq. (1) (Eisenschitz,
1958) or from a WKB approach using random-walk
formulas (Taylor, 1921). The explicit form of the
diffusion equation has been calculated by MB using
both approaches and is given by
i Ak) = i Dy; _6_
at ok; ak;

with the diffusion coefficient

AKk), ©6

D; =2 f a3k k" A K"k 'k T+

X 8k - k' — k(v - o — o). (7)

General scale analysis indicates that diffusion in
vertical-wavenumber space is dominant. If we again
approximate A(k") = A(k;")8(a") the vertical diffu-
sion coefficient becomes

e LA

or

Dys ~ %wa?f-li(f— ) ©)
w
in the hydrostatic limit. Again, the near-inertial
oscillations do not participate significantly in the
energy exchange of the triad, and act like a given
external field. Their shear content, however, deter-
mines the rate at which the diffusion takes place.
The diffusion coefficient is independent of the
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vertical wavenumber only if the shear content is
scale independent.
When calculating the characteristic time scale
1 9 0 D33AA

) = 0 ok D ok (O, )A

D3y — Ak) = (10)

AK) 0k
of the induced-diffusion mechanism, we must dis-
tinguish two cases. One time scale corresponds to
the fastest possible time scale, which one obtains by
choosing the maximum gradient, (i.e., AA/A = 1
with Aks = k3" = fo~'%;). This yields the fast time
scale

74k) = %ﬂwN'2<‘;)—)3i(f‘ B)

.
= Yorrw Ri—l(-;’—)s, i“;—ﬂ .oan

For the extreme case, Ri = 1 and I(fw™'8)/S = 1,
we then find wr = 277(f/w)® if «? > f2. Clearly,
this strongly violates the condition for weak interac-
tions as pointed out by Holloway (1980). Such a-
fast time scale is not unexpected, however. The
fast time scale describes the decay of a spike in the
spectrum. A spike represents a well-defined wave-
train with a large correlation length, many times its
wavelength. Under random interactions such a
wavetrain must be expected to deteriorate rapidly.
With AA/A = 0.1 the fast time scale (11) is shown in
Fig. 5a; it corresponds to the numerical ‘‘bump”’
experiment of McComas (1977, Fig. 4), with which it
favorably compares. Note again that the analytical
approximation is only valid for w® > f2.

However, for most spectra the actual gradient is
not so large. In fact AA/Ak; = A/k; is a more rea-
sonable approximation for a smooth spectrum and
it yields the slow time scale

T7YKk) = VzﬂwN‘z—;‘:-—i(—L B)

w

I
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7z

X

|

7 3 , (1)
implying wt = 27~ /w < 1 for the extreme case.
This still violates the weak-interaction assumption
but not so badly as before. And, for all GM spectra
ot ® 1 for B < B, and w> f, since I(fow 1B8)/S < 1.
A contour plot of the slow time scale (12) as a func-
tion of B and /B for the GM76 spectrum is shown
in Fig. Sb.

Thus, the evolution of a smooth spectrum is ade-
quately described by weak-interaction theory, but
the evolution of a spiked spectrum is not!

So, is the wave field weak or strong? The proper
answer depends on the sources and sinks within the
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wave field. If the sources and sinks are weak, i.e., if
their characteristic time scale 7,(k) is much larger
than the wave period, then the diffusion can keep up
with the input, the gradients never become large, and
the problem is adequately described by the weak
interaction diffusion limit. If the sources and sinks
are strong and highly localized in wavenumber
space, however, causing steep gradients in the spec-
trum, then the problem is not weak and cannot be
accurately evaluated using weak-interaction theory.

If we assume that dissipation acts like a vertical
viscosity (MM, 1980) then

E(k)
7o(K)

where the viscosity coefficient v is determined by
E/30 days = v S, such that the time scale for energy
dissipation is 30 days. From (13) we find a dissipa-
tion time scale

= —vSk), (13)

(k) = ¥B87%, (14)

where y = 2.5 x 10* s m~? such that the wave field
can be considered weak for vertical wavelengths
>S5mifRi=1and N =95 x 107371,

Are the GM spectral models in equilibrium with
respect to the induced-diffusion mechanism? The
diffusion equation has two equilibrium solutions: a
no-flux solution with A(k) independent of ks, i.e.,
A(k) = F(a); and a constant-flux solution with
Dg3(8A(K)/0k;) independent of ks, i.e.,Ak) = —Q(a)
X [ (1/D33)dks, where Q(a) is the flux. Only the con-
stant-flux solution allows for dissipation at high
wavenumbers. In general, the no-flux and constant-
flux solutions will have different vertical-wave-
number dependencies. For the GM spectral models,
a high-wavenumber slope ¢t = —2 is the no-flux
equilibrium solution at medium frequencies, f?
< @® € N?%, and high wavenumbers, B8 > B, (B.
= wavenumber bandwidth).

A constant-action-flux equilibrium for high-
frequency waves under the diffusion mechanism
requires that there are no changes in the high-
frequency portion of the spectrum, while action is
-moved to larger vertical wavenumbers at constant
horizontal wavenumber, i.e., to lower frequencies.
Because action is conserved by the diffusion, the
energy content of the high-frequency region would
decrease if not supplied by the inertial waves to
maintain equilibrium. A constant action flux at the
high frequencies requires an energy gain at the
inertial frequencies. Thus, if the high-frequency por-
tion of the spectrum is in a constant-flux equilibrium,
then the low-frequency portion cannot be. MM
(1980) argue that the vertical-wavenumber spectrum
including both frequency ranges is in equilibrium
under a constant energy flux.

In this paper, however, we take the inertial wave
field as a given external field and consider only the
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F1G. 5. Contour plot of the analytically calculated (a) fast and
(b) slow induced diffusion time scale. In the shaded area the
diffusion time scale is smaller than the wave period.

equilibrium of the high-frequency internal waves.
If the low-frequency vertical-wavenumber slope is
t = -2 then Dj =< 82 and the high-frequency
equilibrium slope is t = —3. If the low-frequency
slope is + = —2.5 then Dy « 8 and the high-
frequency equilibrium slope is observationally indis-
tinguishable froms = —2. A spectral slope oft = ~2
at all frequencies is not an equilibrium solution in
the presence of flux (and dissipation); however, a
near-inertial slope of t = —2.5 and a high-frequency
slope of t = —2 is near equilibrium in the presence
of a flux and dissipation.

For a more accurate estimate of the diffusion
time scale we consider the spectra

- n 2H(E (£

a N\N 3—*) (13
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which approach V

-l (2]

—4~p -q
- Ao(_‘_"_) (i)
B* B*

for w? > f? and are characterized by the high-wave-
number slopes p and g. The GM75 spectral model
corresponds to p = 0.0, g = 0.5, and the GM76
model to p = 0.0, g = 0.0. The spectra withg = 0
and p arbitrary represent no-flux solutions, while
the spectra withp = (1 — 3q)/2 represent constant-
flux solutions. The diffusion rate for this class of
spectra is

74(k)

0

1 8
=— 2 p., -2 Ak
AK) 0k; 2 Bk, ®

= q(1 - 3q - 2pYWsmrw %Ri“ —2 7 ae
which is just R = q(1 — 3q — 2p) times the slow
time scale (12). The factor R as a function of g and p
is shown in Fig. 6. The two valleys correspond to
the no-flux and constant-flux solutions. Under the
action of the induced-diffusion mechanism spectra
should evolve towards the equilibrium valleys un-
less held back by strong generation or dissipation
mechanisms. Note that the induced-diffusion mech-
anism by itself forces spectra into the equilibrium
valleys but not to a specific position within the
valleys. This position is determined in conjunction
with some other process (see MM, 1981).

To assess how well the induced-diffusion mech-
anism approximates the complete nonlinear trans-
fer, we compare in Fig. 7 our analytically calculated
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diffusion rate (16) with the exact transfer rate ob-
tained from a numerical evaluation of the complete
transfer integral. Three cuts (p = 0.5, 0.0 and —0.5)
through the p-g plane are shown. The solid curves
represent the diffusion rate, and the points with the

-error bars the exact transfer rate, both normalized

by the diffusion rate (12). The exact transfer rate is
the mean rate obtained by averaging 4 X 3 estimates
in the region 8v2f < w < 32v2f and 1/60 m ! < g
< 1/6 m~!. The error bars denote the standard
deviation of this estimate. Also indicated are the
ratios of standard deviation to mean value. No exact
transfer rates have been calculated for p = —0.5
and g < 0 since spectra with high-wavenumber
slopes —1 — 2p — g > 0 do not satisfy the condition
for scale separation, on which our derivation of the
diffusion equation is based. .
Generally, the agreement between the diffusion
and exact transfer rate is good, except close to the
equilibrium valleys. Here the diffusivé transfer be-
comes small and other interactions become im-
portant. Close to the equilibrium valleys the exact
transfer rates also show considerable scatter in the
wavenumber-frequency plane, a further indication
that the diffusion time scale is not appropriate.

4. Parametric subharmonic instability

The parametric subharmonic-instability mech-
anism denotes a transfer wherein a low-vertical-
wavenumber wave (k, o) decays into two high-
vertical-wavenumber waves (k', »') and (k", o") of
approximately half the frequency (Fig. 1c). This

“mechanism was identified by MB as causing the

energy transfer from low to high wavenumber near
inertial oscillations in the GM spectra. On the
assumptions that 8 < g8', 8’ and w ~ 20’ ~ 20"
~ 2f with A(k'), A(k") < A(k), the transfer integral
reduces to

NORMALIZED DIFFUSION RATE
N

F1G. 6. Normalized diffusion rate as a function of the high wavenumber slopes p and q.
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%A(k) = —24(K) J d%'T+

X 8w — o — wk — k')AK) (17)

for the loss at low wavenumbers, and to

3A(k') = 4A(k’) J a*T~
ot

X 8w — o' — ok — k)AK) (18)

for the gain at high wavenumbers. The transfer func-
tions are given by
9

TH =T = - nfa’ 19
16 f }
The parametric subharmonic-instability mechanism
dominates the total transfer only at high wavenum-
bers (MB). There, the characteristic growth rate is
explicitly given by

e 2T

(o)

=2y ri- e

S
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where

1/2
o7
The growth rate of the near inertial wave depends
on the shear content of the double-frequency wave
with a wavenumber x times smaller. The factor x
arises because near inertial waves (k’, »’) can only
be generated by double-frequency waves (k, w) with
vertical wavenumbers B < B'/x, because of the
resonance constraints. If we assume I(B, w)
= I(B)f/w®* the growth rate becomes

27 (B
UK = o ﬂfN—zI(E_)
32 X

27 i<B)
X
= 2L R 5L
, 3 RT—

The growth time (22) is shown in Fig. 8 forx = V10
(the average value of x for the GM spectral models)
and compares favorably with the exact numerical .
calculation displayed in Fig. 11 of MB. Again,
wr™! > 1 except for B ~ B, and larger. o

Equilibrium with respect to the parametric sub-
harmonic-instability mechanism requires that the
energy levels of the interactirig waves be equal, i.e.,
Ak') ~ AK") ~ 2A(k) or EK’) ~ EK") ~ E(k).
Partial equilibritm may be obtained by increasing
the energy of inertial waves, i.e., an inertial peak.
The GM spectra are not in equilibrium, however.
Energy is still transferred from small to large wave-
numbers. ]

The parametric subharmonic-instability mechanism
and the induced-diffusion mechanism represent the
low- and high-frequency limits of the transfer at
high vertical wavenumbers. High-vertical-wave-
number waves with frequencies close to f interact
mainly with a low-vertical-wavenumber wave of
twice the frequency. This is the parametric sub-
harmonic-instability mechanism. High-vertical-
wavenumber waves with fréquencies much larger
than f interact mainly with a low-vertical-wavenum-
ber, low-frequency wave. This is the induced-
diffusion mechanism. In the intermediate frequency
range the transfers are not dominated by any
particular scale-selective interaction triad.

(3 f @n

22)

5. Conclusions

Nonlinear interactions transfer energy and mo-

. mentum among the various wave components. The

numerical evaluation of the transfer rates for the
GM spectral models by McComas and Bretherton
(1977) showed that the transfer at high frequencies
and high wavenumbers is dominated by the induced-
diffusion mechanism, at low frequencies and high
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TABLE 1. Dimensionless transfer rates for the
various interaction mechanisms.

(w7)™!, general (o7)™', GM76
Elastic e 108 EB’ B
scattering 4 S N B,
Induced L 8
diffusion, slow R @ (w ) EB: B
2 f s N B,
Induced ilL 8
diffusion, fast T Ri-t (2)3 (m ) EB,? (ﬂ)z B
2 S N2 \f) B
Parametric i B
subharmonic 27 fl(}* ’ Zf) 27 EB.: B
instability — mRi 35 '32m NT B,

wavenumbers by the parametric subharmonic-
instability mechanism, and in an asymmetric high-
frequency field by the elastic-scattering mechanism.
The transfers within the energetic low-frequency,
low-wavenumber region are weak and not dominated
by any particular process. In this paper the transfer
rates and times for the three dominant mechanisms
were evaluated analytically. The analytical approxi-
mations utilized the specific relationships between
the frequencies and wavenumbers of the interacting
waves for each of the processes, and the fact that
energy and action are concentrated at low fre-
quencies and wavenumbers for the GM spectral
models. The analytic approximations were shown to
agree well with the exact numerically calculated
transfer rates.

The analytically calculated transfer rates are listed
in Table 1. They depend on the Richardson number
and on the ratio of the shear content of the low-
frequency near-inertial waves to the total shear.
For the GM76 spectral model the transfer times are
remarkably equal, except for the fast diffusion
time scale.

The analytical approximations provide a con-
venient tool to discuss various dynamical problems.
We specifically discussed as to what extent high-
wavenumber internal waves can be treated in the
weak-interaction limit. The internal wave field can
be considered weak as long as the sources and
sinks are weak. For an overall dissipation time
scale of 30 days, waves with wavelengths down
to S m are weak. We also discussed the possible
equilibrium states. The GM spectral models are in
equilibrium with respect to the elastic-scattering
mechanism, close to equilibrium with respect to
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the induced-diffusion mechanism, and not in
equilibrium with respect to the parametric sub-
harmonic-instability mechanism. The full potential
of the analytical approximations becomes evident
when one attempts to solve the complete radiation-
balance equation of the internal-wave field, includ-
ing sources and sinks. Results are discussed by
MM (1980).
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