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Abstract

The properties of mesoscale Lagrangian turbulence in the Adriatic
Sea are studied from a drifter data set spanning 1990-1999, focus-
ing on the role of inhomogeneity and nonstationarity. A preliminary
study is performed on the dependence of the turbulent velocity statis-
tics on bin averaging, and a preferential bin scale of 0.25

◦

is chosen.
Comparison with independent estimates obtained using an optimized
spline technique confirms this choice. Three main regions are identi-
fied where the velocity statistics are approximately homogeneous: the
two boundary currents, West (East) Adriatic Current, WAC (EAC),
and the southern central gyre, CG. The CG region is found to be
characterized by symmetric probability density function of velocity,
approximately exponential autocorrelations and well defined integral
quantities such as diffusivity and time scale. The boundary regions,
instead, are significantly asymmetric with skewness indicating prefer-
ential events in the direction of the mean flow. The autocorrelation
in the along mean flow direction is characterized by two time scales,
with a secondary exponential with slow decay time of ≈ 11-12 days
particularly evident in the EAC region. Seasonal partitioning of the
data shows that this secondary scale is especially prominent in the
summer-fall season. Possible physical explanations for the secondary
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scale are discussed in terms of low frequency fluctuations of forcings
and in terms of mean flow curvature inducing fluctuations in the par-
ticle trajectories. Consequences of the results for transport modelling
in the Adriatic Sea are discussed.

1 Introduction

The Adriatic Sea is a semienclosed sub-basin of the Mediterranean Sea (Fig.1a).
It is located in a central geo-political area and it plays an important role in the
maritime commerce. Its circulation has been studied starting from the first
half of the nineteen century (Poulain and Cushman-Roisin, 2001), so that its
qualitative characteristics have been known for a long time. A more quantita-
tive knowledge of the oceanography of the Adriatic Sea, on the other hand, is
much more recent, and due to the systematic studies of the last decades using
both Eulerian and Lagrangian instruments (Poulain and Cushman-Roisin,
2001). In particular, a significant contribution to the knowledge of the sur-
face circulation has been provided by a drifter data set spanning 1990-1999,
recently analyzed by Poulain (2001). These data provide a significant spatial
and temporal coverage, allowing to determine the properties of the circula-
tion and of its variability.

In Poulain (2001), the surface drifter data set 1990-1999 has been ana-
lyzed to study the general circulation and its seasonal variability. The results
confirmed the global cyclonic circulation in the Adriatic Sea seen in earlier
studies (Artegiani et al., 1997), with closed recirculation cells in the central
and southern regions. Spatial inhomogeneity is found to be significant not
only in the mean flow but also in the Eddy Kinetic Energy (EKE) pattern,
reaching the highest values along the coast in the southern and central ar-
eas, in correspondence to the strong boundary currents. The analysis also
highlights the presence of a marked seasonal signal, with the coastal currents
being more developed in summer and fall, and the southern recirculating cell
being more pronounced in winter.

In addition to the information on Eulerian quantities such as mean flow
and EKE, drifter data provide also direct information on Lagrangian proper-
ties such as eddy diffusivity K and Lagrangian time scales T , characterizing
the turbulent transport of passive tracers in the basin. The knowledge of
transport and dispersion processes of passive tracers is of primary impor-
tance in order to correctly manage the maritime activities and the coastal
development of the area, especially considering that the Adriatic is a highly
populated basin, with many different antropic activities such as agriculture,
tourism, industry, fishing and military navigation.
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In Poulain (2001), estimates of K and T have been computed providing
values of K ≈ 2 × 107 cm2 sec−1 and T ≈ 2 days, averaged over the whole
basin and over all seasons. Similar results have been obtained in a previous
paper (Falco et al., 2000), using a restricted data set spanning 1994-1996. In
Falco et al. (2000), the estimated values have also been used as input pa-
rameters for a simple stochastic transport model, and the results have been
compared with data, considering patterns of turbulent transport and disper-
sion from isolated sources. The comparison in Falco et al. (2000) is overall
satisfactory, even though some differences between data and model persist,
especially concerning first arrival times of tracer particles at given locations.
These differences might be due to various reasons. One possibility is that
the use of global parameters in the model is not appropriate, since it does
not take into account the statistical inhomogeneity and nonstationarity of
the parameter values. Alternatively, the differences might be due to some in-
herent properties of turbulent processes, such as non-gaussianity or presence
of multiple scales in the turbulent field, which are not accounted for in the
simple stochastic model used by Falco et al. (2000). These aspects are still
unclear and will be addressed in the present study.

In this paper, we consider the complete data set for the period 1990-1999
as in Poulain (2001), and we analyze the Lagrangian turbulent component
of the flow, with the goal of

— identifying the main statistical properties;

— determining the role of inhomogeneity and nonstationarity.

The results will provide indications on suitable transport models for the area.
Inhomogeneity and nonstationarity for standard Eulerian quantities such

as mean flow and EKE have been fully explored in Poulain (2001), while
only preliminary results have been given for the Lagrangian statistics. Fur-
thermore, the inhomogeneity of probability density function (pdf) shapes
(form factors like skewness and kurtosis) have not been analyzed yet. In this
paper, the spatial dependence of Lagrangian statistics is studied first, divid-
ing the Adriatic Sea in approximately homogeneous regions. An attempt is
then made to consider the effects on non-stationarity, grouping the data in
seasons, similarly to what done in Poulain (2001) for the Eulerian statistics.

The paper is organized as follows. A brief overview of the Adriatic Sea
and of previous results on its turbulent properties are provided in Section
2. In Section 3, information on the drifter data set and on the methodology
used to compute the turbulent statistics are given. The results of the analysis
are presented in Section 4, while a summary and a discussion of the results
are provided in Section 5.
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2 Background

2.1 The Adriatic Sea

The Adriatic Sea is the northernmost semi-enclosed basin of the Mediter-
ranean connected to the Ionian Sea at its southern end through the Strait of
Otranto (Fig. 1). The Adriatic basin, which is elongated and somewhat rect-
angular (800 km by 200 km), can be divided into three distinct regions gener-
ally known as the northern, middle and southern Adriatic (Cushman-Roisin et al.,
2001). The northern Adriatic lies on the continental shelf, which slopes gently
southwards to a depth of about 100 m. The middle Adriatic begins where the
bottom abruptly drops from 100 m to over 250 m to form the Mid-Adriatic
Pit (also called Jabuka Pit) and ends at the Palagruza Sill, where the bottom
rises again to approximately 150 m. Finally, the southern Adriatic, extend-
ing from Palagruza Sill to the Strait of Otranto (780 m deep) is characterized
by an abyssal basin called the South Adriatic Pit, with a maximum depth
exceeding 1200 m. The western coast describes gentle curves, whereas the
eastern coast is characterized by numerous channels and islands of complex
topography (Fig. 1a).

The winds and freshwater runoff are important forcings of the Adriatic
Sea. The energetic northeasterly bora and the southeasterly sirocco winds are
episodic events that disrupt the weaker but longer-lasting winds, which exist
the rest of the time (Poulain and Raicich, 2001); the Po River in the northern
basin provides the largest single contribution to the freshwater runoff, but
there are other rivers and land runoff with significant discharges (Raicich,
1996). Besides seasonal variations, these forcings are characterized by intense
variability on time scales ranging between a day and a week.

The Adriatic Sea mean surface flow is globally cyclonic (Fig. 1b) due to
its mixed positive-negative estuarine circulation forced by buoyancy input
from the rivers (mainly the Po River) and by strong air-sea fluxes resulting
in loss of buoyancy and dense water formation. The Eastern Adriatic Cur-
rent (EAC) flows along the eastern side from the eastern Strait of Otranto
to as far north as the Istrian Peninsula. A return flow (the WAC) is seen
flowing to the southeast along the western coast (Poulain, 1999, 2001). Re-
circulation cells embedded in the global cyclonic pattern are found in the
lower northern, the middle and the southern sub-basins, the latter two being
controlled by the topography of the Mid and South Adriatic Pits, respec-
tively. These main circulation patterns are constantly perturbed by higher-
frequency currents variations at inertial/tidal and meso- (e.g., 10-day time
scale; Cerovecki et al., 1991) scales. In particular, the wind stress is an im-
portant driving mechanism, causing transients currents that can be an order
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of magnitude larger than the mean circulation. The corresponding length
scale is 10-20 km, i.e., several times the baroclinic radius of deformation,
which in the Adriatic can be as short as 5 km (Cushman-Roisin et al., 2001).

2.2 Turbulent transport in the Adriatic Sea and pre-

vious drifter studies

Drifter data are especially suited for transport studies since they move in
good approximation following the motion of water parcels (Niiler et al., 1995).
As such, drifter data have often been used in the literature to compute pa-
rameters to be used in turbulent transport and dispersion models (Davis,
1991, 1994). In the Adriatic Sea, as mentioned in the Introduction, turbu-
lent parameters have been previously computed by Falco et al. (2000) and
Poulain (2001) as global averages over the basin. A brief overview is given
in the following.

2.2.1 Models of turbulent transport and parameter definitions

The transport of passive tracers in the marine environment is usually re-
garded as due to advection of the “mean” flow, i.e., of the large scale com-
ponent of the flow u(x, t), and to dispersion caused by the “turbulent” flow,
i.e., of the mesoscale and smaller scale flow. The simplest possible model
used to describe these processes is the advection-diffusion equation,

∂C/∂t + ∇ · (UC) = ∇ · (K∇C) (1)

where C is the average concentration of a passive tracer, U is the mean flow
field and K is the diffusivity tensor defined as:

Kij =
∫ ∞

o
Rij(τ)dτ (2)

where R(τ) is the Lagrangian autocovariance,

Rij(τ) = 〈u′
i(t)u

′
j(t + τ)〉 (3)

with 〈·〉 being the ensemble average and u′ = u − U being the turbulent
Lagrangian velocity, i.e., the residual velocity following a particle. Note that
in this definition, R depends only on the time lag τ , consistently with an
homogeneous and steady situation. In fact, non homogeneous and unsteady
flows do not allow for a consistent definition of the above quantities.

The advection-diffusion equation Eq. (1) can be correctly applied only in
presence of a clear scale separation between the scale of diffusion mechanism
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and the scale of variation of the quantity being transported (Corrsin, 1974).
Generalizations of Eq. (1) are possible, for example introducing a “history
term” in Eq. (1) that takes into account the interactions between U and u′

(e.g., Davis, 1987). Alternatively, a different class of models can be used,
that are easily generalizable and are based on stochastic ordinary differential
equation describing the motion of single tracer particles (e.g., Griffa, 1996;
Berloff and McWilliams, 2002).

A general formulation was given by Thomson (1987) and further widely
used. The stochastic equations describing the particle state z are

dzi = ai dt + bij dWj (4)

where dW is a random increment from a normal distribution with zero mean
and second order moment 〈 dWi(t) dWj(s)〉 = δijδ(t − s) dt.

Equation (1) can be seen as equivalent to the simplest of these stochas-
tic models, i.e., the pure random walk model, where the particle state is
described by the positions, i.e., z ≡ x only, which are assumed to be Marko-
vian while the velocity u′ is a random process with no memory (zero-order
model). A more general model can be obtained considering the particle state
defined by its position and velocity. Thus z ≡ (x,u′) are joint Markovian,
so that the turbulent velocity u′ has a finite memory scale, T (first-order
model). In this case the model can also be applied for times shorter than the
characteristic memory time T , in contrast to the zeroth-order model. If times
for which acceleration is significantly correlated is important, second order
models should be used (Sawford, 1999). Higher order models are possible
(see, e.g., Berloff and McWilliams, 2002) but they require some knowledge
on the supposed universal behavior of very elusive quantities such as time
derivatives of tracer acceleration.

For a homogeneous and stationary flow with independent velocity com-
ponents, the first-order model can be written for the fluctuating part u′ for
each component and corresponds to the linear Langevin equation (i.e., the
Ornstein-Uhlenbeck process, see, e.g., Risken, 1989):

dxi = (Ui + u′
i) dt (5)

du′
i = −u′

i

Ti

dt +

√

2σ2
i

Ti

dWi (6)

where σ2
i and Ti are the variance and the correlation time scale of u′

i, respec-
tively.

For the model (5–6), u′
i is Gaussian and

Rii(τ) = σ2
i exp (− τ

Ti

), (7)
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so that Ti

Ti =
1

σ2
i

∫ ∞

o
Rii(τ) =

Kii

σ2
i

(8)

corresponds to the e-folding time scale, or memory scale of u′
i.

Description of more complex situations as unsteadiness and inhomogene-
ity, as well as non-Gaussian Eulerian velocity field, need the more general
formulation of Thomson (1987). An accurate understanding of these situa-
tions is thus necessary in order to properly choose the model to be applied
to describe transport processes to the required level of accuracy.

2.2.2 Results from previous studies in the Adriatic Sea

In Falco et al. (2000), the model (5–6) has been applied using the drifter data
set 1994-1996. The pdf for the meridional and zonal components of u′, have
been computed for the whole dataset and found to be qualitatively close to
Gaussian for small and intermediate values, while differences appear in the
tails.

For each velocity component, the autocovariance Eq. (3) has been com-
puted and the parameters Ti and σ2

i have been estimated: σ2
i ≈ 100 cm2/sec2,

Ti ≈ 2 days. These values have been used also in Lagrangian prediction stud-
ies (Castellari et al., 2001) with good results. Rii(τ) computed in Falco et al.
(2000) appears to be qualitatively similar to the exponential shape (Eq. (7)),
at least for small τ whereas it appears to be different from exponential for
time lags τ > Ti, since the autocovariance tail maintains significantly differ-
ent from zero.

In Poulain (2001), estimates of Rii(τ), Ti and Kii have been computed
using the more extensive data set 1990-1999. A different method than in
Falco et al. (2000) has been used for the analysis (Davis, 1991), but the ob-
tained results are qualitatively similar to the ones of Falco et al. (2000). Also
in this case, the autocovariance Rii(τ) does not converges to zero, resulting
in a Kii which does not asymptote to a constant.

There might be various reasons for the observed tails in the autocovari-
ances and in the pdf. First of all, they might be an effect of poorly resolved
shears in the mean flow U. This aspect has been partially investigated in
Falco et al. (2000) and Poulain (2001) using various techniques to compute
U(x). Another possible explanation is related to unresolved inhomogeneity
and nonstationarity in the turbulent flow. Since the estimates of the pdf and
autocovariances are global, over the whole basin and over the whole time
period, they might be putting together different properties from different re-
gions in space and time, resulting in tails. Finally, the tails might be due to
inherent properties of the turbulent field, which might be different from the
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simple picture of an Eulerian Gaussian pdf and an exponential Lagrangian
correlation for u′.

In this paper, these open questions are addressed. A careful examination
of the dependence of turbulent statistics on the mean flow U estimation is
performed. Possible dependence on spatial inhomogeneity is studied, par-
titioning the domain in approximatively homogeneous regions. Finally, an
attempt to resolve seasonal time dependence is performed.

3 Data and methods

3.1 The drifter data set

As part of various scientific and military programs, surface drifters were
launched in the Adriatic in order to measure the temperature and currents
near the surface. Most of the drifters were of the CODE-type and followed
the currents in the first meter of water with an accuracy of a few cm/s
(Poulain and Zanasca, 1998; Poulain, 1999). They were tracked by, and re-
layed SST data to, the Argos system onboard the NOAA satellites. More
details on the drifter design, the drifter data and the data processing can be
found in Poulain et al. (2003). Surface velocities were calculated from the
low-pass filtered drifter position data and do not include tidal/inertial com-
ponents. The Adriatic drifter database includes the data of 201 drifters span-
ning the time period between 1 August 1990 and 31 July 1999. It contains
time series of latitude, longitude, zonal and meridional velocity components
and sea surface temperature, all sampled at 6-h intervals. Due to their short
operating lives (half life of about 40 days), the drifter data distribution is
very sensitive to the specific locations and times of drifter deployments. The
maximum data density occurs in the southern Adriatic and in the Strait of
Otranto. Most of the observations correspond to the years 1995-1999.

3.2 Statistical estimate of the mean flow: averaging

scales

Estimating the mean flow U(x, t) is of crucial importance for the identifi-
cation of the turbulent component u′, since u′ is computed as the velocity
residual following trajectories. If the space and time scales of U(x, t) are not
correctly evaluated, they can seriously contaminate the statistics of u′. Par-
ticularly delicate is the identification of the space scales of the mean shears
in U, since they can be relatively small (of the same order as the scales of
turbulent mesoscale variability), and, if not resolved, they can result in per-
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sistent tails in the autocovariances and spuriously high estimates of turbulent
dispersion (e.g., Bauer et al., 1998). Identifying a correct averaging scale La

for estimating U is therefore a very important issue for estimating the u′

statistics.
Various methods can be used to estimate U. Here we consider two meth-

ods: the classic methods of bin averaging and a method based on optimized
bicubic spline interpolation (Inoue 1986, Bauer et al., 1998). Results from
the two methods are compared, in order to test their robustness. The re-
sults from bin averaging are discusses first, since the method is simpler and
it allows for a more straightforward analysis of the impact of the averaging
scales on the estimates.

For the bin averaging method, La simply corresponds to the bin size. In
principle, given a sufficiently high number of data, an appropriate averaging
scale L̂a can be identified such that the mean flow shear is well resolved.
The u′ and U statistics are expected to be independent on La for La < L̂a.
In practical applications, though, the number of data is limited and the
averaging scale is often chosen as a compromise between the high resolution,
necessary to resolve the mean shear, and the data density per bin, necessary
to ensure significant estimates. In practice, then, La is often chosen as La >
L̂a and the asymptotic independency of the statistics on La is not reached.

Poulain (2001) tested the dependence of the mean and eddy kinetic en-
ergy, MKE and EKE, on the bin averaging scale La for the 1990-1999 data
set. Circular, overlapping bins with radius varying between 400 and 12.5
km were considered. It was found that, in the considered range, EKE and
MKE (computed over the whole basin) do not converge toward a constant
at decreasing La. A similar calculation is repeated here (Fig. 2), considering
some modifications. First of all, we consider square bins nonoverlapping, to
facilitate the computation of turbulent statistics, such as R(τ), which involve
particle tracking. Also the EKE and MKE estimates are computed consid-
ering only “significant” bins, i.e., bins with more than 10 independent data,
nbi > 10, where nbi is computed resampling each trajectory with a period
T = 2 days, on the basis of previous results from Falco et al. (2000) and
Poulain (2001). Finally, the values of EKE and MKE are displayed in Fig. 2
together with a parameter, NLa/Ntot, providing information on the statistical
significance of the results at a given La. NLa/Ntot, in fact is the fraction of
data actually used in the estimates (i.e., belonging to the significant bins)
over the total amount of data in the basin Ntot.

The behavior of EKE and MKE in Fig. 2 is qualitatively similar to what
shown in Poulain (2001), even though the considered range is slightly dif-
ferent and reaches lower values of La (bin sizes vary between 1

◦

and 0.05
◦

).
The values of EKE and MKE do not appear to converge at small La, but the
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interesting point is that they tend to vary significantly for La < 0.25
◦

, i.e.,

in correspondence to the drastic decrease of NLa/Ntot. This suggests that
the strong lack of saturation at small scales is mainly due to the fact that
increasingly fewer bins are significant and therefore the statistics themseplves
become meaningless. These considerations suggest that the “optimal” scale
La, given the available number of data Ntot is of the order of 0.25

◦

, since
it allows for the highest shear resolution still maintain a significant num-
ber of data (≈ 80%). This choice is in agreement with previous results by
Falco et al. (2000) and Poulain (1999).

The binned mean field U obtained with the 0.25
◦

bin (i.e., between 19
and 28 km) is shown in Fig. 4. As it can be seen, it is qualitatively similar
to the U field obtained by Poulain (2001, Fig. 1b) with a 20 km circular bin
average.

As a further check on the binned results and on the La choice, a compari-
son is performed with results obtained using the spline method (Bauer et al.,
1998, 2002). This method, previously applied by Falco et al., (2000) to the
1994-1996 data set, is based on a bicubic spline interpolation (Inoue, 1986)
whose parameters are optimized in order to guarantee minimum energy in
the fluctuation field u′ at low frequencies. Notice that, with respect to the
binning average technique, the spline method has the advantage that the
estimated U(x) is a smooth function of space. As a consequence, the values
of the turbulent residuals u′ can be computed subtracting the exact values of
U along trajectories, instead than considering discrete average values inside
each bin. In other words, the spline technique allows for a better resolution
of the shear inside the bins.

Details on the choice of the spline parameters are given in Appendix.
The resulting statistics are compared with the binned results in Fig. 2. The
turbulent residual u′ has been computed subtracting the splined U, and the
associated EKE have been calculated as function of La. The EKE dependence
on size for very small scales is due to the fact that EKE is computed as an
average over significant bins and the number of bins decreases for small La.
In the case of the binned U described before, instead, also the estimates
of U and u′ inside each grid change and deteriorate as La decreases. As a
consequence, it is not surprising that the EKE values change much less in
the splined case with respect to the binned case. Notice that the splined
EKE values are very similar to the binned ones for bins in the range between
0.35

◦ − 0.25
◦

. This provides support to the choice of La = 0.25
◦

. Also, a
direct comparison between the splined (not shown) and binned U fields show
a great similarity, as already noticed also in the case of Falco et al. (2000).

In conclusion, the spline analysis confirms that the choice of La = 0.25
◦

is appropriate. La = 0.25
◦

, in fact, provides robust estimates while resolv-
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ing the important spatial variations of the mean flow and averaging the
mesoscale.

3.3 Homogeneous regions for turbulence statistics

We are interested in identifying regions where the u′ statistics can be consid-
ered approximately homogeneous, so that the main turbulent properties can
be meaningfully studied. In a number of studies in various oceans and for var-
ious data sets (Swenson and Niiler, 1996; Bauer et al., 2002; Veneziani et al.,
2003), “homogeneous” regions have been identified as regions with consistent
dynamical and statistical properties. A first qualitative identification of con-
sistent dynamical regions in the Adriatic Sea can be made based on the
literature and on the knowledge of the mean flow and of the topographic
structures (Fig. 1).

First of all, two boundary current regions can be identified, along the
eastern coast (Eastern Adriatic Current, EAC) and western coast (Western
Adriatic Current, WAC). These regions are characterized by strong mean
flows and well organized current structure. A third region can be identi-
fied with the central area of the cyclonic gyre in the south/central Adriatic
(Central Gyre, CG). This region is characterized by a deep topography (espe-
cially in the southern part) and by a weaker mean flow structure. Finally, the
northern part of the basin, characterized by shallow depth (< 50 m), could
be considered as a forth region (Northern Region, NR). With respect to the
other regions, though, NR appears less dynamically homogeneous, given that
the western side is heavily dominated by buoyancy forcing related to the Po
river discharge, while the eastern part is more directly influenced by wind
forcing. Also, NR has a lower data density with respect to the other regions
(Poulain, 2001). For these reasons, in the following we will focus on EAC,
WAC and CG. A complete analysis of NR will be performed in future works,
when more data will be available.

As a second step, a quantitative definition of the boundaries between
regions must be provided. Here we propose to use as a main parame-
ter to discriminate between regions the relative turbulence intensity γ =
√

EKE/MKE. The parameter γ is expected to vary from γ < 1 in the
boundary current regions dominated by the mean flow, to γ > 1 in the the
central gyre region dominated by fluctuations.

A scatterplot of γ versus
√

MKE is shown in Fig. 3. Two well defined
regimes can be seen, with γ < 1 and γ > 1 respectively. The two regimes
are separated by

√
MKE ≈ 6 − 7 cm sec−1. Based on this result, we use the

(conservative) value
√

MKE = 8 cm sec−1 to discriminate between regions.
The resulting partition is shown in Fig. 4. As it can be seen, the regions
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(indicated by the different colors of the mean flow arrows) appear well de-
fined, indicating that the criterium is consistent. The WAC region reaches
the northern part of the basin, up to ≈ 44

◦

N , because of the influence of the
Po discharge on the boundary current. The EAC region, on the other hand,
is directly influenced by the Ionian exchange through the Otranto Strait and
it is limited to the south/central part of the basin, connected to the cy-
clonic gyre. The CG region appears well defined in the center of the two
recirculating cells in the southern and central basin.

It is interesting to compare the regions defined in Fig. 4 with the pattern
of EKE computed by Poulain (2001, Fig. 4d). The two boundary regions
EAC and WAC, even though characterized by EKE/MKE < 1, correspond to
regions of high EKE values, EKE > 100 cm2 sec−2. The CG region, instead
is characterized by low EKE values, approximately constant in space. The
three regions, then, appear to be quasi-homogeneous in terms of EKE values,
confirming the validity of the partition. The northern region NR, on the other
hand, shows more pronounced gradients of EKE, with EKE > 100 cm2sec−2

close to the Po delta, EKE ≈ 50 cm2 sec−2 in the central part and lower
values in the remaining parts. This confirms the fact that NR cannot be
considered a well defined homogeneous region as the other three, and it will
have to be treated with care in the future, with a more extensive data set.

The main diagnostics presented hereafter and computed for each region
are:

Characterization of the u′ pdf. Values of skewness and kurtosis will be
evaluated and compared with standard Gaussian values

Estimation of u′ autocorrelations, ρi(τ) = Rii(τ)/σ2
i . They will be qualita-

tively compared to the exponential shape (7) and estimates of e-folding
time scales will be performed. Estimation of integral quantities such as
diffusivity K from Eq. (2) and integral time scale T from Eq. (8) will
also be performed.

These quantities will be first computed as averages over the whole time
period, and then an attempt to separate the data seasonally will be per-
formed.

Since all the quantities are expressed as vector components, the choice of
the coordinate system is expected to play a role in the presentation of the
results. It is expected that the mean flow (when significant) could influence
turbulent features resulting in an anisotropy of statistics. Thus, in the fol-
lowing, we consider primarily a “natural” coordinate system, which describes
the main properties more clearly. The natural Cartesian system is obtained

12



rotating locally along the mean flow axes. The components of a quantity
Q in that system are the streamwise componente Q‖ and the across-stream
componente Q⊥.

4 Results

4.1 Statistics in the homogeneous regions

Here the statistics of u′ in the three regions identified in Section 3.3 are com-
puted averaging over the whole time period, i.e., assuming stationarity over
the 9 years of measurements. In all cases, u′ is computed as residual velocity
with respect to the 0.25

◦ × 0.25
◦

binned mean flow, as explained in Section
3.2. In some selected cases, results from other bin sizes and from the spline
method are considered as well, in order to further test the influence of the U

estimation on the results. As in Section 3, the statistics are computed only in
the significant bins, nb > 10. Also, data points with velocities higher than 6
times the standard deviations have been removed. They represent an ensem-
ble of isolated events that account for 10 data points in total, distributed over
4 drifters. While they do not significantly affect the second order statistics,
they are found to affect higher order moments such as skewness and kurtosis.

4.1.1 Characterization of the velocity pdf

The pdf of u′ is computed normalizing the velocity locally, using the vari-
ance σ2

b computed in each bin (Bracco et al., 2000). This is done in order
to remove possible residual inhomogeneities inside the regions. The pdfs are
characterized by the skewness Sk = 〈u′3〉/σ3 and the kurtosis Ku = 〈u′4〉/σ4.
Here we follow the results of Lenschow et al. (1994), which provide error esti-
mates for specific processes at different degrees of non-gaussianity as function
of the total number of independent data Ni. In the range of our data (Ta-
ble 1), the mean square errors of Sk and Ku from Lenschow et al. (1994)
appear to be (δSk)2 ≈ 10/Ni, (δKu)2 ≈ 330/Ni. Notice that these values can
be considered only indicative, since they are obtained for a specific process.

Before going into the details of the results and discussing them from a
physical point of view, a preliminary statistical analysis is carried out to test
the dependence of the higher moments Sk and Ku from the bin size, similarly
to what done in Section 3.2 for the lower order moments. In Fig. 5a,b, esti-
mates of Sk and Ku computed over the whole basin (in Cartesian coordinate)
are shown, at varying bin size from 1

◦

to 0.2
◦

(smaller bins are not considered
given the small number of independent data, see Fig. 2). Given that the total
number of independent data is of the order of Ni ≈ 4000, the error estimates
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from Lenschow et al. (1994) suggest
√

(δSk)2 ≈ 0.05,
√

(δKu)2 ≈ 0.25. As it
can be seen, the values of Sk and Ku do not change significantly in the range
0.5

◦ − 0.25
◦

. Values of Sk and Ku have also been computed using splined
estimates (not shown), and they are found to fall in the same range. These
results confirm the choice of the 0.25

◦

binning of Section 3.2. Notice that,
since Sk and Ku in Fig. 5a,b are computed averaging over different dynamical
regions, their values do not have a straightforward physical interpretation.
We will come back on this point in the following, after analyzing the specific
regions.

The pdfs for the three regions computed with the 0.25
◦

binning are shown
in Fig. 6a,b,c in natural coordinates, while the Sk and Ku values are sum-

marized in Table 1. For each region, Ni ≈ 1000, so that
√

(δSk)2 ≈ 0.1,
√

(δKu)2 ≈ 0.5. Furthermore, a quantitative test on the deviation from gaus-

sianity has been performed using the Kolmogorov-Smirnov test (Priestley,
1981; Press et al., 1992). Notice that the K-S test is known to be mostly
sensitive to the distribution mode (i.e., to the presence of asymmetry, or
equivalently to Sk being different from zero), while it can be quite insensitive
to the existence of tails in the distribution (large Ku). More sophisticated
tests should be used to guarantee sensitivity to the tails.

Let’s start discussing the Eastern boundary region, EAC. The Sk is pos-
itive and significant in the along component (Sk‖ ≈ 0.48), while it is only
marginally different from zero in the cross component (Sk⊥ ≈ −0.14). Pos-
itive skewness indicates that the probability of finding high positive values
of u′

‖ is higher than the probability of negative high values, (while the oppo-
site is true for small values). This is also shown by the pdf shape (Fig. 6a).
Physically, this indicates the existence of an anisotropy in the current, with
the fluctuations being more energetic in the direction of the mean flow. This
asymmetry is not surprising, given the existence of a privileged direction in
the mean. This fact has long been recognized in boundary layer flows (e.g.,
Durst et al., 1987). The cross component, on the other hand, does not have
a privileged direction and its Sk is much smaller, as shown also by the pdf
shape. The values of the kurtosis Ku are around 4 for both components,
indicating high probability for energetic events. This is clear also from the
high tails in the pdf.

The K-S statistics computed for the pdfs of Fig. 6a are α = 0.012 for u′
‖

indicating rejection of the null hypothesis (that the distribution is Gaussian)
at the 95% confidence level. For the cross component u′

⊥, instead, α = 0.09
so that the null hypothesis cannot be rejected. It is worth noting that the
estimates of α depend on the number of independent data Ni, which in turn
depends on T . Here, T is assumed T = 2 days. For the cross component,
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this is probably an overestimate (as it will be shown in the following, see
Fig. 7b), and T = 1 day is probably a better assumption. Even if computed
with T = 1 days, α = 0.04 for u′

⊥, suggesting that the Gaussian hypothesis
can be only marginally rejected.

The results for the western boundary region WAC are qualitatively simi-
lar to the ones foe EAC. The Sk values in natural coordinates are Sk‖ ≈ 0.52
and Sk⊥ ≈ 0.09, suggesting the same along current anisotropy found in EAC.
Notice that the total value of Sk computed over the whole basin (Fig. 5a)
is approximately zero, because the two contributions from the two boundary
currents nearly cancel each other when computed in fixed cartesian coordi-
nates.

Also the structure of the pdfs (Fig. 6b) are qualitatively similar to the
EAC ones, exhibiting a clear asymmetry and high tails, especially for u′

‖.
The K-S statistics are α = 0.027 for u′

‖, suggesting a significant deviation
from gaussianity. For u′

⊥, on the other hand, α = 0.4 (α = 0.097 for T = 1
day), which is not significantly different from Gaussian.

The central region, CG, has lower values of Sk in both components (0.16
and −0.02 respectively). This is shown also by the pdf patterns (Fig. 6c),
which are more symmetric than for EAC and WAC. This is not surprising
given that the mean flow is weaker in CG, so that there is no privileged
direction. The tails, on the other hand, are high also in CG, as shown by the
Ku values that are in the same range (and actually slightly higher) than for
EAC and WAC. The K-S statistics do not show a significant deviation from
gaussianity in any of the two components, α = 0.44 for u′

‖ and α = 0.33 for
u′
⊥ (α = 0.058 for T = 1 day). This is due to the fact that the K-S test is

mostly sensitive to the mode, as explained above.
In summary, the turbulent component along the mean flow is significantly

non Gaussian and, in particular, asymmetric in both boundary currents.
The strong mean flow determines the existence of a privileged direction,
resulting in anisotropy of the fluctuation, with more energetic events in the
direction of the mean. The central gyre region and the cross component of
the boundary currents, do not appear significantly skewed. For all regions
and all components, though, the kurtosis is higher than 3 consistently with
other recent findings (Bracco et al., 2000). indicating the likelihood of high
energy events.

4.1.2 Autocorrelations of u′

The autocorrelations in natural components are shown in Fig. 7a,b The along
component results ρ‖(τ), are shown in Fig. 7a for the 3 regions and for the
whole basin. Errorbars are computed as 1/N where N is the number of in-
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dependent data for each time lag t. The autocorrelation for the whole basin
shows two different regimes with approximately exponential behavior. The
nature of this shape can be better investigated considering the three homo-
geneous regions separately. For small lags exponential behavior is evident in
all the three regions, with a slightly different e-folding time scales: τexp ≈ 1.8
days for EAC and WAC and ≈ 1.1 days for CG. The above values were
computed fitting the exponential function on the first few time lags. This
is consistent with the fact that τexp is representative of fluctuations due to
processes such as internal instabilities and direct wind forcing, which are ex-
pected to be different in the boundary currents and in the gyre center. At
longer lags τ > 3 − 4 days, the behavior in the three regions become even
more distinctively different. In region EAC, a clear change of slope occurs,
indicating that ρ‖ can be characterized by a secondary exponential behavior
with a slower decay time of ≈ 11-12 days. Only a hint of this secondary scale
is present in WAC, while there is no sign of it in CG. The behavior of the
basin average ρ‖, then, appears to be determined mostly by the EAC region.

In contrast to the along component behavior, the cross component, ρ⊥,
(Fig. 7b) appears characterized by a fast decay in all three region as well as in
the basin average (τexp ≈ 0.5−0.7 days), with a significative loss of correlation
for time lags less than 1 day. This can be qualitatively understood considering
as a reference the behavior of parallel and transverse Eulerian correlations
in homogeneous isotropic turbulence (Batchelor, 1970). It indicates that
the turbulent fluctuations, linked to mean flow instabilities, tend to develop
structures oriented along the mean current. As a consequence, the cross
mean flow dispersion is found to be very fast and primarily dominated by
a diffusive regime, while the along mean dispersion tends to be slower and
dominated by more persistent coherent structures. This result suggest that a
correlation time of 2 days (as estimated in Poulain, 2001; Falco et al., 2000)
is actually a measure of mixed properties.

In summary, the results show that the eastern boundary region EAC
is intrinsically different from the center gyre region CG and also partially
different from the western boundary region WAC. While CG (and partially
WAC) are characterized by a single scale of the order of 1-2 day, EAC is
clearly characterized by 2 different time scales, a fast one (order of 1-2 days)
and a significantly longer one (order of 11-12 days). The physical reasons
behind this two-scale behavior is not completely understood yet, and some
possible hypotheses are discussed below.

Falco et al (2000) suggested that the observed autocorrelation tails could
be due to a specific late summer 1995 event sampled by a few drifters launched
in the Strait of Otranto. In order to test this hypothesis, we have removed
this specific subset of drifters and re-computed ρ‖. The results (not shown)
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do not show significant differences and the 2 scales are still evident.
A possible hypothesis is that the 2 scales are due to different dynamical

processes co-existing in the system. The short time scale appears almost cer-
tainly related to mesoscale instability and wind-driven synoptic processes,
while the longer time scale might be related to low frequency fluctuations in
the current, due for instance to changes in wind regimes or to inflow pulses
through the Strait of Otranto This is suggested by the presence of a 10 day
period fluctuation in Eulerian currentmeter records (Poulain, 1999). Finally,
another possibility is that the longer time scale is related to the spatial struc-
ture of the mean flow, namely its curvatures. Such curvature appears more
pronounced and consistently present in the circulation pattern of the EAC
than in the WAC, in agreement with the fact that the the secondary scale
is more evident in EAC. At this point, not enough data are available to
quantitatively test these hypotheses and clearly single out one of them.

4.1.3 Estimates of K and T parameters

From the autocorrelations of Fig. 7a,b, the components of the diffusivity and
integral time scale Eq. (2) and Eq. (8) can be computed by integration. T and
K are input parameters for models, and are therefore of great importance in
practical applications. Estimates of the natural components of T, T‖(t) and
T⊥(t), are shown in Fig. 8a,b for the three regions and for t < 10 days. The
behavior of the K components is the same as for T, since for each component
T (t) = K(t)/σ2 (8). The values of T‖(t), T⊥(t). K‖(t). K⊥(t) at the end of
the integration, at t = 10 days, are reported in Table 2.

The along component T‖(t) (Fig. 8a) shows a significantly different be-
havior in the three regions. In CG, T‖(t) converges toward a constant, so that
the asymptotic value is well defined, T‖ ≈ 1.2 day. This approximately corre-
sponds to the estimate of τexp ≈ 0.8 from Fig. 7a. In EAC, instead, T‖ is not
well defined, given that T‖(t) keeps increasing, reaching a value of ≈ 2.7 days
at t = 10 days, significantly higher than τexp ≈ 1.4 days. Finally, WAC shows
an intermediate behavior, with T‖(t) growing slowly and reaching a value of
≈ 1.9 days, slightly higher than τexp ≈ 1.4 days. These results are consistent
with the shape of ρ‖ (Fig. 7a) in the three regions. The values of K‖ (10 days)
(Table 2) range between 0.7×106 cm2 sec−1 and 3.8×107 cm2 sec−1 showing
a marked variability because of the different EKE in the three regions.

The cross component T⊥(t) (Fig. 8b) shows little variability in all the
three regions, again in keep with the ρ⊥ results (Fig. 7b). In all the regions,
T⊥(t) converges toward a constant value of T⊥ ≈ 0.52−0.78 days, in the same
range as the τexp values. More in details, notice that in WAC T⊥(t) tends to
decrease slightly, possibly in correspondence to saturation phenomena due
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to boundary effects. The values of K⊥ (10 days) in Table 2 range between
1.4 × 106 cm2 sec−1 and 3.1 × 106 cm2 sec−1.

In summary, the results show that the cross components T⊥ and K⊥ are
well defined in the three regions, with T⊥ approximately corresponding to
τexp. The along components T‖ and K‖, instead, are well defined only in CG,
while in the boundary regions and especially in EAC, there is no convergence
to an asymptotic value.

The observed values are quite consistent with the averages reported in
Poulain (2001). Remarkably, in that paper, the strong inhomogeneity and
anisotropy of the flow in the basin was outlined, noting that the estimates
of the time scales for the along flow components in the boundary currents is
significantly larger than the one related to the central gyre.

4.2 Seasonal dependence

As an attempt to consider the effects of non-stationarity, a time partition of
the data is performed grouping them in seasons. The data are not sufficient
to resolve space and time dependence together, since the u′ statistics are
quite sensitive involving higher moments and time lagged quantities. For this
reason, averaging is computed over the whole basin and two main extended
seasons are considered. Based on preliminary tests and on previous results by
Poulain (2001), the following time partition is chosen: a summer-fall season,
spanning July to December, and a winter-spring season, spanning January
to June.

As in Section 4.1, u′ is computed as residual velocity with respect to the
0.25

◦ × 0.25
◦

binned mean flow U. Mean flow estimates in the 2 seasons
are shown in Fig. 9a,b. As discussed in Poulain (2001), during summer-fall
the mean circulation appears more energetic and characterized by enhanced
boundary currents. During the winter-spring season, instead, mean currents
are generally weaker and the southern recirculating gyre is enhanced.

The u′ statistics during the 2 seasons are characterized by the autocorre-
lation functions shown in Fig. 10a,b. The along component ρ‖(τ) (Fig. 10a)
has a distinctively different behavior in the 2 seasons. In summer-fall, the
overall behavior is similar to the one obtained averaging over the whole pe-
riod (Fig. 7a). Two regimes can be seen, one approximately exponential at
small lags, and a secondary one at longer lags, τ > 3days, with significantly
slower decay. This secondary regime is not observed in winter-spring. As for
the cross component ρ⊥(τ) (Fig. 10b), both seasons appears characterized
by a fast decay, as in the averages over the whole period (Fig. 10b).

Various possible explanations for the longer time scale in ρ‖(τ) have been
discussed in Section 4.1 for the whole time average. They include low-
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frequency forcing and current fluctuations, as well as the effects of the mean
flow curvature in the boundary currents. The summer-fall intensification of
Fig. 10a,b does not rule out any of these explanations, given that the strength
and variability of the boundary currents are intensified especially in the fall.

4.3 Summary and concluding remarks

In this paper, the properties of the Lagrangian mesoscale turbulence u′ in
the Adriatic Sea (1990-1999) are investigated, with special case to give a
quantitative estimate of spatial inhomogeneity and nonstationarity.

The turbulent field u′ is estimated as the residual velocity with respect to
the mean flow U, computed from the data using the bin averaging technique.
In a preliminary investigation, the dependence of u′ on the bin size La is
studied and a preferential scale La = 0.25

◦

is chosen. This scale allows for
the highest mean shear resolution still maintaining a significant amount of
data (≈ 80%). Values of higher moments such as skewness Sk and kurtosis
Kr are found to be approximately constant in the La range around 0.25

◦

.
Further support to the choice La = 0.25

◦

is given by the comparison with
results obtained with independent estimates of U based on an optimized
spline technique (Bauer et al., 1998, 2002).

The effects of inhomogeneity and stationarity are studied separately, be-
cause there are not enough data to perform a simultaneous partition in space
and time. The spatial dependence is studied first, partitioning the basin in
approximately homogeneous regions and averaging over the whole time pe-
riod. The effects of nonstationarity are then considered, partitioning the data
seasonally, and averaging over the whole basin.

Three main regions where the u′ statistics can be considered approxi-
mately homogeneous are identified. They correspond to the two (eastern
EAC, and western WAC) boundary current regions, characterized by both

strong mean flow and high kinetic energy (
√

EKE/MKE < 1)), and the
central gyre region CG in the southern and central basin, characterized by

weak mean current and low eddy kinetic energy (
√

EKE/MKE > 1). The
northern region is not included in the study because, in addition to have a
lower data density with respect to the other regions, it appears less dynami-
cally and statistically homogeneous.

The properties of u′ in the three regions are studied considering pdfs,
autocorrelations and integral quantities such as diffusivity and integral time
scales. Natural coordinates, oriented along the mean flow direction, are used,
since they allow to better highlight the dynamical properties of the flow.

The pdfs results indicate that the CG region is in good approximation
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isotropic with high kurtosis values, while the along components of the bound-
ary regions EAC and WAC show significant asymmetry (positive skewness).
This is related to energetic events occurring preferentially in the same di-
rection as the mean flow. Both boundary regions appear significantly non-
Gaussian, while the Gaussian hypothesis cannot be rejected in the CG region.

Both components of the autocorrelation are approximately exponential in
CG, and the integral parameters Tii and Kii are well defined, with values of
the order of 1 day and 6 106 cm2 sec−1 respectively. In the boundary regions,
instead, the along component of the autocorrelation shows a significant “tail”
at lags τ > 4 days, especially in EAC. This tail can be characterized as a
secondary exponential behavior with slower decay time of ≈ 11-12 days.
As a consequence, the integral parameters do not converge for times less
than 10 days. Possible physical reasons for this secondary time scale are
discussed, in terms of low frequency fluctuations in the wind regime and in
the Otranto inflow, or in terms of topographic and mean flow curvatures
inducing fluctuations in the particle trajectories.

The effects of non-stationarity have been partially evaluated partitioning
the data in two extended seasons, corresponding to winter-spring (January
to June) and summer-fall (July-December). The secondary time scales in the
along autocorrelation is found to be present only during summer-fall, when
the mean boundary currents are more enhanced and more energetic.

On the basis of these statistical analysis, the following indications for
the application of transport models can be given. The statistics of u′, and
therefore its modelling description, are strongly inhomogeneous in the three
regions not only in terms of parameter values but also in terms of inherent tur-
bulent properties. It is therefore not surprising that the results of Falco et al.
(2000) show differences between data and model results, given that the model
uses global parameters and assumes gaussianity over the whole basin. Only
region CG can be characterized by homogeneous and Gaussian turbulence
and therefore can be correctly described using a classical Langevin equation
such as the one used by Falco et al. (2000). The boundary regions and espe-
cially EAC, on the other hand, are not correctly described by such a model,
because of the presence of a secondary time scale and of significant deviations
from gaussianity. Similar deviations have been observed in other Lagrangian
data in various ocean regions (Bracco et al., 2000), even though the ubiq-
uity of the result is still under debate (Zhang et al., 2001). Non-Gaussian,
multi scale models are known in the literature (e.g., Pasquero et al., 2001;
Maurizi and Lorenzani, 2001) and their application is expected to strongly
improve results of transport modelling in the Adriatic Sea.
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Appendix: Spline method for estimating U

The spline method used to estimate U (Bauer et al., 1998, 2002) is based
on the application of a bicubic spline interpolation (Inoue, 1986) with opti-
mized parameters to guarantee minimum energy of the fluctuation u′ at low
frequencies. This is done by minimizing a simple metrics which depends on
the integration of the autocovariance R(τ) for τ > T . In other words, the
autocovariance tail is required to be “as flat as possible” under some addi-
tional smoothing requirements. This method, previously applied by Falco et
al. (2000) to the 1994-1996 data set, has been applied 1990-1999 data set.

The spline results depend on four parameters (Inoue, 1986): the values of
the knot spacing, which determines the number of finite elements, and three
weights associated respectively with the uncertainties in the data, in the first
derivatives (tension) and in the second derivatives (roughness). The tension
can be fixed a-priori in order to avoid anomalous behavior at the boundaries
(Inoue, 1986). The other three parameters have been varied in a wide range
of values (knot spacing between 1

◦

and 0.1
◦

, data uncertainty between 50
and 120 cm2sec−2 and roughness between 0.001 and 10000). It is found that
an optimal estimate of U is uniquely defined over the whole parameter space
except for the smallest knot spacing, corresponding to 0.1

◦

. In this case, no
optimal solution is found, in the sense that the metric does not asymptote
and the U field becomes increasingly more noisy as the roughness increases.
This indicates that, as it can be intuitively understood, there is a minimum
resolution related to the number of data available.
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Table captions

Table 1. Values of Skewness Sk and Kurtosis Ku in natural coordinates in
the three zones.

Table 2. Values of correlation time T and diffusion coefficient K in the three
zones.

Figure captions

Figure 1. The Adriatic Sea: a) Topography and drifter deployment loca-
tions; b) Mean flow circulation (Adapted from Poulain, 2001).

Figure 2. Binned Eddy Kinetic Energy (EKE) and Mean Kinetic Energy
(MKE) computed over the whole basin versus bin size La. Also indi-
cated are EKE from spline estimates and number of independent data
used in the estimates, as ratio between data belonging to significant
bins, NLa , and total amount of data, Ntot.

Figure 3. Ratio
√

EKE/MKE versus
√

MKE for significant 0.25
◦ × 0.25

◦

bins in the basin.

Figure 4. Mean flow and homogeneous regions: EAC (green), WAC (red),
CG (blue), NR (black).

Figure 5. Binned a) Skewness and b) Kurtosis in Cartesian coordinates
(x ≡ zonal, y ≡ meridional) computed over the whole basin versus bin
size La. Also indicated is the number of independent data used in the
estimates, as ratio between data belonging to significant bins, NLa, and
total amount of data, Ntot.

Figure 6. Pdfs of turbulent velocity u′ in natural coordinates for the three
regions: a) EAC; b) WAC; c) CG

Figure 7. Autocorrelations ρ of turbulent velocity (logarithmic scale) u′ in
natural coordinates for the three regions and for the whole basin: a)
along component ρ‖; b) cross component ρ⊥. Results are presented
with symbols and model fits with solid lines.

Figure 8. Integral time scales T of turbulent velocity u′ in natural coordi-
nates for the three regions: a) along component T‖; b) cross component
T⊥



Figure 9. Seasonal mean flow: a) winter-spring season; b) summer-fall sea-
son

Figure 10. Autocorrelations ρ of turbulent velocity (logarithmic value) u′

in natural coordinates for the 2 extended seasons computed over the
whole basin: a) along component ρ‖; b) cross component ρ⊥



zone Sk‖ Sk⊥ Ku‖ Ku⊥

EAC 0.48 -0.14 3.9 4.1
CG 0.16 -0.02 4.1 4.2

WAC 0.52 0.09 3.8 4.1

Table 1:

zone T‖ T⊥ K‖ K⊥

EAC 2.7 .78 38×106 3.1×106

CG 1.2 .63 6.9×106 2.9×106

WAC 2.0 .52 29×106 1.4×106

Table 2:



Figure 1:



Figure 1:



 0

 20

 40

 60

 80

 100

 120

 140

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.2

 0.4

 0.6

 0.8

 1

K
in

et
ic

 E
ne

rg
y 

(c
m

2  s
ec

-2
)

N
La

/N
to

t

La (deg)

indep. data
MKE
EKE

EKE (spline)

F
igu

re
2:



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  5  10  15  20  25  30

(E
K

E
/M

K
E

)1/
2

(MKE)1/2 (cm sec-1)

F
igu

re
3:



12˚

12˚

13˚

13˚

14˚

14˚

15˚

15˚

16˚

16˚

17˚

17˚

18˚

18˚

19˚

19˚

20˚

20˚

40˚ 40˚

41˚ 41˚

42˚ 42˚

43˚ 43˚

44˚ 44˚

45˚ 45˚

46˚ 46˚

F
igu

re
4:



-0.4

-0.2

 0

 0.2

 0.4

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.2

 0.4

 0.6

 0.8

 1

S
k

N
La

/N
to

t

La (deg)

Skx
Sky

indep. data

F
igu

re
5:



 3

 3.5

 4

 4.5

 5

 5.5

 6

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.2

 0.4

 0.6

 0.8

 1

K
u

N
La

/N
to

t

La (deg)

Kux
Kuy

indep. data

F
igu

re
5:



 0.0001

 0.001

 0.01

 0.1

 1

-6 -4 -2  0  2  4  6

turbulent velocity (cm sec-1)

EAC

u||
v⊥

Gauss

F
igu

re
6:



 0.0001

 0.001

 0.01

 0.1

 1

-6 -4 -2  0  2  4  6

turbulent velocity (cm sec-1)

WAC

u||
v⊥

Gauss

F
igu

re
6:



 0.0001

 0.001

 0.01

 0.1

 1

-6 -4 -2  0  2  4  6

turbulent velocity (cm sec-1)

CG

u||
v⊥

Gauss

F
igu

re
6:



 0.1

 1

 0  2  4  6  8  10

ρ |
|

t (days)

EAC
CG

WAC
all

F
igu

re
7:



 0.1

 1

 0  0.5  1  1.5  2  2.5  3

ρ ⊥

t (days)

EAC
CG

WAC
all

F
igu

re
7:



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10

T
||(

t)
 (

da
ys

)

t (days)

EAC
CG

WAC

F
igu

re
8:



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.5  1  1.5  2  2.5  3

T
⊥
(t

) 
(d

ay
s)

t (days)

EAC
CG

WAC

F
igu

re
8:



12˚

12˚

13˚

13˚

14˚

14˚

15˚

15˚

16˚

16˚

17˚

17˚

18˚

18˚

19˚

19˚

20˚

20˚

40˚ 40˚

41˚ 41˚

42˚ 42˚

43˚ 43˚

44˚ 44˚

45˚ 45˚

46˚ 46˚

F
igu

re
9:



12˚

12˚

13˚

13˚

14˚

14˚

15˚

15˚

16˚

16˚

17˚

17˚

18˚

18˚

19˚

19˚

20˚

20˚

40˚ 40˚

41˚ 41˚

42˚ 42˚

43˚ 43˚

44˚ 44˚

45˚ 45˚

46˚ 46˚

F
igu

re
9:



 0.1

 1

 0  2  4  6  8  10

ρ |
|

t (days)

summer
winter

F
igu

re
10:



 0.1

 1

 0  0.5  1  1.5  2  2.5  3

ρ ⊥

t (days)

summer
winter

F
igu

re
10:


	Introduction
	Background
	The Adriatic Sea
	Turbulent transport in the Adriatic Sea and previous drifter studies
	Models of turbulent transport and parameter definitions
	Results from previous studies in the Adriatic Sea


	Data and methods
	The drifter data set
	Statistical estimate of the mean flow: averaging scales
	Homogeneous regions for turbulence statistics

	Results
	Statistics in the homogeneous regions
	Characterization of the velocity pdf
	Autocorrelations of u
	Estimates of K and T parameters

	Seasonal dependence
	Summary and concluding remarks


