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The effect of gravity modulation on the nonlinear evolution of long-wavelength
disturbances at the free surface of a surfactant-covered thin liquid layer is studied. The
surfactants, which are assumed to be insoluble, give rise to interfacial concentration
gradients and associated Marangoni flow in the underlying liquid film. A coupled
system of lubrication-theory-based evolution equations for the film height and surfac-
tant concentration is solved numerically using spectral methods. Previous work using
Floquet theory had determined that small-amplitude long-wavelength disturbances are
destabilized by gravity modulation in the presence of surfactant; uncontaminated films
were found to be linearly stable. Our numerical results indicate that uncontaminated
free surfaces are destabilized by nonlinearities and exhibit a harmonic response.
The interface exhibits complex dynamics during a forcing cycle, characterized by
numerous coalescence events between thickened fluid ridges leading to coarsening.
The presence of surfactant-induced Marangoni flow gives rise to a harmonic response,
larger scale fluid structures of reduced amplitude, less frequent coalescence events,
and less complicated film dynamics.

1. Introduction
The adsorption of surface-active agents, or surfactants, at the free surface of a

liquid leads to a reduction in surface tension (Edwards, Brenner & Wasan 1991).
Surfactant concentration variations, however, lead to surface tension gradients that
drive a so-called Marangoni flow in the underlying liquid from regions of low to
high surface tension, which may be undesirable for certain applications such as
coating (Scriven & Sternling 1964) and crystal growth (Carpenter & Homsy 1985).
Free surfaces in fluid systems are also subject to time-dependent gravitational forces
in microgravity environments. The forces, which may assume the form of vertical
vibration, are capable of exciting standing free-surface waves; these waves have
received considerable attention in the literature since the early work of Faraday (1831).

Wave formation on vertically vibrated liquid layers has been investigated for inviscid
(Benjamin & Ursell 1954; Miles & Henderson 1990), Newtonian (Kumar 1996;
Perlin & Schultz 2000), and non-Newtonian fluids (Kumar 1999) in the presence of
sinusoidal modulation of a mean gravity, with Floquet theory applied to obtain time-
periodic solutions of the linearized governing equations. These solutions correspond
to standing waves, obtained above a finite frequency-dependent critical vibration
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amplitude for viscous liquids beyond which viscous dissipation is overcome. Since
no such amplitude exists in the case of inviscid fluids, due to the absence of viscous
dissipation, a unique critical disturbance wavenumber cannot be predicted in this
case. Comparisons carried out between theory and experiment for the viscous case
in terms of the critical amplitude and wavenumber for both Newtonian (Bechhoefer
et al. 1995) and non-Newtonian liquids (Raynal, Kumar & Fauve 1999; Wagner,
Muller & Knorr 1999) yielded excellent agreement.

Recent investigations of nonlinear Faraday waves have involved direct numerical
simulations of the two-dimensional Navier–Stokes equations. Two-dimensional stand-
ing waves between semi-infinite inviscid fluids were studied as a function of the
Atwood number by Wright, Yon & Pozrikidis (2000) using the boundary integral
method and a vortex-sheet-based method; viscous dissipation was taken into con-
sideration using a linear damping coefficient in the momentum conservation equations.
This study shows the emergence of travelling waves in the presence of strong forcing,
which then collide and result in the formation of large ridges. The results of Wright
et al. (2000) also illustrated a transition in the observed response from linear stability
to plume formation and droplet ejection with increasing Atwood number. In the case
of viscous fluids, two-dimensional Navier–Stokes simulations have provided a detailed
picture of the nature of the bifurcation to standing waves and of the velocity field
beneath them (Murakami & Chikano 2001), an elucidation of the waves resulting
from the interactions between different modes (Chen 2002) (although only strictly
valid in the weakly nonlinear regime), and stability maps as a function of the forcing
amplitude, the Froude number, and the initial film thickness (Ubal, Giavedoni & Saita
2003). In the latter study, it was shown that for sufficiently thin films (equal to 10−5 m),
viscous dissipation at the solid boundary strongly influences the flow. Although most
experimental studies show that the standing waves respond subharmonically to the
driving, for highly viscous fluids and low-frequency forcing (Muller et al. 1997)
harmonic responses are observed.

The theoretical studies mentioned above involve uncontaminated interfaces having
a uniform surface tension. What effect does gravity modulation, then, have on distur-
bances at a contaminated free surface? Recently, this question was considered by
Kumar & Matar (2004), who performed a linear stability analysis to account for
surface tension variations due to the presence of an insoluble surfactant adsorbed
at the air–liquid interface. This analysis, which is valid for fluids of arbitrary depth
and viscosity, neglected the effects of lateral boundaries. It was found that surfactants
have a damping effect, raising the critical vibration amplitude needed to excite surface
waves relative to its value for an uncontaminated surafce. For sufficiently large
Marangoni numbers, surfactants also increase the critical wavenumber, suggesting
that surfactants could reduce the size of droplets ejected from the standing waves.

Kumar & Matar (2002) examined the response of a vertically vibrated surfactant-
covered thin liquid film to small-amplitude long-wavelength disturbances using lub-
rication theory. They considered the case in which the thickness of the liquid layer
is much smaller than the wavelength of the interfacial disturbance, thereby allowing
a separation of length scales that was not possible in Kumar & Matar (2004). They
derived a coupled system of nonlinear partial differential equations describing the
free-surface height and the surfactant concentration as a function of time and the
horizontal spatial coordinate. Using Floquet theory, they found that the presence of
surfactant is destabilizing; these disturbances, however, are stable in the case of uncon-
taminated films. Additionally, they found that increasing the relative significance of
the Marangoni stresses, capillarity, body forces, and surfactant diffusivity is stabilizing.
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It is worthy of note that the asymptotic analysis of Kumar & Matar (2002) is funda-
mentally different from one recently reported in the literature (Cerda & Tirapegui
1999; Cerda, Rojas & Tirapegui 2001) in which the linearized Navier–Stokes equations
and boundary conditions are used to develop an evolution equation for interfacial
disturbances. Solutions are obtained that are non-local in time, and which are
expanded in terms of an infinite series of time derivatives. Truncation of this series
leads to a Mathieu equation which does predict that vibration will destabilize surface
disturbances. This analysis does not appear to be a traditional lubrication analysis
like the one adopted here and by Kumar & Matar (2002).

The work of Kumar & Matar (2002) allows the determination of the conditions for
instability and is, therefore, capable of describing the flow near the onset of instabi-
lity only, before nonlinearities become significant. In order to elucidate the system
dynamics beyond the onset of unstable flow, however, solutions of the fully nonlinear
governing equations must be determined. The goal of the present work is therefore
to examine the evolution of clean and surfactant-covered films in the nonlinear
regime using transient numerical simulations of the equations derived by Kumar &
Matar (2002). Note that it is far easier to obtain numerical solutions of the evolution
equations in the present work than it is to solve the two-dimensional Navier–Stokes
equations (Wright et al. 2000; Murakami & Chikano 2001; Ubal et al. 2003).
Thus this lubrication-theory-based formulation can serve as a simpler model, which
may be useful for understanding the behaviour observed in thin films of viscous
liquids.

The rest of this paper is organized as follows. A brief review of the problem
formulation is provided in § 2; details can be found in Kumar & Matar (2002). In § 3,
we validate the numerical procedure used to carry out the computations against the
predictions of linear theory, and devote the remainder of this section to a discussion
of the numerical results in the nonlinear regime of the instability. Finally, concluding
remarks are provided in § 4.

2. Problem formulation
We consider a thin layer of an incompressible Newtonian liquid of density ρ and

viscosity µ, initially covered by a monolayer of insoluble surfactant having a uniform
concentration. This layer rests on an impermeable horizontal support which undergoes
vertical sinusoidal oscillations of amplitude a and frequency ω. We use the coordinate
system (x, z) and the velocity field u = (u, 0, w) to describe the two-dimensional
dynamics, where x and z denote the horizontal and vertical coordinates and u and
w the associated velocity components, respectively. The liquid–solid interface and
undisturbed air–liquid interface are located at z = 0 and z = H, respectively. The
effects of lateral boundaries are neglected as are the dynamics of the essentially
inviscid air, which overlies the liquid layer.

The equations of momentum and mass conservation are respectively given by

ρ(ut + u · ∇u) = −∇p + µ∇2u − ρB(t)ez, ∇ · u = 0, (2.1)

in which t denotes time, p is the pressure, the function B(t) = g − a cos(ωt) is the
modulated gravity wherein g is the mean gravitational acceleration, and ez is the unit
vector in the z-direction.

Solutions of these governing equations are obtained subject to appropriate boundary
conditions. The shear stress balance at the air–liquid interface (Deen 1998), located
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at z = h(x, t), is expressed by

t · π · n = t · ∇sσ, (2.2)

while the normal stress balance is given by

n · π · n = −σκ. (2.3)

Here, σ is the surface tension, κ is the curvature, t and n are the tangent and normal
unit vectors to the interface, respectively, and ∇s = (δ − nn) · ∇ is the surface gradient
operator in which δ is the identity tensor. The tensor π is expressed by

π = −[p − ρB(t)h]δ + µ(∇u + (∇u)T ). (2.4)

The kinematic boundary condition at z = h(x, t) is given by

(∂t + us∂x)h = ws, (2.5)

where us and ws denote the horizontal and vertical components of the velocity
evaluated at z = h. The equation of mass conservation of insoluble surfactant is given
by

Γt + ∇s · (usΓ ) + (u · n)(∇s · n)Γ = D∇2
sΓ, (2.6)

where Γ is the surfactant surface concentration, us =(δ − nn) · u and D is the sur-
factant surface diffusion coefficient (Stone 1990). Finally, no-slip and no-penetration
conditions are applied at the support, located at z = 0:

u = w = 0. (2.7)

In order to render the above equations dimensionless, the following scaling is
chosen:

u = (ωH)ũ, w = (εωH)w̃, x = Lx̃, (z, h) = H(z̃, h̃), (2.8)

t = (1/ω)̃t , p = (µωL/H)p̃, (2.9)

where the tilde denotes dimensionless quantities. Here, we shall assume that the
ratio of the film depth, H, to the wavelength of the interfacial disturbance, L, is
ε = H/L � 1. For the surfactant concentration, Γ , and surface tension, σ , we choose
the following scaling:

Γ = ΓmΓ̃ , σ = σm + σ̃S, (2.10)

where Γm denotes the mean surfactant concentration and σm is the surface tension
corresponding to Γm. The spreading pressure is given by S = σ0 − σm, where σ0

denotes the value of the surface tension for an uncontaminated liquid surface. We
assume that the surfactant concentration is sufficiently dilute to permit use of a linear
equation of state:

σ = σ0 +

(
∂σ

∂Γ

)
Γ =0

Γ. (2.11)

Substitution of these scalings into the equations of mass and momentum
conservation, the boundary conditions at z = 0 and z = h, and the surfactant equation
of state, yields a set of dimensionless equations to leading order in ε. (The tilde is
henceforth dropped.) We now demote the inertial terms in the equations of momentum
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conservation by setting t → εt . All variables are then expanded in powers of ε and the
leading-order equations are manipulated to yield a set of evolution equations for h0

and Γ0, where the subscript ‘0’ denotes the leading-order contribution. As the details
are given in Kumar & Matar (2002), we simply quote the final results below.

The evolution equations are

h0t =
(

1
2
Mh2

0Γ0x + 1
3
h3

0

[
B(t)h0x − CMh0xxx

])
x
, (2.12)

Γ0t =

(
Mh0Γ0Γ0x +

1

Pe
Γ0x + 1

2
Γ0h

2
0

[
B(t)h0x − CMh0xxx

])
x

, (2.13)

where we have used σ0 = 1 − Γ0. Here, M is a Marangoni parameter given by

M ≡ εS
µωH , (2.14)

and B(t) = B − A cos(t) represents a modulated gravitational acceleration where

A ≡ ερaH
µω

(2.15)

is the dimensionless amplitude of sinusoidal acceleration and

B ≡ ερgH
µω

(2.16)

provides a measure of the significance of mean gravitational forces. The parameter
C, given by

C ≡ ε2σm

S , (2.17)

is an inverse capillary number reflecting the importance of capillarity. In (2.13), Pe,
which represents the ratio of surfactant transport by convection to that by surface
diffusion, is expressed by

Pe ≡ ωHL

D , (2.18)

in which D is a constant surfactant surface diffusion coefficient.
For the case where surfactants are absent, we set Γ0 = 0 in (2.12) and (2.13), which

yields a single evolution equation for the uncontaminated film thickness, h
(o)
0 :

h
(o)
0t =

(
1
3
h

(o)3
0

[
B (o)(t)h(o)

0x − C̃(o)h
(o)
0xxx

])
x
, (2.19)

where the superscript ‘(o)’ denotes the surfactant-free case; here B (o)(t) = B(o) −
A(o) cos(t). The scalings have also been changed: S → σ0, and σm → σ0. Hence, the
dimensional surface tension has been scaled on the value of the surface tension
associated with the clean interface, σ0. As a result, M and C now become M → M(o) =
εσ0/µωH and C → C(o) = ε2. The new dimensionless group appearing in (2.19), C̃(o), is
now expressed by C̃(o) = C(o)M(o) = ε3σ0/µωh = ε3/Ca, where Ca is a capillary number;
thus C̃(o) is an inverse capillary number. The remaining dimensionless groups A(o)

and B(o) are unchanged from (2.15) and (2.16), respectively. Note that the subscript
zero notation is henceforth suppressed.
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In the present work, we focus on the nonlinear evolution of the leading-order
equations, which is discussed next, following a brief examination of the linear stability
characteristics of the system.

3. Discussion of results
In this section, we present some further results of a linear stability analysis of

the evolution equations governing the dynamics of the film thickness and surfactant
concentration. We then present a discussion of the results obtained via numerical
integration of (2.12) and (2.13). The uncontaminated free surface case is considered
first followed by that of a surfactant-covered interface; this is preceded by a brief
description of the numerical method employed.

3.1. Linear stability analysis

In order to validate the predictions of the numerical procedure and to gain insight
into the problem, we linearize the lubrication equations developed above, (2.12),
(2.13) and (2.19), and examine their stability to small perturbations. In the presence
of surfactant, we linearize (2.12) and (2.13) about h = 1 and Γ =1 by introducing the
expansion

(h, Γ )(x, t) = 1 + (H, G)(t) eikx, (3.1)

where k is a dimensionless wavenumber. In the absence of surfactant, the surface
deformation, h(o), is expanded similarly with H being replaced by H (o).

The linearized version of (2.19) is

H
(o)
t = 1

3
k2A(o) cos(t)H (o) − 1

3
k2

(
B(o) + C̃(o)k2

)
H (o). (3.2)

This equation can be integrated from 0 to t to yield

H (o) = H (o)(t = 0) exp
[

1
3
k2A(o) sin(t) − 1

3
k2

(
B(o) + C̃(o)k2

)
t
]
. (3.3)

Inspection of (3.3) reveals that disturbances to the free surface in the uncontaminated
case considered in the asymptotic limit ε � 1 decay to zero as t → ∞ (Kumar &
Matar 2002), indicating that instability and standing wave generation will not occur.
Note that Kumar & Matar (2002) had obtained instability in the long-wavelength
limit in the presence of van der Waals forces only. The lack of instability in
the absence of these forces may be a consequence of the the fact that inertial
effects are not included in the evolution equation. Linear stability analyses of the
full Navier–Stokes equations indicate that vertical vibration will always produce
instability. However, these analyses include inertial effects and are not restricted
to long-wavelength disturbances. Nevertheless, exploring the nonlinear behaviour of
the evolution equation is still of interest because of the possibility that inherently
nonlinear instabilities exist.

The linearized version of (2.12) and (2.13) is

Ht = 1
3
k2A cos(t)H − 1

3
k2(B + CMk2)H − 1

2
k2MG, (3.4)

Gt = 1
2
k2A cos(t)H − 1

2
k2(B + CMk2)H − k2

(
M +

1

Pe

)
G, (3.5)

which is a pair of coupled first-order ordinary differential equations with time-
dependent coefficients. In the absence of vibration, the coefficients are no longer time
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dependent and disturbances of all wavenumbers decay for all values of B, C, and Pe
(Kumar & Matar 2002). In the presence of vibration, however, time-periodic solutions
corresponding to standing waves are expected. In order to study such solutions, we
apply Floquet theory as detailed by Kumar & Matar (2002). We provide below only
a brief description of the procedure and quote the relevant results.

The functions H (t) and G(t) are replaced by

H (t) = e(s+iα)t

∞∑
n=−∞

Hn eint , G(t) = e(s+iα)t

∞∑
n=−∞

Gn eint , (3.6)

where s is the real-valued growth rate and the value of α indicates whether the
response of the standing waves to the modulation is subharmonic (α =1/2) or
harmonic (α = 0). Substitution of (3.6) into (3.4) and (3.5) and subsequent elimination
of Gn then yields the following recursion relation:

AnHn = A(Hn+1 + Hn−1), (3.7)

wherein

An =
2
(
s + i(α + n) + 1

3
k2Dn − 1

4
k4MDn/Cn

)
1
3
k2 − 1

4
k4M/Cn

, (3.8)

in which

Cn = s + i(α + n) +

(
M +

1

Pe

)
k2,

Dn = B + CMk2,

which can be truncated at a finite value of n, N, and converted into a matrix
eigenvalue problem (Kumar & Tuckerman 1994). Solution of this eigenvalue problem
for s = 0 gives rise to a set of ‘tongue-like’ neutral stability curves in the (k, A)-plane.
The critical vibration amplitude required to excite standing waves can be determined
from the tongue tip which is closest to the k-axis; this will also yield the critical
wavenumber.

Figure 1 shows neutral stability curves generated with N = 20 for M = 0.1–100 with
the rest of the parameter values held fixed at B = 0.16, C = 0.0075, and Pe= 6.3 × 105;
harmonic and subharmonic responses can be clearly seen in figure 1. The curve for
each type of response has a tongue-like shape that, in fact, comprises a series of
finer tongue-like curves. Inspection of figure 1 reveals that for all values of M, the
tongue having the lowest amplitude corresponds to a harmonic response, while the
critical amplitude (wavenumber) increases (decreases) with increasing M; the increase
in kc with decreasing M is consistent with the fact that a thin surfactant-free film is
linearly stable. Thus the results shown in figure 1 indicate that although the presence
of surfactant is destabilizing, increasing the relative significance of Marangoni stresses
exerts a stabilizing effect. Note further that there probably exists a limit of small M
for a given set of parameter values beyond which the value of kc becomes sufficiently
large to render lubrication theory invalid.

As discussed by Kumar & Matar (2002), the critical vibration amplitude decreases
with decreasing B and C, as expected, since both gravity and surface tension act as
restoring forces. The critical amplitude increases, however, with decreasing Pe, since
more rapid diffusion restores the surfactant concentration to its initially uniform
state. This reduces the problem to that of an uncontaminated interface with modified
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Figure 1. Neutral stability curves, A vs. k, for (a) M = 0.1; (b) M = 1; (c) M = 10;
(d) M = 100. The values of the other parameters are B = 0.16, C = 0.0075, and Pe= 6.3 × 105.
Subharmonic and harmonic responses are represented by pluses and circles, respectively.

mean surface tension, which is stable. In all cases considered, the critical wavenumber
decreases whenever the critical amplitude increases.

The response of the air–liquid interface and surfactant concentration to variations
in the amplitude of gravity modulation is shown in figure 2 for the same parameters as
those used to generate figure 1(c) and k = 1. Clearly, H (t) and G(t) exhibit harmonic
oscillations, which grow (decay) above (below) a critical value of A ≈ 4.37 for this set
of parameters. Insight into the destabilizing mechanism may be gained via inspection
of figure 3(a), which depicts an enlarged view of figure 2. The amplitude of the
perturbation in the surfactant concentration, G(t), is negative over a range of the
forcing period, during which H (t) is positive. This implies that the perturbations in
the film thickness and surfactant concentration are out of phase over this duration,
i.e. film thickness minima coincide with surfactant concentration maxima. Marangoni
stresses then act to spread the surfactant from regions of high concentration to low
concentration, which leads to instability. This mechanism is, of course, absent in the
uncontaminated case, as shown in figure 3(b), which illustrates the harmonic response
of a surfactant-free case to gravity modulation. Over the remaining duration of a
forcing cycle, however, H (t) and G(t) have the same sign, implying that Marangoni
stresses can also be stabilizing. This can be related to the establishment of regions
of relatively high concentration at the peaks of the perturbed free surface, leading to
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Figure 2. The effect of increasing the forcing amplitude, A, on H (t) (upper curves) and G(t)
for the same parameter values as in figure 1(c) and k = 1. (a) A = 2, (b) A =4, (c) A = 4.37,
(d) A =6.
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Figure 3. Temporal variation of (a) H (t) (solid line) and G(t) (dashed line), and (b) H (0)(t),
for the same parameter values as in figure 2.

Marangoni flow from high to low concentration regions, i.e. from the crests to the
troughs.

In order to gain further insight into the nature of the flow, we re-express (3.4) and
(3.5) as

1

2

H 2
t

H 2
= 1

3
k2A cos(t) − 1

3
k2(B + CMk2) − 1

2
k2MG/H, (3.9)

1

2

G2
t

G2
= 1

2
k2A cos(t)H/G − 1

2
k2(B + CMk2)H/G − k2

(
M +

1

Pe

)
. (3.10)
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Figure 4. Temporal variation of the terms contributing to the growth or decay of perturba-
tions in the film thickness, I1 (dashed line), I2 (grey line), and I3 (dot-dashed line), as well
as the instantaneous linear growth rate, H 2

t /2H 2 (solid line); I1, I2, and I3 correspond to the
three terms on the right-hand side of in (3.9). The parameter values remain unchanged from
figure 3(a).

The left-hand sides of these equations may be identified as the instantaneous growth
rates of disturbances in the film thickness and surfactant concentration. The first,
second, and third terms on the right-hand side of (3.9), henceforth referred to as I1,
I2, and I3, respectively, correspond to gravity modulation, mean gravity and capillarity,
and Marangoni stresses. The first and second terms on the right-hand side of (3.10)
correspond to gravity modulation and mean gravity and capillarity, while the third
term is related to Marangoni stresses and surface diffusion. We shall concentrate,
however, on the predictions of (3.9).

The temporal variation of I1, I2, and I3, is shown figure 4 for the same parameters
as in figure 3. For this set of parameters, it can be seen that the magnitude of I2 is
small in comparison to that of the rest of the terms; this implies that the average
values of gravity and capillarity play a small role in determining the overall response
of the system. The terms I1 and I3 are out of phase with one another; the difference
in their magnitudes appears to largely determine the sign of the instantaneous growth
rate of the film thickness whose average value increases with time. The term I3 is
negative (positive) over the duration in which GH> 0 (GH < 0), which highlights
the fact that Marangoni stresses can be both stabilizing and destabilizing during the
same forcing cycle.

3.2. Numerical procedure

The evolution equations, (2.12), (2.13), are solved using a pseudo-spectral code that
utilizes fast Fourier transforms (FFT) to discretize the spatial derivatives (typically
256–512 modes) and Gear’s method in time. The initial conditions are chosen to
be either random perturbations of initially small amplitude, taken from a uniform
distribution on 10−5[−1, 1], or a monochromatic cosine disturbance. In the former
case, we have found that pseudo-random perturbations are rapidly reorganized into
coherent, periodic-like structures. Subsequently, the evolution of h and Γ and the
associated profiles exhibit only minor quantitative differences from those obtained
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Figure 5. Comparison of the numerical solutions (open circles) with linear theory (solid lines),
for (a) the clean and (b) contaminated cases. In (a), we plot E
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(o) −1)2 dx, a measure

of the film ‘energy’, which is generated via numerical solutions of (2.19) and compare this with
the analytical solution provided by (3.3); the parameter values are k = 2, H (o)(t = 0) = 10−3,
A(o) = 3, B(o) = 0.16, and C̃(o) = 0.0075. In (b), the ‘analytical’ solutions have been obtained via
numerical solution of (3.4) and (3.5), while the numerical solutions are determined through
numerical integration of (2.12) and (2.13) for k = 2, A = 10, and the same parameters as in
figure 1(c).

starting from initially monochromatic conditions. In either case, numerical solutions
are obtained subject to periodic boundary conditions.

The length of the computational domain is chosen to be from −π to π for the
majority of the cases considered. Solutions are obtained for the following parameter
ranges: 3 � A � 10, 0 � M � 100, 10 � Pe � 6.3 × 105 with B = 0.16 and C = 0.0075
held fixed. The ranges are consistent with orders of magnitude of physical parameters
typical of experimental settings (Kumar & Matar 2002).

In order to inspire confidence in the predictions of the numerical procedure, we show
in figure 5 a comparison of numerical solutions and the predictions of linear theory
for the clean and contaminated cases. The predictions of linear theory correspond to
numerical solutions (obtained using Matlab) of (3.4) and (3.5) for the contaminated
case, and (3.3) for the clean case. Figure 5 clearly shows that excellent agreement is
achieved between linear theory and the numerical solutions at early times for both
the clean and contaminated cases, beyond which nonlinearities become significant
and (3.3)–(3.5) invalid.

Although one would expect to observe similar trends in the nonlinear regime to
those determined using linear theory, detailed knowledge of the dynamics requires
accurate numerical solution of (2.12) and (2.13). The results of these computations
are discussed next.

3.3. Numerical results: surfactant-free interface

We begin by describing the results generated for the surfactant-free case. In figure 6
we plot the temporal variation of E

(o)
h =

∫ π

−π
(h(o) − 1)2 dx, which may be regarded as

a measure of the interfacial ‘energy’, for A = 6, k = 2, B(o) = 0.16, and C(o) = 0.0075
starting from an initially small amplitude of 10−3. Although we have shown, based on
Floquet theory, that a surfactant-free interface is stable to initially small-amplitude
long-wavelength perturbations, it becomes clear upon inspection of figure 6 that
significant growth does occur as a result of nonlinearities. Closer examination of this
figure shows several features of interest. The function E

(o)
h exhibits a periodic-like
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h =
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(o) − 1)2 dx, for the

uncontaminated case with A = 6, k =2, B(o) = 0.16, and C(o) = 0.0075.
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Figure 7. Space–time plots of the uncontaminated film thickness, h(o), for the same parameter
values as those used to generate figure 6. The ‘cycles’ shown in (a–d) correspond to t = 0–6.25,
t = 6.25–12.5, t =12.5–18.75, and t =18.75–25, respectively.
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Figure 8. A sequence of h(o) profiles showing coalescence events between fluid ridges for
the same parameters as in figure 7. Two events, which occur between t =7.00 and t = 7.38,
are depicted in (a–d), while two more involving three fluid ridges, which take place between
t =7.38 and t = 7.68, are shown in (e–h). The latter coalescence events result in the formation
of fluid mounds, whereas the former give rise to steep ridges. The arrows in each panel indicate
the coalescing ridges.

structure with 16 distinct humps reflecting the underlying time-periodic standing-wave
structure of the free surface. For all the computations carried out, the first hump was
observed to be smaller than the remaining ones. This may be related to the fact that
the interface is more unstable following the first ‘cycle’ than at the onset of the flow,
which permits larger free-surface amplitudes and, therefore, E(o)

h values to be attained.
In each hump, there is a period of large initial growth followed by decay, but there
also appear to be several oscillations within each hump. We posit at this stage
that these are due to the drifting and subsequent coalescence of large fluid ridges;
evidence for this is presented below. It is also worth noting that the system response
is harmonic: each hump lasts for an approximate period of 2π, which corresponds to
the forcing frequency. This behaviour is consistent with the findings of Muller et al.
(1997) who predicted analytically and observed experimentally a harmonic surface
response in the case of relatively thin viscous films at low forcing frequencies, wherein
the damping associated with the underlying solid substrate is significant. We note
that their harmonic response arises from linear instability of the full Navier–Stokes
equations, whereas ours results from an inherently nonlinear mechanism since our
evolution equation is linearly stable.
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Figure 9. A sequence showing the power spectra of h(o), P (o) = |Ĥ (o)(k)|/N , for the same
parameters and times as in figure 8. Here, Ĥ (o)(k) =

∑N
j=1 h(o)(j ) exp(−2πi(j − 1)(k − 1))/N is

the discrete Fourier transform in which N = 512 corresponds to the number of modes used
and k is the wavenumber.

In order to illustrate the spatio-temporal evolution of the free-surface, we show
in figure 7 space–time plots of h(o) over the first four ‘cycles’ shown in figure 6.
Examination of this figure shows the relatively complex evolution of the free surface.
Starting from rapid growth of essentially cosine-like disturbances, the dynamics are
accompanied by ridge drifting and coalescence, giving rise to larger structures and
an overall reduction in the number of ridges. These coalescence events appear to
be particularly severe after the first cycle, resulting in ridges with very tall peaks.
Qualitatively similar results were determined by Wright et al. (2000), who observed
the emergence and subsequent collision of travelling waves to form large-amplitude
peaks. The development of large peaks was also observed by Ubal et al. (2003) via
numerical solution of the two-dimensional Navier–Stokes equations.

The occurrence of ridge coalescence is further illustrated in figure 8, in which we
show a sequence of h(o) profiles between t = 7.00 and t = 7.68, corresponding to the
time period in which oscillations in E

(o)
h are observed in the second cycle in figure 6.

Inspection of figure 8(a–d) shows clearly the coalescence of two sets of ridges
(highlighted by arrows) to form a large ridge at t = 7.10 (see figure 8c) and another
at t = 7.23 (see figure 8d). Similar events take place between t = 7.38 and t = 7.68, as
shown in figure 8(e–h). The coalescence events involve three rather than two fluid
ridges and result in the formation of large mounds of fluid, one of which is clearly
shown in panel (h) at t =7.68. The energy values associated with the times shown in



Nonlinear waves in vibrated surfactant-covered thin films 257

10 20 30 40 50 60 70 80 90 1000

1

2

3

E
h 

=
 ∫ –

π
/2

   
(h

–1
)2

 d
x

0 10 20 30 40 50 60 70 80 90 100

0.01

0.02

0.03

t

(a)

π
/2

E
Γ

 =
 π

/2
   

(Γ
–1

)2
 d

x
–π

/2

(b)

 ∫

Figure 10. Temporal variation of the film and surfactant concentration ‘energies’, (a) Eh and
(b) EΓ . The parameter values remain unchanged from figure 1(a).

10 20 30 40 50 60 70 80 90 1000

2

4

6

8

10

k(h)

10 20 30 40 50 60 70 80 90 1000

2

4

6

8

10

t

m

k(Γ )
m

(a)

(b)

Figure 11. Temporal variation of the most dominant modes, (a) k
(h)
m and (b) k

(Γ )
m , for h and

Γ , for the same parameters as in figure 10. Here, k
(h)
m and k

(Γ )
m correspond to the wavenumbers

which maximize the value of P (h) = |Ĥ (k)|/N and P (Γ ) = |Γ̂ (k)|/N , respectively, wherein the dis-
crete Fourier transforms of h and Γ are expressed by Ĥ (k) =

∑N
j=1 h(j ) exp(−2πi(j −1)(k−1))/

N and Γ̂ (k) =
∑N

j=1 Γ (j ) exp(−2πi(j − 1)(k − 1))/N ; here, the number of modes is N = 256.
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Figure 12. Space–time plots of h for the same parameters as in figure 10, showing four
‘cycles’ in panels (a–d) that correspond to t = 0–6.25, t = 6.25–12.5, t = 12.5–18.75, t = 18.75–25,
respectively.

figure 8 are E
(o)
h = 6.26, 5.76, 6.61, 7.39, 6.08, 4.23, 2.85, and 2.19, respectively, which

indicates that the energy decreases during the coalescence process and rises following
the formation of the large ridge.

We have shown that the structural evolution of h(o) is accompanied by a change in
the overall number of discrete ridges. In order to illustrate this fact more clearly,
we plot in figure 9 a sequence of profiles showing the power spectra of h(o),
P (o) = |(Ĥ (o)(k))|/N , for the same period of time as in figure 8, wherein Ĥ (o)(k) =∑N

j=1 h(o)(j )exp(−2πi(j − 1)(k − 1))/N is the discrete Fourier transform; here N =512
corresponds to the number of modes used to compute the transform and k is the
wavenumber. At t = 7.00, the wavenumber associated with the dominant mode that
maximizes the value of P (o), km, is approximately equal to 27. The coalescence process
results in a shift of km towards smaller values, as shown in figure 9(a–d), which
indicates structure coarsening. Further coalescence gives rise to several peaks in the
P (o) vs. k plot (see figure 9h), indicating the existence of several modes in Fourier
space, which make up the structure observed in figure 8(h).

We have found (not shown) that increasing the value of the vibration amplitude,
A, results in qualitatively similar albeit more complex spatio-temporal evolution with
more frequent and dramatic coalescence events. We turn our attention to the case
of a surfactant-covered free surface and examine the effects of contamination on the
dynamics.

3.4. Numerical results: surfactant-covered interface

Figure 10 depicts the ‘energies’ associated with h and Γ , Eh and EΓ , for the surfactant-
covered free-surface case, obtained for an initial disturbance amplitude of 10−3 in
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Figure 13. Space–time plots of Γ for the same parameters as in figure 10, showing four
‘cycles’ in panels (a–d) that correspond to t = 0–6.25, t = 6.25–12.5, t =12.5–18.75, t = 18.75–25,
respectively.

h and k = 2, A = 10, B = 0.16, M = 10, C = 0.0075, and Pe= 6.3 × 105. Inspection
of figure 10(a) reveals that Eh exhibits a time-periodic structure with a period
approximately equal to 2π, as in the surfactant-free case.

The structure of Eh in figure 10(a) highlights the relative absence of rapid oscilla-
tions within individual ‘cycles’ and the overall decrease in the average value of Eh in
comparison with figure 6 despite the increase in vibration amplitude from A = 6 to
A = 10. This observation, in turn, indicates the relative absence of coalescence events
between fluid ridges. In contrast, EΓ , shown in figure 10(b), appears to have a more
complicated temporal dependence. Although EΓ has an overall time-periodic structure
with a similar period to that of Eh, this function exhibits rapid oscillations during
this period, which indicates that Γ has more complex spatio-temporal dynamics
than h.

This is further illustrated by figure 11, in which we plot the wavenumber of the
dominant Fourier mode for both h and Γ . In the case of h, k(h)

m rises sharply from a
base value of k(h)

m = 2, which corresponds to the wavenumber of the initial condition,
h(x, 0), to a value of 6, then 8; this is followed by an equally sharp decay to k(h)

m = 2 at
the end of the cycle. Although the temporal variation of k(Γ )

m exhibits a similar initial
rise to k(Γ )

m = 6, this is then followed by rapid oscillations culminating in decay to
k(Γ )

m =2 at the end of the cycle. It is also noteworthy that the maximal value of k(h)
m in

the contaminated case is significantly lower than the uncontaminated case, indicating
the presence of fewer fluid ridges.

In order to examine the spatio-temporal dynamics of h and Γ , we show space–time
plots of h and Γ in figures 12 and 13, respectively, for the same parameters as in
figure 10. As expected, close inspection of figure 12 reveals that the drifting of ridges
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Figure 14. A sequence of profiles of the film thickness (solid lines) and surfactant concen-
tration (dot-dashed lines) showing the spatio-temporal evolution of h and Γ between t =6.30
and 8.38 for the same parameters as in figure 12. Here, we have plotted 1 + 8 × (Γ − 1) rather
than Γ for the surfactant concentration for the sake of clarity.

occurs over slower time scales than in the uncontaminated case, resulting in a single
coalescence event at the end of each cycle following the first cycle; this explains
the absence of rapid oscillations in figure 10(a). In contrast, the space–time plot
associated with Γ , shown in figure 13, is considerably more complicated than that of
h. Figure 13(b–d) illustrate that Γ appears to evolve on a more rapid time scale than
h: disturbances, which are cosine-like at the beginning of a cycle, rapidly evolve into
thickened ridges of surfactant concentration which then merge into a double-humped
structure that finally relaxes into a long-wavelength disturbance at the end of the cycle.

It is instructive to study the evolution of h and Γ by examining flow profiles in
which these variables are superimposed on one another. Figure 14 depicts a sequence
of h and Γ shown between t =6.30 and 8.38, which corresponds to a time period that
lies in the second cycle as shown in figure 10; the rest of the parameter values are the
same as in figure 12. Because h achieves much larger values than Γ , which cannot
exceed unity, we have plotted 8 × (Γ − 1) + 1 rather than Γ in figure 14 for the sake of
clarity. Inspection of figure 14(a, b) reveals that h and Γ are in phase at the beginning
of the cycle with both variables undergoing rapid growth to form thickened ridges
starting from essentially cosine-like disturbances. At this stage, therefore, relatively
thick fluid regions are coated with a relative excess of surfactant concentration. This
then results in a Marangoni-driven flow from high to low concentration regions, which,
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Figure 15. A sequence showing the power spectra of h, P (h), for the same parameters as in
figure 14. Here, P is defined in the same way as in figure 11 with N = 256.

in turn, results in a more uniform concentration profile (see figure 14c, d). The system
dynamics, however, evolve in such a way so that Γ and h are out of phase, as shown
in figure 14(e, f ). Marangoni stresses then drive flow from high to low concentration
regions, which at this stage correspond to troughs and crests, respectively. This in
turn results, once again, in a more uniform concentration, as shown in figure 14(g).
This Marangoni-driven flow rigidifies the interface, counteracting the flow resulting
from the coalescence of the fluid ridges which could have resulted in a potentially
large-amplitude ridge; instead this amplitude only achieves a value of order 2, which
is lower than in the uncontaminated case shown in figure 8 despite the large vibration
amplitude used here. Finally, the profile shown in figure 14(h) indicates that h and Γ

are once again completely out of phase.
The contrast in complexity of the structure of the film thickness and surfactant

concentration is also reflected by the power spectra of h and Γ shown in figures 15
and 16, respectively, for the same parameter values as those used to generate figure 14.
Following the rapid formation of smaller bumps between the large ridges (see
figure 14b), which gives rise to two peaks in the power spectrum of h, at k = 12 and
k = 24 (see figure 15a, b), the value of k(h)

m remains approximately equal to k(h)
m =15

for 0.5 dimensionless time units, as can be seen in figure 15(c–e). This is then followed
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Figure 16. A sequence showing the power spectra of Γ , P (Γ ), for the same parameters as in
figure 14. Here, P is defined in the same way as in figure 11 with N = 256.

by a relatively slow shift towards k(h)
m = 4 over 0.88 dimensionless time units (see

figure 15f –h). The power spectra of Γ , on the other hand, change constantly following
an initially short period of time wherein k(Γ )

m = 12, which is the same as that of h (see
figure 16a, b). Of particular interest here is the emergence of fine-scale structure in
the dynamics, reflected by the relatively large values of k, which exhibit peaks in the
power spectra of Γ ; see, for instance, figure 16(c, e, g). The value of k(Γ )

m then shifts
to that of h at the end of this ‘cycle’, as shown in figure 16(h).

We have also examined the effect of lowering M on the dynamics. This is shown
in figure 17 in which we plot the temporal variation of Eh and EΓ for M = 5 with
the rest of the parameter values remaining unaltered from figure 10. A comparison of
figures 10 and 17 indicates that although the periodicity of the structure is insensitive
to a change in M, Eh exhibits more frequent rapid oscillations within each ‘cycle’; this
is indicative of an increase in the number of coalescence events between fluid ridges.
The oscillations in EΓ , on the other hand, are of similar frequency to those associated
with M = 10. Moreover, the maximal amplitudes of both Eh and EΓ attained in the
M =5 case are larger than those for M = 10. Thus, a decrease in the value of M is
destabilizing due to the reduction in the relative significance of Marangoni stresses,
which act to rigidify the interface, suppressing ridge drifting, coalescence, and the
subsequent formation of large-amplitude structures.



Nonlinear waves in vibrated surfactant-covered thin films 263

10 20 30 40 50 60 70 80 90 1000

1

2

3

4

5
(a)

E
h 

=
∫π

/2
  (h

–1
)2  d

x

10 20 30 40 50 60 70 80 90 1000

0.05

0.10

0.15

0.20
(b)

t

–π
/2

E
Γ

 =
∫π

/2
  (Γ

–1
)2  d

x
–π

/2

Figure 17. Temporal variation of (a) Eh and (b) EΓ , for the same parameters as in
figure 10 except M = 5.

We have investigated the effect of the other system parameters on the dynamics.
Increasing the values of B and C, which serve to restore both h and Γ to equilibrium,
also gives rise to fewer coalescence events and less frequent oscillations in Eh and EΓ ;
these trends are in line with the predictions of linear theory discussed in § 3.2. Finally,
variation of Pe, which provides a dimensionless measure of surfactant transport by
diffusion, within the range imposed by order of magnitude estimates of the relevant
physical quantities, appears to introduce minor quantitative changes to the flow
profiles.

4. Concluding remarks
In this work, we have examined the effect of vibration-induced gravity modulation

on long-wavelength disturbances on thin liquid films covered with an initially uniform
concentration of insoluble surfactant. Spectral methods were used to solve a pair
of coupled lubrication-theory-based evolution equations for the film thickness and
surfactant concentration which account for the presence of gravitational modulation,
capillarity, Marangoni stresses, and surface diffusion. These equations were first
derived by Kumar & Matar (2002), who showed using Floquet theory that the presence
of surfactant destabilizes an otherwise stable surfactant-free interface, giving rise to
standing wave solutions; to the best of our knowledge, such an approach had not
been previously adopted in the literature to study this problem. These authors also
showed that increasing the relative significance of Marangoni stresses made it more
difficult to excite the instability. That study, however, focused on the linear regime
and did not examine the nonlinear dynamics of the system. The present work was
aimed at addressing this issue.
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Although uncontaminated interfaces are linearly stable to long-wavelength
disturbances (Kumar & Matar 2002), our results indicate that nonlinear growth can
excite unstable flow, leading to the formation of standing waves and a subharmonic
response. This flow is accompanied by numerous coalescence events between thickened
ridges of fluid, culminating in the formation of large-amplitude pulse-like structures.
It may be possible for these events to result in droplet ejections, a possibility which
could not be explored within the framework of our thin-film equations.

The interplay between physicochemical and vibration-induced hydrodynamic effects
was studied in detail; flow profiles and their power spectra were presented. Despite the
fact that the presence of surfactant is destabilizing in a linear sense, the Marangoni
stresses associated with this presence were found to exert a rigidifying effect on the
interface. This gave rise to less complicated film dynamics, exemplified by ridges of
significantly lower amplitude and a drastic reduction in the frequency of coalescence
events. In contrast, the surfactant concentration dynamics were found to be more
complex than those of the film.

Since the solution of the present model, which involves one-dimensional evolution
equations, is considerably easier than that of the two-dimensional Navier–Stokes
equations, several extensions of the present work may be worthy of pursuit within
the context of thin viscous films. For instance, accounting for surfactant solubility
may lead to a dramatic increase in ridge amplitude following a coalescence event;
similar steepening of front-like structures was observed by Jensen & Grotberg (1993)
in their study of soluble surfactant spreading on thin liquid films. Investigating
the effect of film rheology on the dynamics may also be carried out. Obtaining
transient numerical solutions of the two-dimensional governing equations would also
be of interest, since these would permit the study of stability, dynamics, and pattern
formation of two-dimensional standing waves on a surfactant-covered free surface.
These solutions could then be used in comparisons with future experiments. Also, the
methods developed here and in the work of Kumar & Matar (2002) can be used to
study the role of thermocapillarity on surface waves when both temperature gradients
and gravity modulation are present, a topic of considerable interest for microgravity
applications (Birikh et al. 2001; Skarda 2001).
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