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ABSTRACT

Wind waves are commonly ignored when modeling the ice motion in the marginal ice zone. In order to
estimate the importance of the wave forcing, an expression for the second-order wave-induced drift force on a
floe exposed to a full directional wave spectrum is obtained in terms of a quadratic transfer function. For a
given floe shape, the transfer function generally augments with the incident wave frequency, with a sharp
increase near the resonant frequency of the pitch motion. The short wave limit of this function is determined
by the shape of the horizontal contour of the floe. The value corresponding to the truncated cylindrical floe
used here is two-thirds of the value obtained by the two-dimensional approximation. The total drift force is
computed for two situations: an off-ice wind over a large polynya, and an on-ice wind at the extreme ice edge.
In the first case, the drift force induced by the short fetch waves represents a significant fraction of the direct
wind forcing and may be partly responsible for the formation of ice edge bands. In the second case, the very
large drift force on a floe exposed to the high frequency components of the open water spectrum rapidly
decreases (in the first few hundred meters) as these short waves are efficiently attenuated by the ice. This rapid
decrease of the force generates a large compressive stress that is important in compacting the ice at the extreme
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ice edge.

1. Introduction

The drift of a body floating freely on the ocean sur-
face is generally governed by wind, current, and waves.
Under the assumption that wind and current actions
dominate, a wave—ice interaction term has been com-
monly omitted in modeling sea ice motion in the mar-
ginal ice zone (MIZ) (e.g., Bruno and Madsen 1989)
or the trajectory of iceberg drift (e.g., Smith and Don-
aldson 1987). However, some successful attempts have
been made in the past to include such a term in the
sea ice momentum balance. Hsiung and Aboul-Azm
(1982) significantly improved iceberg drift trajectory
predictions by including a wave radiation pressure term
in the equation of motion for the iceberg. Wadhams
(1983) showed that, in the outer part of the MIZ, the
short waves generated in polynyas opened by an off-
ice wind could be partly responsible for the formation
of ice edge bands.

A floating ice mass exposed to waves undergoes os-
cillatory motions and also experiences a net drift forced
by two wave related phenomena: the Stokes drift, which
is a consequence of the wave-induced water particle
orbits not being closed, and the net drift force due to
the hydrodynamic impact of the waves. It is the latter
force that is the focus of this paper. This is not to imply
that the Stokes drift is negligible. Jenkins (1987) has
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shown, for example, that the surface Stokes drift can
be up to 1% of the wind speed, for a wind of 10 ms ™!,

The magnitude of the wave-induced drift force de-
pends on the floe shape and on its horizontal dimension
relative to the incident wavelength. It is also a function
of the directional spectral density of the incident wave
field. Using three-dimensional potential theory, an
expression for the wave-induced drift force on a ver-
tically axisymmetric floe is derived herein. The general
theory is first described for a single incident plane wave
and then extended to a full directional wave spectrum.
Kobayashi and Frankenstein (1987) estimated the
monochromatic force using a similar approach. The
drift force due to a single wave component is recom-
puted here, with a more detailed analysis of the fre-
quency dependence of the force, and some clarification
on the short wave limit as there was some confusion
in their work about the appropriateness of this limit.
The total force due to a full directional spectrum is
then evaluated in two situations frequently occurring
in the MIZ: when the wind blows over a large polynya
opened by an off-ice wind, and when an on-ice wind
blows over the ice edge. Finally, an attempt is made
to estimate the drift force and the associated compres-
sive stress on the ice as the open-water waves penetrate
in the partially ice-covered waters of the MIZ.

2. Theoretical formulation

The hydrodynamic force acting upon a rigid body
floating in waves is composed of a first-order (in wave
slope) periodic term linearly dependent on the wave
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amplitude, and a second-order nonlinear term pro-
portional to the square of the wave amplitude. This
second-order term includes a component independent
of time, the drift force, and a slowly varying force which
occurs at the difference frequencies between the various
wave components. The mean horizontal force for the
two-dimensional (2D) case has been examined by
Longuet-Higgins (1977). In this approximation, the
two-dimensional incident wave is transmitted or re-
flected only in the plus or minus incident direction,
respectively. He showed that the drift force on a two-
dimensional -obstacle in normally incident waves can
be written in terms of the incident, reflected, and trans-
mitted wave amplitudes, 4, A’, and B, respectively. In
deep water, the force per unit width, F’, is

F'=pg(A*+ A" — B*)/4 (1)

where p is the density of water and g the gravity. Wad-
hams (1983) used this 2D approximation to estimate
the magnitude of the wave radiation pressure on the
floes.

In general, a floating object both diffracts and scatters
incoming wave energy in all directions. Formulas for
the drift force on three-dimensional bodies were first
derived by Maruo (1960) and extended by Newman
(1967) to include the moment about the vertical axis.
The derivation, based on momentum balance, is briefly
described in the following text.

Assuming an ideal fluid and linearizing the motion,
momentum relations are used to derive an expression
for the drift force on a body with no forward velocity
in terms of the far-field velocity potential. The fluid
velocity vector, u, can be written in terms of a velocity
potential, ®, with u = V®(x, y, z; 1), where (x, y, z)
are Cartesian coordinates with the z-axis positive up-
wards and z = O the plane of the undisturbed free sur-
face, and the x-axis in the direction of the incident
wave. The fluid motion is assumed harmonic in time,
and to be the sum of the incident wave, ¢;, and a dis-
turbance due to the presence of the body, ¢,:

= (¢; + ¢p)e (2)

where w is the angular frequency. The linearized in-
cident potential for a plane wave of amplitude H/2 is

igH cosh[k(z + h)]

¢.= ______________eikx
1

2w cosh(kh) ()

where k is the wavenumber with k = w?/g tanh(k#),
and £ is the water depth. The disturbance potential can
be treated linearly as the sum of the contributions from
the diffraction of the incident wave on a fixed body,
and the scattering by a body forced to oscillate in still
water. For a body that is symmetric about the z-axis,
the scattered waves are generated by the surge (back
and forth), the heave (up and down), and the pitch
(rotation about the y-axis) motions only. At a large
distance from the body, this potential takes the form
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where the wave frequency, f = w/2m, and (r, 8) are
cylindrical coordinates with r measured radially from
the z-axis and 6 counterclockwise from the positive x-
axis. The scattering coeflicient, D(f" ), gives the an-
gular distribution of the sum of the diffracted and scat-
tered waves. This coeflicient is computed as in Masson
and LeBlond (1989), following the method developed
by Isaacson (1982) to calculate the response of an axi-
symmetric body. It should be noted that Kobayashi
and Frankenstein (1987) estimated the scattering coef-
ficient using a related approach in which, instead of
solving for a source strength distribution function as
in Isaacson (1982), the potential is directly obtained
from the integral equation of the boundary condition
at the submerged surface of the body.

The drift force on an arbitrary body can be expressed
in terms of the far-field potential (4) by considering
the rate of change of momentum within the fluid do-
main bounded by the body’s wetted surface, the free
surface, and a control surface at infinity. When the
time averages are taken, and only the second-order
terms are retained (see Newman 1967 for details), the
magnitude of the wave-induced force in the direction
of the incident wave takes the form

_pg 1 2kh
F-zHl

H 2
* sinh(zkh)”(?)

2
Xf | D(f; 8)|%(1 — cos)db. (5)
0

(4)

Thus, the second-order drift force can be inferred from
the first order or linearized far-field potential only.

In order to obtain the drift force on a floe under the
action of a realistic sea state, the theory developed for
a regular incident wave train must be extended to the
case of an irregular sea. A complex wave field is as-
sumed to be characterized by a sequence of regular
wave trains distributed over frequency, f, and direction,
6. It is commonly represented in terms of its directional
frequency spectrum, E(f, 6), giving the density of con-
tributions to the total variance of the surface displace-
ment, 7, per unit area of the frequency direction space
with \

_ 2T oo

7’ = f f E(f, 0)dfde6 (6)

o Jo

where the overbar represents a time average. This di-
rectional spectral density is conveniently written in
terms of a one-dimensional frequency spectrum, E(f),
and a directional spreading function, G(f, §), sym-
metrical about a mean wave direction, 6,

E(f,0)=E(f)G(/, 8 — b,). (7N

Further assuming that each of the wave components
imparts to the floe the same force which it would if it
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was merely one regular wave, the total drift force cor-
responding to random unidirectional waves can be ob-
tained by summing the contributions from all the
components of the incident spectrum. Using (5) and
(6), the magnitude of the total wave-induced drift force
applied on a floe in the mean direction, 8, = 0, of an
irregular sea, can be written as

27w [foo
F= f f E(f, 0) Tr(f)df cosbdb (8)
o Jo

with the quadratic transfer function

_ 1 2kh
Tr/) = "g{i[’ * sinh(2kh)”
2
Xf | D(f; 0)|%(1 — cosf)ds. (9)
o

For a given floe shape in deep water, the transfer func-
tion (9) is a function of frequency only, as the floe is
assumed to be symmetric about the vertical axis. In
the next section, the transfer function is computed for
a series of frequencies and floe shapes, and then used
to determine the total wave-induced drift force on a
floe, given a specified sea state.

3. Results and discussion

The floes are represented here as truncated cylinders
of radius a = 10 m, and draft d = 0.3, 2.0, and 3.0 m,

-
-
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in a water depth # = 100 m. For a given radius to draft
ratio, the scattering coefficient in (9), and thus the
transfer function itself, is a function of the horizontal
dimension of the floe relative to the incident wave-
length, A = 2= /k, only. The nondimensionalized
transfer function, Tr’ = Tr/pga, for these three floes
is presented in Fig. 1 as a function of the nondimen-
sional wavenumber ka. When waves are long relative
to the floe dimension (small ka), the incident waves
are barely affected by the presence of the floe, resulting
in small transfer function magnitudes. As ka increases,
the diffracted wave and the waves generated by the
wave-induced motions of the floe siowly develop. Con-
sequently, the scattering amplitude and the ability of
the waves to push the floe gradually augment. At a
certain value of ka, the transfer function rapidly in-
creases to approach its short-wave asymptotic value of
1.33, which will be discussed later. Associated with this
sudden change in the value of the transfer function,
two secondary peaks are present for the two thicker
floes. These peaks are caused by a resonance of the
response in the heave and pitch motion of the floe,
respectively. The ka value at which the transfer func-
tion increases significantly varies with the floe shape,
decreasing as the draft increases.

The sharp transition from low to high values of the
transfer function appears not to be linked to a sudden
increase in the amplitude of the diffracted and three
forced waves, but rather to the occurrence of the res-

FIG. 1. Nondimensional transfer function, Tr’, for floes of 10 m diameter and draft of 3 m
(full line), 2 m (dashed line), and 0.3 m (dotted line) as a function of nondimensional wavenumber
ka. The chain-dashed line indicates the short-wave limit value.
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onant peak in the pitch motion. To illustrate this result,
changes in the different components of the scattering
coefficient of the backscattered wave, D(f'; 8 = ), are
presented in Fig. 2 for the case d = 3.0 m. The mag-
nitude (Fig. 2a) and the phase (Fig. 2b) of the four
components are given for ka = 1.0-2.5. Although, for
1.0 = ka = 1.5, the magnitude of the different com-
ponents are relatively large, the total scattering coeffi-
cient remains small. For a value of ka just over 1.5, a
180° shift in the phase of the surge component, which
is known to be linked to the appearance of the pitch
resonant peak, allows the different components to in-
teract in a more constructive way resulting in a large
increase of the magnitude of the total scattering coef-
ficient.

This result appears to be in agreement with the lab-
oratory measurements of Harms (1987). In his exper-
iment, the drift rate of 2D ice floe models in regular
waves was measured at different wave periods, 7= 1/
/- A fundamentally different drift behavior was evident
on either side of the pitch resonant peak period, delim-
iting a long-wave and short-wave drift regime. Given
a constant wave height to wavelength ratio, the mea-
sured slope of the drift rate versus wave period curve
was larger in the short-wave region than in the long-
wave region. This experimental result is consistent with
the sharp increase of the transfer function associated
with the resonant peak of the pitch motion described
above.

At large values of ka, the three forced waves are of
small amplitude due to the vanishing wave-induced
motions of the floe. The scattering coefficient is then
dominated by the diffracted component. At the limit
ka > 1, the diffracted wave separates into two parts:
the reflected wave, and the shadow-forming wave which
interferes with the incident wave to cancel the wave
intensity behind the floe. The latter component does
not contribute to the transfer function (9) as it travels
along the positive x-axis (# = 0). The magnitude of
the short-wave transfer function is therefore determined
by the nature of the reflected wave. The short-wave
limit of the wave-induced force on a three-dimensional
body has been examined by Maruo (1960). He derived
the limiting form of the drift force which can be written
in terms of the nondimensional transfer function as

Trinax for ka>1 (10)

1 +a .

p f_a sin“Ody,
where O is the angle that the tangent to the surface of
the body makes with the direction of the incident wave,
here the x-axis. According to (10), the limit value for
the transfer function depends on the shape of the hor-
izontal contour of the floe and its orientation relative
to the heading angle of the incident wave. For a square
floe, Tri,.. takes the value of 2.0 and 1.0 when its for-
ward face is perpendicular or at 45° with the incident
wave direction, respectively. For the cylindrical floe
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used in this study, the nondimensional transfer func-
tion has short wave limit of 1.33 as shown in Fig. 1.
Also, in this figure, the lower transfer function values
of the thin floe, d = 0.3 m, demonstrate the effect of
the limited draft that does not allow complete reflection
of waves for which the momentum is distributed over
a depth (of about half the wavelength, in deep water)
exceeding the draft.

The two-dimensional approximation, in which all
the reflected wave is assumed to travel backwards (6
= w), is equivalent to the square floe, 0° heading angle
case. In modeling the region of the MIZ near the ice
edge, where the floes are of various shape and orien-
tation, the 2D approximation undoubtedly leads to an
overestimation of the wave-induced drift force. The
value of 1.33 used here is more likely to represent a
typical value of the transfer function. Kobayashi and
Frankenstein (1987) obtained the same value for the
drift force in very short waves by extrapolation of their
numerical results, but without clearly demonstrating
its validity.

So far, the drift force on a floe under the action of
a monochromatic wave has been examined. The force
due to a complete directional wave spectrum is now
estimated using ( 8) and the previously computed values
of the transfer function. Masson and LeBlond (1989)
demonstrated that, in the MIZ, a wind blowing over
areas covered by dispersed ice floes results in short and
nearly isotropic wind waves. In this case, the wave-
induced drift force, as given by (8), remains small be-
cause the wave energy is distributed almost equally over
all directions. Thus, waves examined here are either
short waves generated in polynyas inside the ice cover
itself or open-water waves of various wavelengths in-
cident on the ice edge and propagating into the ice
cover. In the first situation, the development of the
wave field is limited by the short fetch and may be
specified in terms of the commonly used JONSWAP
frequency spectrum Hasselman et al., 1973;

I SR T EA
=0~ goe-4(%) |

X ,YCXD[—(f~fo)z/(262foz)]

{0.07,
-

0.09,
fo is the frequency at the maximum of the spectrum
and is related to the fetch, X (m), and wind speed U
(ms™), by (Ufo/g) = 3.5(gX/ U?) %3, «is the fetch
dependent parameter equivalent to the Phillips’ con-
stant, o = 0.076(gX/U?*)™%%, and finally y = 3.3 is
the peak enhancement factor. The spreading function
in (7) is of the form G(f, 8) = I(s) cos?*(6/2), with
1(s) the normalization factor to ensure that fé” G(f,0)
X df = 1, and s the spread parameter as given by Has-

(11)
where
for

A

otherwise
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FIG. 2. Amplitude (a) and phase (b) of the component of the scattering coefficient at § = «
due to surge (full line), heave (dashed line), pitch (dotted line), and diffraction (chain-dotted
line) versus nondimensional wavenumber ka. In (a) the thick full line gives the amplitude of the

total scattering coefficient.

selmann et al. (1980): s = 6.97(f/f5)*% for f < f,
and s = 9.77(f/f,) for f= f,, with » = [—2.33
— 1.45(U/c, — 1.17)] and ¢, is the phase velocity of
the wave at the peak. This directional distribution re-
flects the known spectral broadening with increasing
frequency, and with increasing U/c,, above the peak
frequency. The U/c, dependence, commonly omitted,
1s retained here because of its large effect on the direc-
tional spread of the very “young” sea analyzed below.

Because of the short fetch (downwind extent) as-
sociated with open water leads inside the MIZ, the sea
state is composed of very short period waves. Although
the amplitude of these short waves is small, being lim-
ited by breaking, the asssociated high transfer function
value results in a wave-induced drift force of magnitude
comparable to the wind drag given by

F, = p,C,AU? (12)

where p, is the air density, C, the air draft coefficient,
and A = 7a? the surface area of the floe. For typical
valuesof p, = 1.2 kgm~3and C, = 3.0 X 1073, awind
speed U = 10 m s~ ! generates on a 10 m diameter and
2 m draft floe a wind forcing F, = 113 N. The same
wind blowing over a polynya of 500 m fetch generates
a wave field with f, = 0.95 Hz. The drift force on the

floe located at the downwind end of the lead is, ac-
cording to (8), 62 N. The magnitude of the force is
reduced here to 52% of the equivalent force obtained
using the 2D approximation, mainly because of the
transfer function being two-thirds of its equivalent 2D
value, and to a lesser extent because of the multidirec-
tionality of the waves given by the spreading function,
G(f, 0). Thus, as suggested by Wadhams (1983), the
wave-induced contribution, although smallier than the
one that he estimated using the 2D approximation,
appears to be a nonnegligible component of the ice
momentum balance and could be partly responsible
for the formation of ice edge bands.

When waves generated in the open water adjacent
to the ice cover are impinging on the ice edge, an ice
floe, located at the edge, is exposed to a wide range of
wave frequencies. Assuming infinite fetch, the incident
wave spectrum is now determined by the wind speed,
U, and the duration, ¢, for which the wind has been
blowing (time-limited situation). In Fig. 3, the spectral
density and the corresponding wave-induced force
contributions over frequency are given for a wind U
= 10 m s™!, a floe of draft d = 2.0 m, and a series of
duration ¢ from 1.7 to 20 hours. The wave spectrum
is again given by (11) in which the fetch dependence
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is now replaced by a time dependence for the peak
frequency, (Uf,/g) = 16.8(gt/U)™*/", and the Phillips-
like constant, & = 0.203(gt/U)~%'7. At full develop-
ment (¢ =~ 20 h), the wave spectrum takes the form
of a Pierson-Moskowitch spectrum which is similar to
(11) but without the effect of the peak enhancement
factor (y = 1).

Initially, the young sea state is composed of short
waves which contribute to the drift force following the
quadratic dependence of the force on the wave ampli-
tude (times ¢,, 1, of Fig. 3). As the wave develops, the
increasing spectral energy shifts to lower frequencies,
and the spectral peak enters the small transfer function
region (time £3). The main contribution to the drift
force now comes from frequencies larger than the peak
frequency. At full development (time #4), most of the
energy of the spectrum is contained in a region where
the transfer function is small. The total force is reduced,
and is now entirely due to the high frequency tail of
the wave spectrum. Also, comparing the different drift
force contribution curves of Fig. 3, the effect of the
frequency dependence of the spreading function on
the drift force is evident. In the high-frequency spectral
region, the same energy level at a given frequency re-
sults in a smaller drift force contribution for the “older”
sea state, for which the spectral component has a larger
directional spread (larger s value) being further away
from the peak.

In the previous situation, the wave-induced drift
force reaches a maximum value of about 7.0 X 10> N
at a duration ¢ ~ 6 h and then decreases to a value of
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4.1 X 10° N for the fully developed sea. The same gen-
eral development scheme would prevail for a different
flow or a different wind speed. For example, a wind U
=20 m s~! would generate a maximum force of 1.1
X 10* N after four hours, with a force at full wave
development of 2.0 X 103 N. The total drift force for
the fully developed sea is smaller for the stronger wind.
In fact, the drift force at full development increases
with wind speed because of the higher spectral energy
content up to a point where the higher energy level
can no longer compensate for the decreasing transfer
function value. As a result of these two opposing effects,
the wave-induced drift force at full development takes
a maximum value of about 4.3 X 103> N for a wind
speed U ~ 9 m s~ !. Such a wind generates, according
to (12), a drag force on the floe of 92 N. This force is
easily dwarfed by the wave-induced drift force at the
extreme ice edge where the floes are directly exposed
to the open water waves.

The waves, as they enter the ice cover, are signifi-
cantly modified by the floes. Their energy follows an
exponential decay, with an attenuation coeflicient gen-
erally increasing with frequency, but with a slight de-
crease or “roll-over” at the highest frequencies. There
1s also evidence of a directional broadening of the spec-
trum as the waves penetrate the ice cover with the low-
frequency broadening more slowly than the high-fre-
quency components (Wadhams et al. 1986). In Table
1, typical values of the decay coefficient are given which
have been estimated from data collected during the
MIZEX-84 experiment and presented by Wadhams et

s
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FIG. 3. Spectral density (thick lines) and wave-induced drift force (thin lines) when a wind U

= 10 m s~! has been blowing for'z, =

1.7 h (full lines), &, = 3.2 h (dotted lines), /3 = 8.4 h

(dashed lines), and ¢, = 20 h (chain-dotted lines). The drift force is computed for a floe of 10 m

diameter and 2 m draft.
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TABLE 1. Attenuation coefficient, 8, for a series of wave
frequencies (estimated from Wadhams et al. 1986, Fig. 7).

Frequency (Hz) 810*m™
0.1 043
0.15 29
0.2 14.0
0.25 28.0
0.3 36.0
0.35 35.0
0.4 37.0
0.45 29.0
0.5 28.0

al. (1986) (their Fig. 7). As the open-water waves enter
the ice cover, the high-frequency energy, which is re-
sponsible for most of the wave-induced drift force, rap-
idly decays as well as tending to isotropy (equal energy
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in all directions). The drift force quickly decreases with
distance from the ice edge and, therefore, constitutes
a local forcing effective near the ice edge only. Asso-
ciated with this rapid decrease of the drift force, a large
compressive stress develops that may be very important
in compacting the floes in the vicinity of the ice edge.

To better understand this phenomenon, the wave-
induced drift force has been computed as a function
of distance from the ice edge, x, by including an ex-
ponential energy decay into (8);

F(x) = fozr [ e ox-0)

X exp(—Bx/cost) Tr(f)df cosddd (13)

where E(f, 8; x = 0) is the incident spectrum, and 8
is the attenuation coeflicient as given in Table 1. In
Fig. 4, the total variance of the surface displacement
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FIG. 4. Total variance (full line) with wave-induced drift force, (a), and compressive stress, (b),
(dotted lines) against distance from the ice edge. The floes have a diameter of 10 m and a draft of 2 m.
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is plotted against distance x, along with the total wave-
induced drift force (Fig. 4a) and the compressive stress
dF(x)/dx(Fig. 4b). The computations have been per-
formed for a floe of 10 m diameter and 2 m draft with
an incident fully developed sea state (U = 10 m s™}).
The high values of the force (4.1 X 103 N) and of the
compressive stress (10 N m™') at x = 0 rapidly de-
crease to half of their initial values at a distance just
over 200 m from the ice edge. The directional broad-
ening has not been included here because of a lack of
an adequate parameterization, but its addition would
result in an even faster decay of the drift force, and,
consequently, in a higher compressive force concen-
trated closer still to the ice edge. This strong local com-
pacting effect of the waves certainly plays an important
role in the formation of a well-defined and highly com-
pacted extreme ice edge commonly observed under on-
ice wind conditions (e.g., Wadhams 1986).

4. Conclusion

The second-order wave-induced drift force on an
axisymmetric floe in monochromatic waves has been
presented in terms of a nondimensional transfer func-
tion. This function slowly increases as the horizontal
dimension of the floe relative to the incident wave-
length increases up to a point where the transfer func-
tion rapidly reaches its short-wave limit. The rapid
change in the transfer function is associated with the
occurrence of a resonant peak in the pitch response of
the floe. The short-wave limit of the transfer function
is determined by the shape of the horizontal floe con-
tour and takes a maximum value of 2.0 and a reduced
value of 1.33 for a square and a cylindrical flow, re-
spectively. Using the computed values of the transfer
function, the drift force was then computed for a series
of directional wave spectra. Two situations in which
the wave-induced drift may be important in the MIZ
were analyzed: short waves generated in open water
leads inside the ice cover, and open-water waves inci-
dent on the ice edge. The drift force due to the short
waves present in polynyas, although reduced to just
about half of what the 2D analysis predicts, may partly
contribute to the formation of ice edge bands as pro-
posed by Wadhams (1983). In the second situation,
the high-frequency components of an open-water wave
spectrum were shown to generate a large drift force on
a floe directly exposed to them. However, because of
the rapid decay of the short waves as they propagate
into the ice cover, the large wave-induced drift force
rapidly decays (in the first few hundred meters) and
thus creates a strong local compressive force that com-
pacts the ice at the extreme ice edge.

The simple analysis presented here of wave-ice in-
teractions in the marginal ice zone, although not in-
cluding all the processes involved, certainly provides
insight into the complex problem. When floes are close
to each other, the various floe-floe interactions, which
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have not been taken into account here, become im-
portant. Also, allowing for advecting floes would prob-
ably modify the results. Alternative approaches have
been adopted by other authors to study the wave-ice
interactions by either using the theory of flexural gravity
waves (Wadhams 1973) or by modeling the ice cover
as a highly viscous fluid (Weber 1987). The latter ap-
proach also suggests that the wave-induced stress may
be very important in packing the ice.

The present results show that wave-induced drift
force can play an important role in the local dynamics
of the marginal ice zone near the ice edge and in sit-
uations where large open water leads are present.
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