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ABSTRACT 

Two well known spectral approaches to wave group analysis are critically examined: the envelope 
theory combined with the discrete counting correction scheme (Longuet-Higgins, 1984 ), and the Ki- 
mura theory as modified by Battjes and Van Vledder (1984). In both cases, the mean length of dis- 
crete wave groups, j~ is related, through the narrow spectral bandwidth approximation, to some char- 
acteristics of the wave spectrum: the spectral width, v, and the spectral correlation coefficient, 7~, 
respectively. Comparisons between the predictions of the models and the groupiness characteristics 
of both numerically simulated and field data are used to identify some deficiencies of the two methods 
over a wide range of ocean wave conditions. The limitations of the two methods due to the various 
assumptions employed are closely examined, and their effects on the models' predictions quantified. 
The discrete counting correction scheme of the first method is shown to use an incorrect probability 
distribution for the wave groups and also to neglect an important splitting effect. In the second ap- 
proach, the spectral correlation coefficient is found to be consistently smaller than the putatively 
equivalent discrete wave correlation parameter, 7h, resulting in a systematic underestimation of the 
mean group length by up to 12%. 

1. I N T R O D U C T I O N  

Sequences of  high waves, known as wave groups, are evident both in visual 
observations of  the sea and in wave records. A wave group is commonly de- 
fined as a sequence of  waves with heights exceeding a certain preset level. The 
likelihood of  encountering such a group of  large waves represents an impor- 
tant parameter for the engineering design of  moored and floating structures, 
as well as for various hydrodynamical problems such as surf beat, harbour 
resonance, and whitecaps distribution (e.g. Ouellet and Theriault, 1989 ). The 
term wave group is also associated with the extremely high waves, or freak 
waves, which have been reported to occur at sea on rare occasions and some- 
what unexpectedly (e.g. Nickerson, 1986). However those giant episodic 
waves form a class in themselves and will not be considered here. 

A standard measure of  wave groupiness, the mean group length j~ is ob- 
tained by averaging over a record of  sea surface elevation the number of  con- 
secutive waves exceeding a height threshold, He. Individual waves are defined 
here using the standard zero-upcrossing method with their height, H, taken as 
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the maximum vertical excursion of the surface elevation between two zero- 
upcrossings, and their period, T, as the time interval separating these two 
events. Whereas j-is readily calculated from a series of wave heights, most of 
the wave information collected is commonly available as the power spectrum 
of the surface elevation. Thus, a practical problem which has received consid- 
erable attention consists in identifying a robust relationship between some 
groupiness statistic computed in the time domain, such as ~ and a spectral 
parameter. 

Several linear approaches have been suggested in the past to predict wave 
group statistics from the energy spectrum. The classical Gaussian model, first 
introduced by Rice (1944-1945) to analyse noise in electrical circuits, has 
been used to describe group behaviour in terms of characteristics of the wave 
spectrum. In this model, the sea surface displacement is treated as a narrow 
band Gaussian noise, and the group properties are derived from the envelope 
function of the surface displacement. Longuet-Higgins ( 1957, 1984), who first 
applied the Gaussian model to sea waves, derived an estimate of the average 
number of waves in a high run, ~ye, in terms of a single parameter, the spectral 
width. Although this method has been shown to successfully predict the mean 
number of waves in a group defined by the wave envelope (e.g., Chandler and 
Masson, 1992 ), its usefulness in modeling the group statistics of the discrete 
wave heights has not yet been satisfactorily demonstrated. Vanmarcke ( 1975 ) 
and Goda ( 1976 ) suggested a relationship between groupiness based on con- 
tinuous envelope theory ( ~ )  and one based on discrete counting (f). How- 
ever, Elgar et al. (1984) noted that this discrete correction scheme contains 
internal inconsistencies and yields incorrect results for narrow spectra. 

An alternative approach to the analysis of wave groups was proposed by 
Kimura (1980). In this method, the sequence of wave heights is treated as a 
Markov chain, and the mean group length, ~ is shown to depend on one pa- 
rameter, the correlation coefficient between successive discrete wave heights, 
7h- This theory has been found by several authors to adequately model the run 
lengths for a variety of sea states (e.g., Goda, 1983; Battjes and Van Vledder, 
1984). A drawback of Kimura's formulation is that the groupiness is not con- 
veniently defined in terms of the wave spectrum. Following Arhan and Ezraty 
( 1978 ), Battjes and Van Vledder (1984) proposed to replace 7h by a spectral 
correlation coefficient, ~'s, derived from Rice's envelope theory. However, there 
are indications that this new correlation coefficient derived from the spec- 
trum tends to be smaller than the correlation coefficient obtained in the time 
domain, ?h, (e.g. Chandler and Masson, 1992). The present uncertainty on 
the relation between the spectral and time-domain correlation coefficients was 
identified by the IAHR working group on wave generation and analysis (1992) 
along with the need for further research. 

In view of the uncertainties associated with the known spectral approaches 
and the need for a practical relationship between groupiness characteristics 
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computed in the time domain and those derived from the wave spectrum, we 
were motivated to examine more closely the limitations of these methods. 
Thus, in this study, two spectral methods of wave group analysis are applied 
to an extensive data set in order to determine the reliability of their predic- 
tions. The first part of this paper reviews the two commonly used spectral 
approaches to wave group analysis mentioned above: the envelope theory of 
Longuet-Higgins, and the Kimura theory as extended by Battjes and Van 
Vledder (1984). In the next section, the two methods are reviewed in detail. 
Group statistics derived from field data and numerically simulated data for a 
variety of sea states are then presented and compared with the predictions of 
the two methods. Finally, in Section 4, the limitations of the methods due to 
the various assumptions are examined more closely, and their influence on 
the results quantified. It should be noted that, in this work, the group analysis 
of the wave field is restricted to the application of the linear dynamics and, 
therefore, does not consider wave group formation as a result of nonlinear 
modulational instability (see e.g., Yuen and Lake, 1980). However, because 
of the relative success of the linear methods obtained in the past to model the 
observed group behaviour, the limited scope of the present study seems 
justified. 

2. R E V I E W  O F  S P E C T R A L  M E T H O D S  

2. I. Envelope theory 

The sea surface elevation time history, r/(t), is treated as a random Gaus- 
sian process and can be expressed as the sum of sinusoidal components with 
angular frequency co,, 

q(t)=Re(~c.e 't'°"'+'"] ) (1) 

where the random phases, ~n, are uniformly distributed over the range [0,2to]. 
The fixed amplitude is determined by the frequency spectrum, E(co), as 
c, =x/2E(co)Aco, with Aco the frequency increment. By choosing a carrier 
wave frequency, 03, as a representative midband frequency, r/(t) may be re- 
written as 

rl( t ) =Re(e"~'~ c.e'[ <~'.-°~)'+.,,]) 

=Re(R(t)e ~°~t ) 
A complex wave envelope function can now be defined as 

(2) 

(3) 
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R (  t ) = ~ Cne it (t°n--th)t+'n] =-a( t )e i~(° (4) 
I1 

where a (t) is the amplitude of the envelope function and ~ (t) its phase. For 
narrow band spectra, the variation of a with time is slow compared with the 
carder w a v e  e i~t, and the wave crests (troughs) closely follow the envelope 
function. Also, the probability density function (pdf)  of the surface displace- 
ment, r/(t), and of its derivative is known to be Gaussian (e.g., Longuet-Hig- 
gins, 1957 ). For the wave envelope a (t) of narrow spectra and its time deriv- 
ative, the pdf assumes a Rayleigh and Gaussian distribution, respectively. 
Given those distributions, the average number of waves in a group of the 
envelope function, ~Tt~, can be derived by dividing the average length of epi- 
sodes for which the wave envelope exceeds the critical level, H¢/2, by the 
mean zero-upcrossing period. Longuet-Higgins (1984) conveniently ex- 
presses ~e in terms of one single spectral parameter, the spectral width, v, 

)Tt~= 2 ~  -m°x//~-+ v2 1 (5) 
N/ n v He 

The spectral width parameter, v, is defined as 

m 2  m o  
v = N /  m2 1 (6) 

GO 

with the spectral moment mr= foorE(co)dog. The results of this theory are 
0 

asymptotically valid for narrow spectra for which the spectral bandwidth 
v 2 << 1. This method is then applicable to sufficiently narrow band processes, 
or to data that have been adequately filtered. Longuet-Higgins (1984) found 
that, for typical records of wind waves, a band-pass filter with upper and lower 
cut-offs at 1.5 and 0.5 times the peak frequency is the most suitable. 

It is important to note that the mean group length derived using the enve- 
lope theory, ~Tt~, is defined differently than the commonly used parameter, 
obtained from the series of discrete wave heights. For example, the envelope 
method can identify a short episode during which the envelope exceeds the 
critical level but for which no discrete waves exceed the threshold (see Fig. 
6a below). In other words, not all of the small ~e groups correspond to a j 
group, resulting generally in a smaller ~ than fvalue.  In fact, for relatively 
wide band processes or for high values of the critical levels (i.e. small ~e ) the 
number of groups identified by the envelope method may be much larger than 
the one defined by the discrete method. Accordingly, the estimate of the mean 
group length, ~ ,  must be modified to account for this difference in order for 
the envelope theory to adequately model f in the ease of realistic sea states 
with finite spectral bandwidth. 
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Vanmarcke (1975 ) and Goda (1976) derived an expression for the dis- 
crete parameter f i n  terms of the probability density function of the variable 
a~ derived from the wave envelope, p (~¢g). First, it is assumed that an enve- 
lope group with i < g < ( i+  1 ), where i=  0,1,2,3..., corresponds to a run length 
j of i or i+  1 discrete waves. Also, the probability that this ~e group be asso- 
ciated with a group of either i or i+  1 discrete waves is assumed to be 
( i+  1 - g )  and ( g -  i), respectively. Note that for the case i=  0, each 
group is associated with either n o j  group ( j=  0) or with a j  group of one wave 
( j=  I ). The mean number of waves per group can then be estimated as 

(O/il  4rOti2)i 
r- /-----1 

j -  oo (7) 
(a;, +a;2) 

i=1 

with 

i 

Ol~il --'~ I ( ~ ( ~ - - i " [ "  1 ) p ( o ~ ) d ( ~ )  

i - 1  

and 

i+1 

otn= ~ (i+l-~:)p(~f)d(~:) 
i 

In Eq. (7), the summation over i does not include the i =0  case as, by defi- 
nition, j>_. 1. There is difficulty in evaluating Eq. (7) because the function 
p ( a f )  is not easily obtained from the envelope theory. However, for narrow 
spectra, the probability that a group be larger than ~¢g, P(Yg), can be approx- 
imated by a Poisson distribution (Nolte and Hsu, 1972) with a resulting pdf 
of the form: 

(8) 

The above distribution is obtained by assuming that successive upcrossings 
of the critical level by the envelope are uncorrelated. This assumption will 
hold whenever the time interval between the successive upcrossings is large 
relative to the mean period, 2rr/o3. Substituting Eq. (8) into Eq. (7) leads to 

f =  (1 _ el_,/,z,) (9) 

At the limit ~g --, oo, this expression reduces to 
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j ~ + 0 . 5  (10) 

which is the relation proposed by Longuet-Higgins (1984) for the discrete 
counting correction. However, as previously noted by Elgar et al. (1984), for 
~ o o ,  both discrete wave parameter and envelope parameter should be 
identical (o~Tf--,f), in contrast with Eq. (10). The discrete counting correction 
will be critically examined in the following sections. 

2.2. Modified Kimura theory 

Kimura (1980) proposed to analyse wave groups by treating the sequence 
of wave heights as a Markov chain, and allowing for non-zero correlation be- 
tween successive waves. The joint probability density function of successive 
wave heights H~ and HE is taken by Kimura as a bivariate Rayleigh 
distribution: 

7[ 2 H1H2 ( nHI2+H22 1 ) 
p(H~,H2)-4 H4(1--K 2) exp 4 H E ( 1 - x  2) ( l l )  

Io ~ (1_t¢2) Hm ] 

where x is a correlation parameter, Hm the mean wave height, and Io the mod- 
ified Bessel function of zeroth order. 

The correlation parameter used by Kimura, r, is a function of the correla- 
tion coefficient between successive wave heights, 7h: 

1 1 N-1 
Yh --trZ(H) N -  1 i~  (Hi -Hm) (H/+I -Hm) (12) 

with tr(H) the standard deviation of a large number, N, of wave heights, H;. 
The coefficient, 7h, and the correlation parameter, x, are related through 
(Uhlenbeck, 1943 ) 

1 2 E(x)- -~(1--x  )K(~) - ~  
(13) 

/'C 

1 - - - -  
4 

where K and E are complete elliptic integrals of the first and second kind, 
respectively. 

To compute the probability of a sequence of high waves, Kimura used the 
conditional probability that a wave height exceeds the threshold value, He, 
given that the previous wave also exceeds/arc. This conditional probability, 
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1322 ~ Prob [Hi+ 1 >t Hc ]Hi >/Hc ], is computed from the joint pdf p (H1,H2) of 
Eq. (11): 

OO 

HcHc 
P22 - oo~ (14) 

f f p( Hi ,H2 )dHl dI-t2 
/ / c O  

The probability that a group is comprised of j  waves can then be written as 

p( j )  = (1 -P22)P~2-') (15) 

giving an average group length 

1 
f=-- (16) 

1 -]722 

Through Eqs. ( 11 ) -  ( 16 ), the present theory allows the mean number of waves 
per group, j,  to be estimated from one parameter, the correlation coefficient 
between consecutive wave heights, 7h. Goda ( 1983 ), among others, found 7h 
tO control fairly well the mean group length from an analysis of long-travelled 
swell. 

A drawback of Kimura's formulation is that the groupiness is not conve- 
niently defined in terms of the energy spectrum but rather depends on a pa- 
rameter, 7h, computed from the series of discrete wave heights. To remedy 
this problem, Kimura (1980) initially suggested that, since 7h can be derived 
from the wave peakedness parameter Qp, statistical properties of wave groups 
can be estimated from the latter. However, Qp has been shown to be clearly 
inadequate as a definite group parameter (e.g., Elgar et al., 1984). Later, 
Battjes and Van Vledder (1984) proposed a modification to the theory in 
which a new spectral wave groupiness parameter was introduced. On the ba- 
sis of the work of Arhan and Ezraty (1978 ), they replaced the correlation 
parameter, x, in Eq. ( 11 ) by a new correlation parameter, xs, determined by 
the frequency spectrum, E(~o); 

/¢s - - ~  y2  (17) 
mo 

where 

OO 
/m 

X= ~E (o9) cos (OgTm) dm (18a) 
o 



256 D. MASSON AND P. CHANDLER 

OO 

Y= f E( to )sin( toTm)dto (18b) 
0 

and Tm= 2rt m~0 /m2  is the average period between zero-upcrossings. Using 
this spectral parameter, a new correlation coefficient, ?s, analogous to ?h, can 
be computed from Eq. ( 13 ). The parameter 7s is in fact the correlation coef- 
ficient between points of the envelope wave function, a(t), separated by a 
constant time interval equal to Tm. In this approach, the correlation coeffi- 
cient between discrete waves, is replaced by the correlation coefficient be- 
tween points of the wave envelope, and thus allows the wave groupiness to be 
determined by a single spectral parameter, 7~. However, the parameter ~ will 
be equal to ~'h given that the amplitude of the discrete waves follow the enve- 
lope function, the waves are separated by a time interval approximately con- 
stant and equal to Tin, and finally that the wave heights can be approximated 
by twice the value of the envelope function. These conditions will be strictly 
satisfied in the limit of an infinitely narrow spectra, and the non zero spectral 
bandwith of ocean wave spectra will make the two correlation coefficients to 
be different as demonstrated below. 

In the next section, the various groupiness characteristics predicted by the 
two spectral models described above will be compared with both field data 
and numerically simulated data. 

3. DATA VERSUS PREDICTIONS OF THE MODELS 

3. I. FieM data 

A subset of the field data collected during the Canadian Atlantic Storms 
Program (CASP) in 1986 with Datawell Waverider and Wavec buoys is used 
in this study. The data set was collected offthe coast of Nova Scotia, in water 
depths of 20 to 100 m (see Dobson et al., 1989 for more details). In linear 
theory, it is recognized that the concept of a wave group implies that most of 
the energy is associated with wave components of frequencies close to the 
peak frequency. Thus, any spectrum that has its energy distributed in two or 
more modes of comparable energy and widely separated in frequency is not 
suitable for group analysis based on linear wave dynamics. Also, it is known 
from both the linear theory and published data sets that such bimodal spectra 
with large spectral bandwidth do not exhibit any significant groupiness prop- 
erties. Accordingly, we selected time series most likely to be associated with 
unimodal spectra only, by requiring that no more than 20% of the energy was 
contained in the frequency range above 1.5 times the peak frequency. It should 
be noted that, for the broad Pierson-Moskowitz spectrum, approximately 20% 
of the wave energy is contained above this cut-off frequency. Given that this 
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spectral shape represents the limit of full wave development where the spec- 
trum reaches a maximum spectral bandwidth, the chosen criterion ensures 
that most typical unimodal spectra contained in the data set are included in 
the analysis. 

As the CASP data set consists, in large part, of bimodal spectra from the 
typical Atlantic conditions of a local wind sea developing on an underlying 
swell, the above criterion was a serious limitation to the selection of wave 
spectra used in our group analysis, and only about 20% of the spectra exam- 
ined satisfied the selection criterion. Also, due to the particular wave clima- 
tology of the region studied, the data set does not contain any long travelled 
swell with very narrow spectra which have however been found in other re- 
gions (e.g. Goda, 1983). In other words, these local wave conditions are cer- 
tainly not typical of all the world oceans, and the 20% success rate for the 
given selection criteria should by no means be considered universal. A total 
of 324 time series were processed and used in the group analysis described 
below. 

A spectral analysis of the original (unfiltered) 30 minute records of surface 
elevation sampled at 1.28 Hz provided spectral estimates with a resolution of 
0.005 Hz and 18 degrees of freedom. Each selected time series was first de- 
trended. Then, time series containing spurious spikes (values greater than 6 
times the standard deviation of the time series) were rejected. In addition, 
following the recommendations of Longuet-Higgins (1984), the time series 
were lowpass filtered with a filter cutoff frequency of 1.5 times the peak fre- 
quency prior to the group analysis by the envelope theory, but not for the 
analysis based on the modified Kimura approach. Also, to ensure consistency 
between time and spectral domains, the power spectrum was recomputed from 
the lowpass filtered time series. The series of discrete wave heights was then 
generated using the standard zero-upcrossing technique, and the wave enve- 
lope computed using the Hilbert transform. 

3.2. Numerical simulations 

To provide us with an additional source of data, time series of sea surface 
elevation were also generated numerically. The random waves were simu- 
lated using the random coefficient method in which the signal r/(t) consists 
of N values sampled at discrete times tm with intervals At, such that 

N/2 

r/(tm)= ~ [ancos(tontm)+bnsin(tontm)] (19) 
n = O  

where tOn =2~rn/NAt. The random coefficients an and bn a r e  generated from 
a Gaussian distribution with variance E(tO~)AtO. This method is preferred 
here to the commonly used random phase method as the latter was shown to 
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be adequate only for sufficiently large values of  N (Tucker et al., 1984). Two 
target wave spectra, E( to) ,  were chosen. One is the empirical JONSWAP 
spectrum characteristic of  growing seas, and the other a typical narrow ocean 
swell distribution. All spectra used in the method based on the envelope the- 
ory were truncated at 1.5fp. The JONSWAP spectrum has the form 

e(to) = g2ex-[- (20) to5 "L 4\top] J" 

where 

0.07 for to~< top 
a=0 .09  for to>tOp 

tOp is the peak frequency, the Phillips constant c~=0.01, and the peak en- 
hancement  factor y= 3.3. The expression for the swell spectrum was taken 
from Longuet-Higgins (1984) as 

E(tO) = otsto -°Se - (n/2) tp~o+ (p~o)-~ 1 ( 21 ) 

where as, P, and n are constants. The spectral width is determined by the 
variable n through 

v=  ( n + 2 ) ° 5  
( n + l )  

For ocean swells, values of  n typically range from 50 to 300 and, here, values 
n = 50, 100, and 200 (v = 0.14, 0. l, and 0.07 ) were used. The time series sam- 
pling and duration periods are consistent with those of  the field data. For this 
section, a total of 600 numerically generated time series were examined for 
their group characteristics, with 150 for each spectral shape. For all spectra, 
the peak frequency was chosen as tOp= 2~-0.1 rad/s.  

The wave height threshold, He, was selected as the mean wave height, 
Hm = ~ .  This leads to a greater number  of  wave groups per record than 
the commonly used significant wave height, which is larger than Hm, and 
therefore reduces the statistical variability for the estimate of the mean group 
length. It is important  to note that the statistical variability of  the mean group 
length also depends on the duration of  the t ime series used in the analysis. 

3.3. Group statistics 

The group characteristics of  the wave field are first analysed in terms of  the 
wave envelope theory. For each time series, the predicted average number  of 
waves in a group, J~f, was derived from the spectral width of  the filtered spec- 
t rum according to Eq. ( 5 ), with Hc=Hm. The results are then compared with 
another estimate of the mean number  of  waves in a group, (Jen), where ( ) 
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is used to indicate an ensemble average. This parameter is computed directly 
from the envelope by averaging the duration of  the time intervals for which 
the amplitude of  the envelope function, a (t),  exceeds the mean wave ampli- 
tude, Hm/2, and dividing this value by the mean zero-upcrossing period, Tm. 
Results are given in Fig. 1 and show a good agreement between the theoretical 
predictions and the measured wave envelope groupiness (correlation coeffi- 
cient r=0.96 ). The high correlation between 9f¢ and (Jen) is seen to hold over 
the whole range of  values presented (0.8 ~< jge ~< 5.5 ) with, however, increased 
scatter of  the data as ~ increases because of  a reduced number of  wave groups 
detected in each record (larger statistical variability). It should be noted that 
the field data analysed do not cover as wide a range of  ~ as the numerical 
data. The spectral shape used for the narrowest swell (n = 200 in Eq. 21 ) leads 
to higher levels of  wave groupiness ( ~  > 4) than the ones observed in the 
CASP data (JTt~ < 3.5 ) because of  the particular wave conditions of  the region 
mentioned earlier. However, over the range of  values for which the two data 
sets overlap, the data presented in Fig. 1 (as well as in the following figures) 
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Fig. 1. The average run length derived from the amplitude of  the wave envelope (Jen) as a 
function of  ~ for field ( O )  and simulated ( • )  data. The dashed line gives the equality 
(Jen) : ~ ¢  and the full line is the linear least squares fit. 
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Fig. 2. The measured <j> as a function of the average run length derived from Eq. (5),  ~ for 
field ( O )  and simulated ( • )  data. The full line gives the second order least squares fit to the 
data, the dotted line the relation obtained with the discrete counting correction (Eq. 9), and 
the dashed line its simplified form (Eq. 10). 

do not reveal any significant difference among group statistics extracted from 
field and simulated data, in agreement with previous works (e.g., Elgar et al., 
1984; Goda, 1976 ). These results support the notion that the analytic linear 
Gaussian model for the surface elevation can adequately reproduce measured 
wave group characteristics. 

The success of  this spectral approach in predicting the mean group length 
of  the envelope, <jen >, does not guarantee its usefulness in predicting wave 
group characteristics of  the discrete wave heights. In fact, its ability to predict 
the parameter f a l s o  depends on the validity of  the assumptions involved in 
the discrete counting correction expressed in Eqs. ( 7 ) -  ( 9 ). In Fig. 2, the av- 

Fig. 3. The average group length <j> as a function of the correlation coefficient between discrete 
wave heights Yh (a) and of the spectral correlation coefficient Ys (b)  for field ( O ) and simulated 
( • )  da t a .  The solid curve represents Kimura theoretical relationship, and the shaded area 
covers the area bounded by the 99% confidence intervals. 
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erage number of waves in groups of measured discrete waves, ( j ) ,  is com- 
pared with the average number of waves predicted by the model, ~Tf. Also 
included in the figure is the second order least squares fit to the data, and the 
relation between the two variables suggested by the known discrete counting 
correction, Eq. (9), and its simplified form Eq. (10). Although the agree- 
ment between the model and the data appears fairly good in the intermediate 
range of values, the present models Eq. (9) and Eq. (10) are clearly not sup- 
ported by the data for both smaller ( ( j )  ~<2.5) and larger ( ( j )  >/4) param- 
eter values. For ( j )  >/4, the present data set confirms the inconsistency of 
Eq. (9) or Eq. (10) noted in Section 2.1 in the case of narrow spectra for 
which the equality a~e=fprevails. On the other hand, for time series which 
are relatively poorly grouped ( ( j )  ~ 2.5 ), the correction for discrete counting 
proposed in Eq. (9) does not appear severe enough, with a measured differ- 
ence between ( j )  and j~e larger than predicted. These inconsistencies of the 
present discrete counting correction model is discussed further in the next 
section, where it is shown that the reasonable agreement obtained at mid range 
of ( j )  results from a fortuitous'cancellation of errors due to using an inexact 
pdf distribution and neglecting an important splitting effect. 

1.0 
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In a second attempt to model the groupiness of the present data set, the 
prediction of the Kimura theory for the mean length of wave groups as given 
by Eqs. (11 ) - (16)  is examined. In Fig. 3a, the variations of the measured 
<j> with the correlation coefficient between successive wave heights, ?h, is 
presented. The data points cluster around the theoretical curve which re- 
mains within the 99% confidence intervals measured for every 0.1 interval of 
?h values. Therefore, the Kimura theory models quite successfully the ob- 
served dependence of the mean group length on ?h, as has been consistently 
found in the past (e.g., Goda, 1983; Thomas et al., 1986). 

Battjes and Van Vledder (1984) modified Kimura's theory by relating f t o  
a new correlation coefficent, ?s, conveniently computed directly from the 
spectrum (see Eqs. 17 and 18 ), and presumably equivalent to ?h. However, 
the modified approach is found to consistently underpredict the measured 
wave group length, ~ for all but very wide or very narrow spectral shapes (Fig. 
3b), with the theoretical curve now falling below the 99% confidence inter- 
vals for all but very low or very high ?s values. This is due to the fact that the 
proposed spectral correlation coefficient, ?s, is consistently smaller than the 
measured coefficient, ?h, extracted from the time series of discrete wave heights 
(Fig. 4). Only for very high values of correlation obtained from numerical 
simulations of very narrow spectra are the two correlation coefficients equal. 
Thus, despite the success of the Kimura theory in predicting f i n  terms of ?h, 
its practical usefulness is limited by the lack of a valid spectral analog to ?h. 
In the following section, the difference between the two correlation parame- 
ters ?h and ?~ is examined in more detail. 

4. L I M I T A T I O N S  O F  T H E  M E T H O D S  

4. I. Envelope theory 

When comparing the measured values o f f w i t h  the predictions of the en- 
velope theory combined with the discrete counting scheme, some divergence 
was noted. To identify a possible cause for the inability of this approach to 
fully model the present data set, the choice of a Poisson model for the 
probability density distribution, resulting in the pdf (Eq. 8), is first exam- 
ined. Secondly, the splitting of wave groups by small excursion of the enve- 
lope function below the threshold level is identified as important in the rela- 
tion between the envelope and the discrete wave measure of the mean group 
length. 

In order to obtain reliable statistical information, 600 time series were nu- 
merically generated with a truncated JONSWAP target spectrum, producing 
a total of 18388 envelope wave groups (Jen). This data set was then used to 
compute the probability density function p ( ~ ) = P ( J e n ) .  In Fig. 5, the mea- 



2 6 4  D. MASSON AND P. CHANDLER 

1 . 0 0 0 0  

0 . 1 0 0 0  

~ "  0 . 0 1 0 0  
{3. 

0 . 0 0 1 0  

I I I ~ I 

0 . 0 0 0 1  ~ ~ , I ~ ~ , I ~ ~ ~ I , , , I ~ , , I ~ 

0 2 4 6 8 1 0  

Fig. 5. The probability density function of the envelope group length, p()f),  for field ( • ) and 
simulated ( ) data. The dashed line is the Poisson model distribution. 
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sured distribution is compared with the Poisson model  (Eq. 8 ) for which the 
variable ~ is taken as the ensemble average (Jen) = 2.09 _ 0.03. Here and for 
all the ensemble averages to follow, the 99% confidence interval is given as a 
measure of  the statistical variability. This average envelope wave group is a 
very good estimate of  the spectral parameter  97t ~ = 2.10 computed as in Eq. 
( 5 ) using the measured spectral width, u = 0.15, of  the target spectrum. Also 
included in Fig. 5 is the pdf  computed  from 155 of  the field t ime series for 
which 97t ~ is within the range of  the values obtained with the numerical  JON- 
SWAP simulations ( 1.9 ~ ~ ~ 2.5 ). Again, the field data and the numerical  
data are found to have similar group characteristics, but the measured pdf  is 
significantly different from the assumed Poisson model  distribution. In par- 
ticular, the data indicate a decrease in the probability density function as ~ - ~  0 
in contrast with the assumed distribution which reaches a m ax i m um  at the 
small ~e limit. This deviation of  the measured distribution from the Poisson 
model  at small 9f ~ value is not  surprising given that this model 's  distribution 
is obtained by assuming that successive upcrossings are widely separated in 
time, which is not  the case for small ~ values. 

Given that the measured pdf  is known to be different from the assumed 
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TABLE l 

Group parameters for a truncated JONSWAP target spectrum 

265 

Parameter value 

(,j) 2.72 
( L . )  2.09 
,,'~ as in Eq. (5) 2.10 
fpredicted by Eq. (7) 2.63 
(with P oisson p ( ~ )  ) 

fpredicted by Eq. (7) 2.29 
(with measured p ( ~ ) ) 
(j~:,~) 2.47 

distribution, it is interesting to examine the effect of using the measured p (~f) 
on the model's prediction o f f fo r  the JONSWAP target spectrum. The ensem- 
ble average of all the groups identified by the envelope and by the discrete 
wave method are (Jen) = 2.09 + 0.03 and ( j )  = 2.72 + 0.04, respectively (see 
Table 1 ). An estimate o f fwas  computed as in Eq. (7), with both the Poisson 
model ( f=  2.63 ) and the measured pdf ( f=  2.29). Rather than improving the 
estimate, the use of the measured p ( g )  function increases the difference be- 
tween the measured and the estimated frelat ive to the results of the Poisson 
model which, in fact, are already too low. According to the discrete counting 
scheme, the envelope estimate is smaller than the discrete wave estimate due 
to all the small groups identified by the wave envelope function which do not 
correspond to groups of discrete waves. It is therefore understandable that 
the correction obtained with the measured distribution is less severe than the 
one obtained with the Poisson model which predicts relatively more small 
groups. 

The deterioration of the fest imate  obtained with an improved pdf brought 
us to examine more closely the first assumption used in the discrete counting 
correction which leads to Eq. (7). In this scheme, it is assumed that every 
group identified by the envelope with i<  ~,~¢< ( i+  1 ) corresponds to a group 
of either i or i +  l discrete waves, with i=0,1,2,3. For the case i=0 ,  a fraction 
of the small ~ groups will not be associated with any group in the wave height 
time series ( j=  0). This occurs when the envelope stays over the critical level 
for a short time during which no wave height is identified by the zero-upcross- 
ing method (Fig. 6a). According to the discrete counting scheme, the differ- 
ence between the number of ~,~ groups a n d j  groups in a time series should be 
accounted for by this phenomenon. It is possible to estimate the fraction, ~, 
of ~ groups which are not likely to be associated with any j group. If wc 
assume that the case j =  0 occurs only for small groups with ~ <  l, and that 
the probability of having a j =  1 group is proportional to ~ ,  we can write 
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1 

0 

(22) 

Using  the  m e a s u r e d  p d f o f F i g .  5 leads  to  6 =  0.08. Thus ,  the  d iscre te  coun t ing  

(a) 
14© 

It+ 8 
n+7 

J ' O  

Jen = 0,6 

(°) 

Hn.2 Hn + 3 
i÷s J =6 

Jm':  2.2,1.8 

Fig. 6. Time series of water surface elevation with (a) a case j=0,  and (b) a splitje,. The full 
line gives the surface elevation ~/(t), the thick line the envelope function a(t), and the dotted 
lines the discrete waves. 
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scheme predicts that, for the truncated JONSWAP spectrum used here, there 
should be 8% more af' groups than j  groups. On the other hand, in the selected 
(the 155 JONSWAP-like spectra) field and the numerical data there are 25% 
and 26%, respectively, more a~' groups t h a n j  groups. 

This result clearly shows that  some phenomenon not accounted for by the 
present discrete counting correction scheme significantly affects the Ac~-j re- 
lationship. In fact, a close inspection of the data revealed a new aspect of 
discrete counting which was generally found in all of the time series: the split- 
ting of a large af ~ group by a brief excursion of the envelope below the critical 
level during which the series of wave heights remain above the threshold level 
(Fig. 6b). By dividing large af ~ groups into smaller ones, the splitting effect 
contributes to make more ~¢g groups than j groups, and consequently to in- 
crease the difference between the a~e and fvalues.  

To understand this behaviour better, a new parameter, T, is defined as the 
time interval between successive high runs, normalized by the mean period. 
The mean length of such an interval, f, is simply the difference between the 
mean length of a total run (interval between two successive upcrossings), G, 
and of a high run, a~e. Using Longnet-Higgins' (1984) expression for the mean 
length of a total ~ n ,  which can be written as G= ~ e x p  (H~/Smo),  we have 

f=G-~f~=f f~(e  u~/sm°- 1 ) (23) 

For the truncated JONSWAP spectrum used here, f takes the value 2.5. In 
analogy with the t~ of Eq. (22), the fraction, E, of the intervals z causing an 
group to be divided within a j  group can be estimated by 

1 

= f ( 1 -- z )p(z )dz  
0 

(24) 

A pdf for the variable T was also computed from the 600 simulated time se- 
ties, and used in Eq. (24) to estimate the fraction ~ = 0.07. Note that the given 
values of t~ and ~ are rather crude estimates, being quite sensitive to the value 
of the upper limit of the integral. For example, by allowing intervals with 1 ~< 

~< 1.25 to have a non-zero probability to cause a split, the value of ~ increases 
to 0.12. However, what is more significant here, is that the two ratios are 
approximately equal, indicating that this new effect occurs as often as the one 
shown in Fig. 6a, and that its neglect in the present discrete counting scheme 
is a serious source of error in the predicted ~ - j  relationship. 

To evaluate the magnitude of the splitting effect on the mean group length, 
a new parameter, ( j~n),  was extracted from the time series. This new vari- 
able represents the average length of the groups identified by the wave enve- 
lope function modified to prevent any division of a group by a small interval 
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z during which the wave height time series remained above the critical level. 
For the truncated JONSWAP spectrum, we obtain ( J ' n ) = 2 . 4 7  +0.04. A 
comparison with the previous results of Table 1, reveals that the splitting ef- 
fect accounts for more than half of the difference between the envelope, (Jen >, 
and the discrete wave, ( j ) ,  measure of the mean group length. 

Given that both assumptions Eq. (7) and Eq. (8) used to construct the 
discrete counting correction scheme Eq. (9) have been shown to be inade- 
quate, the reasonable agreement found between mid range values of predicted 
j a n d  measured (j> of Fig. 2 may be surprising. In fact, the apparent success 
of the model for median values of the mean group length simply results from 
a fortuitous combination of overpredicting the effect of the j =  0 cases and 
ignoring the important split events. Unfortunately, the splitting effect is not 
suitable for a simple parameterization similar to Eq. (7), and the need for a 
solid ~ - j  relationship, which would not overlook the splitting effect, re- 
mains, and will be explored in future work. 

4.2. Modified Kimura theory 

Battjes and Van Vledder (1984) proposed a spectral version of the Kimura 
theory in which the correlation coefficient between discrete waves, ?h, is re- 
placed by the spectral parameter, ?s. However, for most of the time series 
analysed, the latter is found to be consistently smaller than the coefficient 
derived from the series of discrete waves (see Fig. 4). The spectral correlation 
coefficient, ?s, is the value of the autocorrelation of the wave envelope, a (t), 
for points separated by a time interval Tin, and can be written as 

GOOO 

~s = t72~-a) ( a l - a ) ( a 2 - a ) p ( a l , a 2 ) d a l d a 2  ( 2 5 )  

o o  

where a~ = a ( t ) ,  a2=a(t+ Tin), and tr2 (a) and aare  the variance and the mean 
value the envelope function, respectively. The joint probability density, 
p(at,a2), has the bivariate Rayleigh distribution of Eq. ( 11 ) with the corre- 
lation parameter x=  xs. The coefficient ?s will be a good estimate of ?h assum- 
ing that: (1) the amplitudes of the discrete waves follow the envelope func- 
tion, (2) the separation between zero-upcrossings is approximately constant 
and equal to Tin, and (3) the wave height H(~) can be approximated by 2a(t).  
These three assumptions are rigorously valid for infinitely narrow spectra only, 
in which case one has the identity ?h = ?~. However, for most ocean spectra the 
finite spectral bandwidth causes the spectral estimate of the correlation coef- 
ficient to be lower than the discrete wave estimate. The contribution of each 
of the three assumptions to making ?~ smaller than ?h is examined below. 

In order to quantify the effect of each of the three above assumptions on 
the observed difference between y~ and ?h, we used the results derived from 
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300 JONSWAP numerical time series along with 163 JONSWAP-like time 
series of the field data set for which 0.2 ~< ?s ~ 0.4. The average value of the 
correlation coefficients are ~'h=0.43 + 0.007 for the series of discrete waves, 
and ~,s=0.3 + 0.005 for the spectral value (through Eqs. 17 and 13 ). The small 
99% confidence intervals of both values clearly indicates that the two corre- 
lation coefficients are significantly different. In this ease, with the Kimura 
theory (Eqs. 11-16), the use of the smaller spectral correlation coefficient 
systematically underestimates the mean group length, f by 12% compared to 
one obtained with Yh. 

The effect of the assumption (1) is analysed by computing the correlation 
coefficient of the wave envelope with a version of Eq. (12) in which each 
wave height is now the sum of the value of the envelope function at the time 
of the crest and the trough, Hi = a ( tcrest,, ) + a ( ttrough,, ). Throughout the anal- 
ysis the envelope function was computed using the Hilbert transform. The 
resulting correlation coefficient is now slightly larger (0.45) than the one ob- 
tained with the actual wave heights, 7h- Thus, the low bias of ~'s relative to the 
measured ~'h does not appear to be due to the fact that the wave amplitudes 
do not follow exactly the envelope function. 

Regarding the assumption (2), we first present the work of Arhan and 
Ezraty (1978) who examined the effect of the scattering of periods around 
their mean value, Tm, on the estimate of the joint probability density func- 
tion, p(H~,H2). In the modified Kimura theory, the correlation coefficient 
between successive wave heights is approximated by ?s of Eq. (25). This re- 
lation uses the joint probability, p (a~,a2), for two points of the wave envelope 
separated by a constant interval, Tin, in place ofp (H1,H2). A better approxi- 
mation of the function p(H~,H2) is derived by introducing the height-period 
joint probability density of discrete waves, p (H, T), in the model. The condi- 
tional probability density of periods, given the height, H, can be defined as: 

p(H,T)  
p ( T I H ) - ~  

~ p ( H , T ) d T  
o 

(26) 

The joint probability of two successive waves H1 and H2 can be estimated 
assuming that the lag between the crests of the two waves is the period, T, of 
a wave with height (HI +/-/2)/2, giving 

])(HI,H2)~lfp(al ,a2[T)~T]H12H2)dT 
o 

(27) 

where the joint probability density function of the wave envelope is written 
as p(a~,a21 T) to underline the fact that it applies to two points of the enve- 
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lope separated by a time lag T. This function, p( a~,a21T), is given by a bivar- 
iate Rayleigh distribution for which the correlation parameter, tq, ofEq. ( 17 ) 
is now computed with a varying time lag T in place of the fixed Tm. Arhan 
and Ezraty computed this probability density for a JONSWAP spectrum us- 
ing an analytic height-period joint probability density, p (H,T), and found it 
very dose to a measured distribution. 

The results of Arhan and Ezraty are used here to improve the spectral esti- 
mate of 7h by computing a correlation coefficient as in Eq. (25) but with the 
improved joint probability distribution of Eq. (27). To avoid the uncertainty 
associated with analytical distributions, a height-period joint probability 
density, p (H, T), was obtained by aggregating into a joint histogram a total of 
96000 discrete waves identified in time series numerically simulated from a 
JONSWAP target spectrum. Figure 7 presents the resulting joint distribution 
in 0.1 X 0.1 dimensionless bins. The general features of this distribution, in- 
cluding its distinct bimodal structure, are similar to the ones observed previ- 
ously by Sobey (1992), and Su and Bergin (1983). Using the measured 
p(H,T) function leads to a larger value, 7s=0.35, for the correlation coeffi- 

I I I 
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0 Y ] ~ I I I I I I ~ ~ I I 

0.0 0.5 T }  .0 1.5 
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Fig. 7. Joint probabil i ty distr ibution of  discrete wave heights and periods, p(H,T), for a trun- 
cated JONIWAP target spectrum. The heights and periods are normalized by their average 
values, < H ) ,  and < T>. 
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cient. Therefore, for the spectral shape studied, the discrepancy between the 
discrete and the original spectral estimate of the correlation coefficient is sig- 
nificantly reduced from its initial value by allowing the time lag between waves 
to vary around Tin. 

The last assumption (3) used to obtain the approximation 7h = 7s consists 
in estimating the height of a discrete wave as twice the value of the envelope 
function at the time of the crest. A better estimate of the discrete wave height, 
which is defined as the difference between the maximum and the minimum 
value of the surface elevation within a wave period, would be to use the value 
of the envelope function at points separated by half the wave period rather 
than by the whole period only. This improved estimate of H has been used by 
Tayfun (1990) to obtain the statistical distribution of zero-upcrossing wave 
heights. A new correlation coefficient can be estimated from the envelope 
function of a finite time series a(t) of N values sampled at intervals At by 
using an analog to Eq. (12) in which the wave heights are replaced by the 
appropriate values of the envelope function: 

1 1 N- (Tm/At) 

2o'2(a)(1-b ys(~-~m))N-Tm .=l 
At (28) 

[a( tn)+a( t .+T-~-) -2a][a( t .+ T m ) + a ( t . + ~ - ~ - ) - 2 a ]  

Noting that the value of the autocorrelation function of the wave envelope for 
a time lag T can be expressed as 

1 1 u-~rAt) 
7~(T)-tr2(a) T ~ [ a ( t n ) - a ] [ a ( t n + T ) - a ]  g - - - -  n=l 

At 

Eq. (28) can be rewritten as 

~"h "~ 1 Tm 3Tm 
2(i + ~,s (.~)) [2Ys (Tm ) "[- Ys (-~--) + ~'s ( - T ) ]  (29, 

This new estimate of 7n has been recently presented by Van Vledder (1993). 
According to Eq. (29), the new spectral estimate of the correlation coefficient 
between successive waves depends not only on the value of the autocorrela- 
tion of the wave envelope at the mean zero-upcrossing period, but also on 
values of this function at 1/2 and 3/2 of this time lag (Fig. 8 ). For the JON- 
SWAP spectrum, this new spectral coefficient is significantly increased to a 
mean value of 0.43 +0.005 from the initial 7~--- 7s(Tm) =0.3. This improved 
estimate of the discrete correlation coefficient has a mean value equal to the 
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Fig. 8. Autocorrelation function of the wave envelope function for a truncated JONSWAP 
spectrum. 

mean ?h value. Thus, the third assumption which consists in replacing the 
wave heights by 2a( t )  appears to be the main cause for ?h to be underesti- 
mated by the spectral parameter ?s. It is therefore also responsible for the 
inadequacy of  this spectral approach to model  the mean group length f 

The spectral parameter, ?s, is shown to be biased low because of  the as- 
sumption of  a fixed t ime interval and, to a greater extent, by assuming the 
wave height as twice the crest. It would be interesting to see how much of the 
difference between ?s and ?h could be explained by the combined effect of  the 
three assumptions analysed here. However, the incorporation of  the two ef- 
fects into an improved spectral coefficient is not a trivial task, and is left for 
further study. 

5. CONCLUSIONS 

Two different spectral approaches to the analysis of  wave grouping have 
been critically examined. In both cases, the suggested method is aimed at pro- 
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viding a reliable practical relationship between the familiar groupiness pa- 
rameter, the mean length of discrete wave groups f and a spectral parameter. 

The envelope theory (Longuet-Higgins, 1984) combined with a discrete 
counting correction scheme is based on the Gaussian noise theory, and relates 
f t o  the dimensionless bandwidth parameter, v. To account for the difference 
between the group characteristics extracted from the envelope function and 
the ones derived from the discrete waves, a correction scheme is applied to 
the mean group length prediction of the envelope theory. This correction, 
however, is found to be inadequate because ( 1 ) it uses an incorrect pdf dis- 
tribution for the envelope group length, and (2) it neglects an important split- 
ting effect by which envelope groups are divided by small excursions of the 
envelope function below the critical level. However, the errors due to these 
two deficiencies of the discrete counting scheme cancel at mid range o f~  and 
lead to a reasonable agreement between measured and predicted values. 

An alternative approach to wave groups analysis which treats the sequence 
of wave heights as a Markov chain (Kimura, 1980) is found to adequately 
model f i n  terms of the correlation coefficient between successive wave heights, 
~'h. However, the extension of the Kimura theory proposed by Battjes and Van 
Vledder (1984), in which 3'h is replaced by the spectral correlation coefficient 
~'s, is shown to systematically underestimate the mean group length j-for all 
but very wide or very narrow spectra (12% for a typical JONSWAP spec- 
t rum).  This is due to the fact that, for most of the time series examined, ~'s is 
consistently smaller than its discrete analog 3'h. The discrepancy between the 
two correlation coefficients is caused in part by the assumed fixed time lag 
between waves, but more importantly by assuming that the wave heights can 
be represented by twice the value of the envelope function at the time of the 
crests. Recently, Liu et al. (1993) examined the performance of this ap- 
proach in relating wave spectra and groupiness. They also found an un- 
derprediction for f o f  roughly 15O/o when x ~  0.65 (3'~ 0.4), leading them to 
conclude that the spectral correlation coefficient is a simple and unbiased 
group parameter for all but those relatively rare cases of very narrow spectra. 
However, this conclusion is dearly misleading given that a typical JONSWAP 
spectrum has a larger correlation coefficient value, with 3'h = 0.43. 

Given the pressing need, in the fields of coastal engineering and physical 
oceanography, for a robust parameterization of the wave groupiness in terms 
of the wave spectrum, the two methods analysed here undoubtedly represent 
valuable steps towards a satisfactory solution. However, as this study has 
demonstrated, care must be taken when applying these methods because the 
problem of relating groupiness characteristics of the wave field derived in the 
frequency and time domains has not been fully solved yet. Resolution of this 
difficulty, through either an improved discrete counting correction scheme or 
a better spectral estimate of 3'h, would lead to a more reliable prediction of the 
groupiness parameter, 
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