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Abstract

This study extends an energy-balance-equation wave model (a phase-averaging wave model) for

multidirectional random wave transformations to account for wave shoaling, refraction, diffraction,

reflection and breaking. Quadratic upstream interpolation for convective kinematics is used in the

discretization to reduce numerical diffusion.

Predictions using the present wave model are compared with Sommerfeld’s solutions for wave

transformation through a gap between breakwaters, experimental observations for wave

transformation due to a circular shoal, and field measurements for waves behind a breakwater.

The results of these comparisons show fairly good agreement.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the design of shore protection, it is necessary to estimate the nearshore wave

conditions. Sea waves propagate from offshore to the beach and change their heights,

lengths and directions according to the particular bathymetry and the presence of currents
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and structures. Shoaling, refraction, diffraction, reflection and wave breaking may all

occur. Since sea waves are random, accurate prediction of their transformation by these

combined processes is difficult.

There are various theories and transformation models for nearshore waves. Each of the

theories and models has certain advantages and limitations with respect to its applicability.

Their appropriateness will depend on the relative importance of the various physical

processes and the detail required at the target coastal site.

Mase and Kitano (2000) summarized the various random wave transformation models.

Among them, the Boussinesq family falls within the refined time domain class of models.

They give detailed information on wave profiles, wave set-up, averaged wave-induced

currents and so on, by solving the continuity equations of mass and momentum (Peregrine,

1967; Madsen et al., 1991, 1997a,b; Nwogu, 1993; Wei et al., 1995; Gobbi and Kirby,

1999). Boussinesq wave models are currently confined to applications involving relatively

small sea areas due to computation time and memory requirements. However, this

restriction may ease with the further development of computers.

Wave prediction models based on the energy balance equation or wave action equation

fall within the frequency domain class of models. They are suitable for applications

involving large sea areas. The calculated quantities are the spectral energy densities or wave

actions, which are phase averaged quantities slowly varying over several wavelengths. The

wave forecasting and hindcasting models of WAM (WAMDI group, 1988) and SWAN

(Booij et al., 1996) are based on the non-stationary phase averaging equation with source

terms. Originally, phase averaging wave models did not account for wave diffraction.

Recently, however, attempts have been made to introduce wave diffraction effects. The

method adopted by Resio (1988) was to smooth the energy density, S(f,q), at a point of (i,j),

as Sijðfn; qkÞZ
PpZC2

pZK2

PqZC1
qZK1 3pqSiðjCpÞðfn; qkCqÞ where 3pq are weight coefficients. Booij

et al. (1997), Rivero et al. (1997) and Holthuijsen et al. (2003) introduced the diffraction

effect into the characteristic velocities through the wave number containing the second

derivative of wave amplitude with respect to the spatial coordinates. Mase (2001) directly

introduced a diffraction term, formulated from a parabolic approximation wave equation,

into the energy balance equation. The resulting formulation is easy to solve and the

numerical scheme is very stable. In the model proposed by Mase (2001), the energy densi-

ties are smoothed at places where they are concentrated. Although the smoothing of energy

densities is similar to the treatment by Resio (1988), the arbitrariness is removed from the

coefficient 3pq, the number of components p and q, and the location of the smoothing to be

done. In the model employing the revised characteristic velocities, a smoothing technique

for spectral density instead of wave amplitude is needed for numerical stability.

The first order upwind difference scheme employed by Mase (2001) is numerically

stable due to numerical diffusion. The numerical diffusion term represented by the second

derivative is similar to the wave diffraction term. Nevertheless, in order to suppress

numerical diffusion separately from the effect of wave diffraction, quadratic upstream

interpolation for convective kinematics (QUICK), proposed by Leonard (1979), is

employed in the present wave model using an Extended Energy-Balance-Equation with a

Diffraction term, referred to here as the ExEBED wave model.

First, the effect of high-order differentiation is checked against the first-order solution

for a simple case of wave transformation. Secondly, the prediction using the ExEBED
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wave model is compared with the Sommerfeld theory for the case of wave transformation

through a gap between breakwaters in order to determine a suitable coefficient for the

diffraction term, and the computed spatial wave height distributions given by the ExEBED

model are shown together with Sommerfeld’s solutions. Thirdly, the predictions provided

by the ExEBED model are compared with the experimental results for wave

transformation due to a circular shoal and with the observed wave heights behind a

breakwater at a field site.
2. Wave model based on an energy-balance-equation with diffraction term

(the EBED wave model)

For steady-state conditions, the energy balance equation with an energy dissipation

term is written as

vðvxSÞ

vx
C

vðvySÞ

vy
C

vðvqSÞ

vq
ZK3bS (1)

where SZSðf ; qÞ is the directional wave spectral density, (x,y) are the horizontal

coordinates, q is the wave direction measured counterclockwise from the x-axis, 3b is the

coefficient of energy dissipation, and the characteristic velocities,(vx, vy, vq), are defined as

follows

ðvx; vy; vqÞ Z Cg cos q; Cg sin q;
Cg

C
sin q

vC

vx
Kcos q

vC

vy

� �� �
(2)

where C is the wave celerity and Cg is the group velocity.

A basic form of parabolic wave equation including a dissipation term may be written as

follows

2ikCCgAx C iðkCCgÞxA C ðCCgAyÞy ZKikC3bA (3)

where k is the wave number and A is the complex amplitude (see, for example, Radder,

1979; Kirby and Dalrymple, 1986). By multiplying Eq. (3) by A* (the conjugate of A) and

adding the conjugate of Eq. (3) multiplied by A, the resulting equation yields:

ðCgjAj
2Þx K

i

2u
fðCCgjAj

2
yÞy K2CCgAyA*

y g ¼ 3bjAj
2 (4)

Satisfying the real and imaginary parts of Eq. (4) yields Eqs. (5) and (6):

ðCgjAj
2Þx ZK3bjAj

2 (5)

ðCCgjAj
2
yÞy K2CCgAyA*

y Z 0 (6)

Since the wave energy EfjAj2, Eq. (5) denotes conservation of wave energy. Although

it is impossible to rewrite AyA*
y in Eq. (6) in terms of wave energy, it can be approximated

by Eyy/4. Thus:

ðCgEÞx ZK3bE (7)
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ðCCgEyÞy KCCgEyy=2y0 (8)

Having compared Eq. (7) with Eq. (1) and replaced wave energy E by spectral density

S, Mase (2001) proposed a modified energy balance equation with a wave diffraction term

as follows

vðvxSÞ

vx
C

vðvySÞ

vy
C

vðvqSÞ

vq
Z

k

2u
ðCCg cos2qSyÞy K

1

2
CCg cos2qSyy

� �
K3bS (9)

in which the nearly zero term

ðCCg cos2qSyÞy K
1

2
CCg cos2qSyy y0 (10)

has been added to the energy balance equation. Coefficient k is a free parameter to be

optimized in order to change the degree of diffraction. In the previous study of Mase

(2001), kZ2.5 was adopted. The method of adding terms which become identically zero at

some condition is similar to the methods employed by Madsen et al. (1991) and Kaihatu

and Kirby (1998) to improve the properties of the Boussinesq equations.
3. Discretization of the wave equation

Fig. 1 shows the grid system used in the discretization. The first term on the left-hand-

side of Eq. (9) is discretized as follows:

vðvxn
SÞ

vx
Z ðSijk

n vðiC1Þjk
xn

KSðiK1Þjk
n vijk

xn
Þ=dx (11)

where i and j denote the grid positions in x and y, respectively, n is the frequency number

and k is the wave direction number.
Fig. 1. Grid system.
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The second term is discretized using the QUICK scheme (Leonard, 1979):

vðvyn
SÞ

vy
Z

1

16dy
fviðjC1Þk

yn
ðKSiðjC2Þk

n C9SiðjC1Þk
n C9Sijk

n KSiðjK1Þk
n Þ

Kvijk
yn
ðKSiðjC1Þk

n C9Sijk
n C9SiðjK1Þk

n KSiðjK2Þk
n Þg

C
b

16dy
fjviðjC1Þk

yn
jðSiðjC2Þk

n K3SiðjC1Þk
n C3Sijk

n KSiðjK1Þk
n Þ

K jvijk
yn
jðSiðjC1Þk

n K3Sijk
n C3SiðjK1Þk

n KSiðjK2Þk
n Þg (12)

At the boundary of j, the first order upwind difference scheme is applied as follows:

vðvyn
SÞ

vy
Z

1

2vy
fðSiðjC1Þk

n CSijk
n ÞviðjC1Þk

yn
K ðSijk

n CSiðjK1Þk
n Þvijk

yn
g

K
b

2dy
fðSiðjC1Þk

n CSijk
n ÞjviðjC1Þk

yn
jK ðSijk

n CSiðjK1Þk
n Þjvijk

yn
jg (13)

where b is a weight constant; bZ1.0 is adopted in this study. The QUICK scheme is also

applied to the third term on the left-hand-side of Eq. (9) and the first order upwind

difference is used at the boundary of k. The central difference scheme is applied to the

diffraction term of Eq. (9). Consequently, the finite difference version of Eq. (9) finally

becomes:

A1Sijk
n CA2SiðjK2Þk

n CA3SiðjK1Þk
n CA4SiðjC1Þk

n CA5SiðjC2Þk
n

CA6SijðkK2Þ
n CA7SijðkK1Þ

n CA8SijðkC1Þ
n CA9SijðkC2Þ

n

ZKBSðiK1Þjk
n ði Z 1;.; I; j Z 1;.; J; k Z 1;.;K; n Z 1;.;NÞ (14)

where I and J are the total grid numbers, and K and N are the total numbers of angular and

frequency components, respectively. The coefficients in Eq. (14), A1–A9 and B, are

described in Appendix A.

Since S
ðiK1Þjk
n on the right-hand-side of Eq. (14) are known values, S

ijk
n are obtained by

solving algebraic equations. In the computer program, boundary conditions such as an

open sea boundary, a dissipative beach boundary and a reflecting wall boundary are taken

into account as follows.
3.1. Open sea boundary

The spectral density in the cell just outside the calculation area is set to be equal to the

value in the cell at the edge of the calculation area:

Sðx; y CDy; f ; qÞ Z Sðx; y; f ; qÞ (15)
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3.2. Dissipative beach boundary

The spectral density in the cell just outside the computation area is set to be zero:

Sðx; y CDy; f ; qÞ Z 0 (16)
3.3. Reflecting wall boundary

Fig. 2(a) shows the boundary conditions at a wall for reflection in the y-direction. At a

cell immediately adjacent to the sea area, the spectral density is set as

Sðx; y CDy; f ;Kq C2aÞ Z K2
rySðx; y; f ; qÞ (17)
Fig. 2. Reflecting boundaries: (a) reflection in y-direction and (b) reflection in x-direction.
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where Kry is the reflection coefficient and a is the angle of the structure (or beach) from

the x-axis. For reflection in the x-direction, the source of the reflected spectral density is

given as

Sðx CDx; y; f ;p Kq C2aÞ Z K2
rxSðx; y; f ; qÞ (18)

where Krx is the reflection coefficient and a is the angle of the normal line to the structure

from the x-axis, as shown in Fig. 2(b). It is very important to include the angle of

inclination when calculating reflected waves from structures in back-marching

calculations. Fig. 3 shows an example calculation for reflected waves from breakwaters;

Fig. 3(a) shows the arrangement in which the water depth is constant at 10 m, the incident

significant wave height and period are 1.0 m and 10 s, the directional spreading parameter

SmaxZ25, the predominant wave direction is 108 off the x-direction, and the reflection

coefficient of the breakwaters is set to be 0.9. Fig. 3(b) shows the calculated result for the

reflected significant wave height when the orientations of the two breakwaters are not
Fig. 3. Calculated results for reflected significant wave heights: (a) calculation arrangement; (b) calculated result

without considering orientation of breakwaters; and (c) calculated result considering orientation of breakwaters.



Fig. 4. Energy dissipation model: (a) Takayama et al.’s model (1991) and (b) Thornton and Guza’s model (1983).
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included in the reflection condition, and Fig. 3(c) gives the result taking the orientations

into account. It can be seen that Fig. 3(b) provides more realistic waves than Fig. 3(c).

The energy dissipation coefficient, 3b, is derived from two different models: Breaking

Model A uses Goda’s breaking criterion (Takayama et al., 1991); Breaking Model B

employs Thornton and Guza’s model (1983). Fig. 4 shows schematic explanations of the

two breaking models. In both models, the Rayleigh distribution is assumed for the wave

height distribution. Breaking Model A uses the breaker height, estimated by Goda’s

formula, at the right and left hand sides (that is, landward and seaward sides) of a cell, Hb,r

and Hb,l. The expected energy dissipation rate can be obtained from the shaded area,

sandwiched by Hb,r and Hb,l. In Breaking Model B, the distribution of breaking and broken

wave heights is assumed to be proportional to the Rayleigh distribution, as shown by the

shaded area in Fig. 4(b). Thornton and Guza (1983) derived the expected energy

dissipation rate from the shaded distribution together with the bore dissipation model. The

explicit forms of 3b derived from the two models are given by Takayama et al. (1991) and

Thornton and Guza (1983), respectively.

The significant wave height, Hs, the significant wave period, Ts, and the mean

wave direction are calculated as follows from the calculated S
ijk
n :

Hs Z 4:0
ffiffiffiffiffiffi
m0

p
(19)

Ts Z T0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=m2

p
= �T0 (20)

�q Z
XN

nZ1

XK

kZ1

qkSijk
n =m0 (21)

mp Z
XN

nZ1

XK

kZ1

f p
n Sijk

n (22)

where T0 and �T0 are the incident significant period and mean period, respectively.

Hereafter, the wave model based on the energy balance equation with a diffraction term

discretized by the QUICK scheme is designated as the ExEBED model. The wave model

described by Mase (2001) using the first order upwind difference scheme is referred to as

the EBED model. Finally, the wave models without diffraction, described by Eq. (1), using

the first order upwind difference scheme and the QUICK method are called the EBE and

ExEBE, respectively.
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4. Wave transformation through a gap between breakwaters
4.1. Monochromatic waves

Fig. 5 shows the wave height distributions behind a gap between breakwaters calculated

by the ExEBED and EBED models. The water depth is 12 m, the incident wave height is

1 m, the wave period is 10 s, and the incident wave angles, q, are 30 and 458. The gap

between the breakwaters, B, is divided into 15 cells. The coefficient, k, in the diffraction

term of Eq. (9) is set to be zero in order to investigate the effects of numerical diffusion.

The figure shows the wave height distributions at cross sections x/BZ0 (just behind the

breakwaters), 0.2, 0.4 and 0.6. The solid and dotted lines denote the results from the

ExEBED and EBED wave models, respectively.

The wave height distribution should remain rectangular as waves propagate through the

gap if there is no numerical diffusion. Note, however, that numerical diffusion produces

some smoothing. Nevertheless, the ExEBED model shows less smoothing as a result of
Fig. 5. Heights of monochromatic waves behind a gap in a breakwater: (a) incident angle qZ308 and (b) incident

angle qZ458.



Fig. 6. Contours of wave heights behind a gap in a breakwater: (a) EBED wave model and (b) ExEBED wave

model.
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numerical diffusion than the EBED wave model, though the difference appears small. As

the incident wave angle increases, so also does the degree of numerical diffusion.

Fig. 6 shows the contours of wave height for an incident wave angle of qZ308. As

expected, the contours spread gradually with increase in propagation distance. However,

the spread of the contours is narrower for the ExEBED model than for the EBED wave

model.
4.2. Multidirectional random waves

When the gap between breakwaters is wide and the incident random waves have a

broad angular spread, the EBE model agrees well with the Sommerfeld solutions

(Takayama et al., 1991). However, for a narrow gap and waves with a limited angular

spread, there is poor agreement between this model and the Sommerfeld results.

Here, the ExEBED model is compared with the results of the Sommerfeld theory for

different values of the coefficient k in the diffraction term. The water depth is 12 m, the

incident significant wave height and period are 1 m and 10 s, respectively, the energy

spectrum is of JONSWAP form with a peak enhancement factor of gZ3.3 and the wave

directional spreading function is of the Mitsuyasu type with peak values of SmaxZ10, 25

and 75. The gap width B varies from B/LZ2 to B/LZ8, where L (Z100 m) is the

wavelength. The grid sizes dx and dy are B/20, the number of component waves (of equal

energy with different frequency bands) is 10 and the number of component angles is 36.

The error, Err, in the model predictions is defined as follows:
Err Z

P
i

P
jðHt ij KHc ijÞ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j H2

t ij

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j H2

c ij

q (23)



Fig. 7. Error as a function of k: (a) B/LZ2 and (b) B/LZ8.
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in which Ht and Hc represent Sommerfeld’s theoretical results and the calculated values of

significant wave height, respectively, and (i,j) are the grid numbers.

Fig. 7 shows the errors as a function of the coefficient k in the diffraction term. The

influence of angular spreading is shown by changing the spreading parameter Smax. In

Fig. 7(a), for B/LZ2, the errors are minimized when kZ2.0, irrespective of the value of

Smax. In Fig. 7(b), for the case of B/LZ8, the error is also minimized for SmaxZ75 when

kZ2.0. For the other two spreading parameters, the errors remain small regardless of k.

For these reasons, kZ2.0 is adopted hereafter. Note that this value is a little smaller than

that used in Mase (2001).

Fig. 8 compares the calculated significant wave heights obtained from the EBE model

with the results of Sommerfeld’s theory for the case of B/LZ2 for SmaxZ25 and 75. The

solid lines denote the calculated results and the dotted lines are the Sommerfeld solutions.

For this case of a narrow gap, the agreement between the calculated values and

Sommerfeld’s theory is poor for all values of Smax. Predictions from the ExEBED model
Fig. 8. Comparison of wave height distribution calculated by EBE wave model and Sommerfeld solution:

(a) B/LZ2, SmaxZ25 and (b) B/LZ2, SmaxZ75.



Fig. 9. Comparison of wave height distribution calculated by ExEBED wave model and Sommerfeld solution:

(a) B/LZ2, SmaxZ25 and (b) B/LZ2, SmaxZ75.
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for the same cases are compared with Sommerfeld’s theory in Fig. 9. Here, agreement is

much better except near the gap and immediately behind the breakwaters where the wave

heights are small. Finally, Fig. 10 shows the diffraction coefficient Kd (ZHs/(Hs)0) at

cross-sections x/BZ1–3. The broken lines are Sommerfeld’s solutions, the dotted lines

represent results from the EBE model, and the solid lines are the results from the ExEBED

wave model.

From the evidence of Figs. 8–10, the ExEBED appears to be better than the EBE model,

whilst predictions from the ExEBED and EBED models are almost the same if suitable

values are adopted for coefficient k in the diffraction term, accounting for the reduction in

numerical diffusion provided by the ExEBED.
5. Wave transformation due to a circular shoal

In this section, results from the ExEBED wave model are compared with Chawla

et al.’s (1998) experimental data on wave transformation due to a circular shoal. The shoal,

with a radius of 2.57 m and a height of 0.37 m, was installed in a constant water depth of

0.4 m. A schematic view of the experimental setup and measurement positions is provided

in Fig. 11. Although seven transects were utilized in the experiments, wave height

distributions along four transects, denoted by the broken lines are used in this study. The

centre of the shoal (xc, yc) was at (5.0 m, 8.98 m). The wave-making paddles were along

the line xZ0 m. The random waves used in the experiments had a TMA spectrum and

angular spreading was simulated by using a wrapped normal spreading function. There

were two incident wave heights and two degrees of angular spreading. In all four cases, the

waves broke on top of the shoal.



Fig. 10. Wave height distributions at three sections: (a) B/LZ2, SmaxZ25 and (b) B/LZ2, SmaxZ75.

Fig. 11. Layout of circular shoal.
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In the present calculations, the grid size was set to be 0.1 m, the number of frequency

components was 20, the number of component angles was 36 and the coefficient k in the

diffraction term was taken as 2.0. Fig. 12 shows the normalized significant wave heights

along the four measurement lines for Test 3, where the incident waves were small and

angular spreading was narrow. The dotted and solid lines represent the calculated wave
Fig. 12. Comparison of calculated wave heights and experimental values (Test 3).



H. Mase et al. / Ocean Engineering 32 (2005) 961–985 975
heights using the energy dissipation of Breaking Models A and B, respectively, and the

solid circles are the measurements. Both forms of the ExEBED wave model underestimate

the sharp peak in the measured wave heights at cross-section E–E 0, and there is a

difference between the positions of the peaks in wave height at section A–A 0. Otherwise,

calculated results are almost the same except around yZ9 m at section E–E 0 and around

xZ5 m at section A–A 0.
Fig. 13. Comparison of calculated wave heights and experimental values (Test 4).
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Fig. 13 shows the normalized significant wave heights for Test 4, where the incident

waves were small and the angular spreading was wide. At section E–E 0, the predictions are

somewhat smaller than the measurements at the peak in wave height; except for this point,

there is good agreement when using Breaking Model B. On the other hand, the wave

model (REF/DIF S) used by Chawla et al. (1998) overpredicted the peak in wave heights at
Fig. 14. Comparison of calculated wave heights and experimental values (Test 5).
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section E–E 0. At section A–A 0, the ExEBED results using Breaking Model B are better

around xZ5 m than the results using Breaking Model A.

The case of large incident waves and narrow spreading is shown in Fig. 14. In this case,

severe wave breaking occurred. At cross section A–A 0, there are small measured wave

heights around xZ5.5 m. The predictions using Breaking Model A do not show this drop
Fig. 15. Comparison of calculated wave heights and experimental values (Test 6).
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in wave heights. However, although the predictions using Breaking Model B show the

wave height drop, there is a problem in reproducing the large wave height at yZ9 m at

section E–E 0.

Finally, Fig. 15 compares the predictions and measurements for Test 6 involving large

incident waves and a wide angular spread. Again, the small wave heights around xZ5.0 m

at section A–A 0 are not reproduced by the ExEBED using Breaking Model A. The

experiments show a double peak in the wave height distribution. Nevertheless, although

there are some differences between the experimental data and the ExEBED wave model

using Breaking Model B, Figs. 12–15 suggest that the ExEBED using this breaking model

generally provides good results.
6. Wave transformation at a field site

Fig. 16 shows the bathymetry to which the wave prediction models were applied. In the

figure, the symbol ‘O’ denotes the location of the offshore wave measurements and the

symbol ‘X’ denotes the wave gauge behind the breakwater. Eleven sets of wave data were
Fig. 16. Field bathymetry.



Fig. 17. Calculated result of spatial wave height distribution by the ExEBED.
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used: the significant heights at the offshore point ranged from 3.5 to 5.5 m, the significant

periods from 11 to 14 s, and the main incident angles from K2 to K108.

A calculated result for the wave height distribution, shown by contour lines and a vector

plot, is shown in Fig. 17 where the incident waves have HsZ4.0 m, TsZ11 s, qZ08, and

SmaxZ25. Fig. 18 compares the measured wave heights with the calculated values using

the EBE, EBED, ExEBE and ExEBED models. Generally, predicted values lie in the

range G40% of the measured values. However, it is hard to say, from Fig. 18, which wave

model is best. The differences between predictions by the four wave models are not large

and the agreement between the observations and the predictions provided by all of the

models is fairly good. Generally speaking, if diffraction effects are included, the wave

heights behind the breakwater are larger, as would be expected.
7. Conclusions

This study extends an energy-balance-equation wave model for multidirectional

random wave transformations to account for the effect of wave diffraction and to reduce



Fig. 18. Comparison of observations and predictions for waves at a field site.
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numerical diffusion. The predictions by the wave model based on the energy-balance-

equation with diffraction (the ExEBED wave model) were validated against the results of

Sommerfeld’s theory for wave transformation through a gap between breakwaters. It was

also validated against Chawla et al.’s (1998) measurements of wave conditions around a

circular shoal and against field observations.

The ExEBED wave model has less numerical diffusion than the EBE wave model using

the first order upwind scheme. Comparison of its predictions, using Thornton and Guza’s

breaking model, with the measurements by Chawla et al. (1998) showed that although

there are some differences, particularly where the wave height distribution is sharply

peaked due to wave focusing or where it decreases abruptly due to wave breaking,

measured and predicted values are in generally satisfactory agreement. Concerning the

field results, the agreement between observations and predictions using ExEBED is fairly

good. Generally speaking, the predicted wave heights behind the breakwater are larger, if

diffraction effects are included.
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Appendix A. Coefficients in Eq. (14)

The coefficients in Eq. (14), A1–A9 and B, are as follows:
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B Z vijk
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=dx (A10)
At the boundaries of j or k, the following coefficients are used.
(1)
 Both j and k are on the boundary:
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 Only j is on the boundary:
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