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ABSTRACT

The receiver operating characteristic (ROC) curve is a two-dimensional measure of classification performance.
The area under the ROC curve (AUC) is a scalar measure gauging one facet of performance. In this short article,
five idealized models are utilized to relate the shape of the ROC curve, and the area under it, to features of the
underlying distribution of forecasts. This allows for an interpretation of the former in terms of the latter. The
analysis is pedagogical in that many of the findings are already known in more general (and more realistic)
settings; however, the simplicity of the models considered here allows for a clear exposition of the relation. For
example, although in general there are many reasons for an asymmetric ROC curve, the models considered here
clearly illustrate that an asymmetry in the ROC curve can be attributed to unequal widths of the distributions.
Furthermore, it is shown that AUC discriminates well between ‘‘good’’ and ‘‘bad’’ models, but not between
good models.

1. Introduction

Consider the problem of assessing the quality of fore-
casts produced for binary observations (here labeled 0
and 1). The forecast quantity may be a continuous quan-
tity ranging from 2` to 1`, or it may be a probability,
ranging from 0 to 1. It was shown by Murphy and Wink-
ler (1987, 1992) that this problem is best cast into a
framework based on the joint probability distribution of
the forecasts and observations. Figure 1 depicts the gen-
eral situation, where L0 and L1 are the likelihoods for
the two classes. In other words, Li(x) is the probability
of the forecast x, given that the observation is from the
ith class.1 This figure illustrates an example of what
Murphy and Winkler call a discrimination diagram.
There, it was shown that the quality of forecasts can be
assessed with complete generality in terms of several
such diagrams; other diagrams gauge different facets of
that quality, for example, refinement, resolution, reli-
ability, etc.

Meteorologists (Harvey et al. 1992; Mason 1982; Ma-
son and Graham 1999; Stephenson 2000; Wilks 2001;
Atger 2004) have also become interested in a procedure
heavily utilized in medical circles (Dorfman and Alf

1 For a given dataset, a normalized histogram of x is the best way
of visualizing the likelihood.
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1969; Dorfman et al. 1997; Metz et al. 1998; Shapiro
1999; Zhou et al. 2002; Zou 2003; Coffin and Sukhatme
1997). The procedure is based on the receiver operating
characteristic (ROC) curve, sometimes referred to as
relative operating characteristic. In its simplest form it
is a parametric plot of the hit rate (or probability of
detection) versus the false alarm rate, as a decision
threshold is varied across the full range of a continuous
forecast quantity. The diagonal line corresponds to ran-
dom forecasts, and the amount of concavity is taken to
be a measure of performance. The area under the ROC
curve (AUC) is often taken as a scalar measure (Hanley
and McNeil 1982). An AUC of 0.5 reflects random fore-
casts, while AUC 5 1 implies perfect forecasts. It has
also been shown by Mylne (1999) and Richardson
(2000, 2001) that AUC is closely related to the eco-
nomic value of a forecast system.

The hit rate and the false alarm rate can be computed
from the following likelihoods:

` `

H 5 L (x) dx, F 5 L (x) dx, (1)E 1 E 0

t r

where t is the decision threshold. The upper limit of the
integral corresponds to the maximum allowed value of
x. For probabilistic forecasts, that limit is 1.

The ROC framework is somewhat different from the
Murphy–Winkler framework. For example, for proba-
bilistic forecasts the Murphy–Winkler framework does
not require, and indeed discourages, the reduction of the
forecasts into categorical classes. The ROC analysis, by
contrast, is based on the contingency table and, there-
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FIG. 1. A generic situation involving a forecast of two classes.

FIG. 2. Examples of ROC curves representing different levels of
performance quality. The diagonal line corresponds to random fore-
casts (i.e., poor performance), while the curves away from the di-
agonal represent higher levels of performance. The following features
are noted: (a) symmetric ROC curves, (b) symmetric and asymmetric
curves, also overlapping one axis, and (c) extremely concave curves.

fore, requires the introduction of a decision threshold
for the purpose of reducing the continuous forecasts into
binary forecasts. Of course, the introduction of a thresh-
old does not imply that ROC analysis is in any way
inferior to the Murphy–Winkler framework; it is simply
another method of assessing performance, with an em-
phasis on different facets of performance. The Murphy–
Winkler framework is more suitable for comparing dif-
ferent sets of forecasts (e.g., from two forecasters),
while the explicit presence of a decision threshold in
ROC analysis lends itself to the situation where a de-
cision must be made, or action must be taken, in re-
sponse to forecasts.

In this paper, a number of questions are addressed
regarding the shape of ROC curves. A few examples
are provided to motivate the questions, and five toy
models are utilized to answer the questions. The toy
models, although somewhat unrealistic, are designed to
be progressively better approximations to the general
problem depicted in Fig. 1. The primary aim of this
study is to introduce an awareness of the connections
between the Murphy–Winkler framework and ROC
analysis. As such, the results reported here are specific
to the toy models considered and are unlikely to be
generally true. Although one model—based on Gaus-
sians—is likely to be generally valid, all of the consid-
ered examples are sufficiently flexible to allow for a
number of ROC behaviors observed in realistic situa-
tions. The simplicity of the models offers a transparent
environment wherein observed ROC behaviors can be
explained in terms of more basic quantities, namely the
parameters of the class-conditional distribution of fore-
casts (i.e., the likelihoods).

Figure 2a displays 16 ROC curves representing dif-
ferent levels of performance. These curves gauge the
performance of a Markov chain model for forecasting
tornadic activity in four different regions of the United
States, during four seasons (Drton et al. 2003). The
behavior of these curves is canonical in that they do

what they are expected to. They all begin from the point
(0, 0) and end at (1, 1). But note the high degree of
symmetry about the diagonal(s). Figure 2b displays an-
other set of 16 ROC curves; this time from a statistical
model for predicting hail size (Marzban and Witt 2001).
Although, these curves are not pathological in any
sense, they do display a few features that are common
to many ROC curves. The lowest performing models
have symmetric ROC curves, but the midrange models
begin to loose that symmetry. A natural question to ask
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FIG. 3. Schematics of (top) uniform class-conditional distributions,
(middle) the corresponding ROC curve, and (bottom) the AUC curve
as a function of dc 5 c1 2 c0.

is if this asymmetry can be explained in terms of the
underlying distributions?

Another feature that often emerges is the extensive
overlap of the ROC curve with one (or two) of the axes
of the diagram. In Fig. 2b, this can be seen in the most
concave curves (i.e., corresponding to the best-perform-
ing models). These yield ROC curves that overlap the
top axis for all false alarm rates higher than 0.4. What
is the explanation for this type of overlap? And what
about an overlap with the y axis?

Another type of asymmetry (not shown here) arises
when the ROC curve crosses the diagonal at some (usu-
ally one) point. What causes this type of crossover?

Many users of ROC curves observe that in dealing
with a wide range of forecasts in different situations,
most forecasts appear to lead to highly concave ROC
curves, or equivalently high AUC values. AUC values
of, say, 0.9995 are not uncommon. Figure 2c displays
eight sets of ROC curves with extreme concavity. These
are related to a neural network developed for the pre-
diction of ceiling and visibility (Marzban et al. 2003).
The forecasts underlying the curves have different fore-
cast characteristics (in terms of the various attributes of
probabilistic forecasts computed within the Murphy–
Winkler framework), yet they all lead to very concave
ROC curves. The AUC values for these curves vary
from 0.990 to 0.996. Why are these AUC values ex-
ceedingly near 1? Is it because the forecasts are of ex-
traordinary quality? Or is it an artifact of the AUC itself?
If the former is true, then a histogram of all AUC values
would be right-peaked (or show a heavy tail to the left).
This is difficult to test for, because the necessary data
would be difficult to compile. On the other hand, if the
culprit is the measure itself, then testing that hypothesis
would be unnecessary, for an explanation would then
be at hand. And what sort of artifact would lead to near-
one AUC values?

As mentioned above, although the two approaches
have different emphases, they are related. After all, the
quantities from which an ROC curve is derived—hit
rate and false alarm rate—are areas under the condi-
tional distributions, above some decision threshold.
Moreover, although the computation of ROC curves
does not require knowledge of these distributions, an
assessment of the statistical significance of ROC curves
does (Dorfman and Alf 1969; Hanley and McNiel 1982;
Stephenson 2000; Dorfman et al. 1997). For example,
in order to compute standard errors for ROC or AUC
(in a parametric approach) one makes some assumptions
regarding these underlying distributions. It is natural,
then, to utilize the connection between the ROC curve
and the underlying distributions to answer the above
questions. The answers, then, offer a means of inter-
preting ROC curves at a more fundamental level.

In summary, here, several toy models are utilized to
relate some characteristic features of ROC curves with
features of the underlying distributions. As such, the
shape of the ROC curve can be interpreted or ‘‘ex-

plained.’’ Knowledge of the underlying distributions can
guide the development of better forecasts. AUC is also
examined within the toy models. It is important to em-
phasize that the distributions examined here are toy
models and mostly of pedagogical value. The five dis-
tributions considered are shown in Figs. 3a–7a. They
are referred to as 1) uniform, 2) triangular with uncon-
strained support, 3) Gaussian, 4) triangular with con-
strained support, and 5) beta distributions. The first three
are appropriate for cases where the forecast quantity
varies over the real line from -` to 1`, while the last
two apply to probabilistic forecasts.
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FIG. 4. Same as in Fig. 3 but for triangular distributions over
unbounded forecasts. FIG. 5. Same as in Fig. 3 but for Gaussian distributions.

2. Uniform distribution

A generic situation involving forecasts with uniform
distributions is shown in Fig. 3a. There are four param-
eters involved: two means, c0 and c1, and two half-
widths, w0 and w1.2 Without loss of generality, it is
assumed that c1 $ c0. It is then straightforward to show
that the false alarm rate and the hit rate are given by

2 Throughout this paper, the symbols c and w refer to measures of
central tendency and half-width, respectively, of the respective dis-
tribution. For the case of the Gaussian, they coincide with the mean
and the standard deviation of the distribution.

c 1 w 2 t c 1 w 2 t0 0 1 1F 5 and H 5 , (2)
2w 2w0 1

where t is the threshold above (below) which a case is
classified into class 1 (0).3

The equation for the ROC curve follows immediately
from (2):

w dc 1 dw0H 5 F 1 , (3)
w 2w1 1

3 The expressions in (2) are specific to Fig. 3a; changing the relative
position of c0 and c1, or the magnitudes of the widths, yields different
expressions.
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FIG. 6. Same as in Fig. 3 but for bounded (e.g., probabilistic)
forecasts.

FIG. 7. Same as in Fig. 3 but for beta distributions. The corre-
sponding parameters are b0 5 2, b1 5 3, a0 5 2, with a1 taking values
2, 3, 4, and 5 (from top to bottom).where dc 5 c1 2 c0 and dw 5 w1 2 w0. Figure 3b

displays the situation. It can be seen that the ROC curve
consists of three line segments, with the equation for
the middle segment given by (3).

Several observations can be made. First, (3) implies
that two models with different means and widths can
yield the same ROC curve if they have the same slope
and intercept (see Fig. 3b). As such, the ROC curve
does not uniquely specify the underlying parameters. In
other words, there is a family of underlying distributions
that give rise to the same ROC curve. This is a known
fact even for more general distributions (Zhou et al.
2002).

Second, the length of the vertical segment overlap-
ping the y axis is determined by two quantities, dc and
w0/w1. This is sensible since the ‘‘goodness’’ of the
underlying model is determined by both quantities. By
contrast, the slope of the middle segment depends only
on the ratio of the half-widths (and not dc). As such,
the inequality of w0 and w1 reflects itself as an asym-
metric ROC curve.

Given the analytic expression for the ROC curve
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(3), it is then possible to compute the area under the
curve4:

21 D
AUC 5 1 2 , (4)1 28 Ïw w0 1

where

D 5 dc 2 (w 1 w ).0 1 (5)

Since dc # w0 1 w1 for the arrangement displayed in
Fig. 3a, it can be seen that increasing dc leads to better
performance. Furthermore, decreasing w0 or w1 can also
yield better performance. In short, model selection based
on AUC selects for sharp (i.e., narrow width) and well-
separated class-conditional distributions. Note that in
terms of the underlying distributions, each of the quan-
tities dc, w0, and w1 can be interpreted as a performance
measure.

As a function of the measure dc, AUC is a parabola.
Figure 3c shows an instance for w0 5 w1 5 0.4 and w0

5 0.4, w1 5 0.6. The AUC curve rises rapidly and then
flattens. It is this nonlinear behavior that explains the
appearance of near-one AUC values in practice. For
example, in Fig. 3c, as a model improves in terms of
dc, its AUC value increases quickly to 0.99 at around
dc ; 0.8. And the infinity of better models with dc $
0.8 will result in only comparable AUC values, still
around 0.99. In other words, the frequent appearance of
high AUC values in practice suggests that the corre-
sponding models are all in the ‘‘good’’ range of the
AUC curve. One can say that AUC discriminates well
between ‘‘good’’ and ‘‘bad’’ models, but not between
good models, where those adjectives are gauged in terms
of the underlying distributions.5 Similar arguments ap-
ply to the performance measures w0 and w1; AUC flat-
tens off for sharper distributions.

3. Triangular distribution with unconstrained
support

A better, but still crude, approximation is shown in
Fig. 4a. For this case one has

21 c 1 w 2 t0 0F 5 ,1 22 w0

21 t 2 c 1 w1 1H 5 1 2 . (6)1 22 w1

The ROC curve is given by
2D 2 w Ï2F1 0

H 5 1 2 (7)1 22 w1

4 Again, this equation is specific to the arrangement considered in
Fig. 3a.

5 This is not a problem in model selection, because the standard
error of the AUC converges to 0, as AUC approaches 1 (Hanley and
McNeil 1983).

and is shown in Fig. 4b. Evidently, this ROC curve is
more realistic than that of the previous section. A com-
mon feature, however, is the overlap with the axes.

From the endpoints of the middle segment (Fig. 4b),
it follows that the ROC curve is asymmetric if and only
if w0 ± w1. Specifically, if the concavity is mostly to
the left, then w0 , w1. Bowing to the right suggests w0

. w1. Note that the asymmetry is independent of ci.
Also, the two extremes of the curves—F 5 0 and H

5 1—convey some useful information as well. Note
that if dw 5 dc, then the right extreme of the curve
meets the (1,1) point without overlapping the H 5 1
line. Similarly, dw 5 2dc implies that the left extreme
of the curve meets the (0,0) point without overlapping
the F 5 0 axis. Therefore, the amount of overlap of the
curve and the two axes is a measure of the distance
between the two means relative to the difference be-
tween the half-widths. AUC can be computed to be

41 D
AUC 5 1 2 . (8)1 28 Ïw w0 1

Like the expression for AUC in the previous case [Eq.
(4)], this expression also displays an affinity for the
quantity D. Furthermore, noting the quartic power of D,
in comparison with the quadratic power in (4), it is clear
that this AUC is more nonlinear in that it rises faster
and has a broader plateau. Figure 4c displays this quartic
dependence. This further flattening of the AUC curve
exacerbates AUC’s inability to discriminate between
good models.

4. Gaussian distribution

Among the three distributions dealing with unbound-
ed forecast quantities, the Gaussian offers the most re-
alistic approximation. However, the expressions for
ROC and AUC are not as transparent because of the
appearance of certain integrals. The likelihood for the
forecasts in the ith class is written as (see Fig. 5a)

1 22(1/2)[(x2c )/w ]i iL (x) 5 exp . (9)i
2Ï2pwi

Then, (1) implies

c 2 t c 2 t0 1F 5 F , H 5 F , (10)1 2 1 2w w0 1

where F(x) is the standard normal cumulative distri-
bution:

x1 22(1/2)zF(x) 5 exp dz. (11)EÏ2p 2`

Eliminating the threshold t from these equations leads
to a formal expression for the ROC curve:

dc w0 21H 5 F 2 F (F ) , (12)[ ]w w1 1
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where F21 is defined by F21F 5 1. This expression is
not too illuminating, but it does allow one to compute
some useful quantities. For example, it implies that if
plotted on a double-probability paper, the ROC curve
will be a straight line with slope w0/w1 and intercept
dc/w1. Note the similarity to (3) for the case of uniform
distributions. It also allows one to compute the slope of
the ROC curve to be L1(t)/L0(t).6 Substituting (9) into
this expression yields a formula (not shown) that implies
that the slope of the ROC curve at its ends is either 0
or `. In other words, the ROC curve is always tangent
to the axes.

A common error is to assume that a theoretical ROC
curve based on Gaussian distributions is constrained to
obey the canonical ROC behavior, that is, concave either
above or below the diagonal. Although this is true for
the symmetric case where w0 5 w1, in general the ROC
curve is not strictly concave. It is easy to show that if
w0 ± w1, then the ROC curve crosses the diagonal at
precisely one point (other than the end points). Proof:
The ROC curve will cross the diagonal where F[(c0 2
t)/w0] 5 F[(c1 2 t)/w1], that is, when c1/w1 2 c0/w0 5
(1/w1 2 1/w0) t. This equation has only one nontrivial
solution when w0 ± w1. The value of F at this crossing
point is given by F(dc/dw). Figure 5b illustrates this
crossover.

This result must be interpreted cautiously. Specifi-
cally, it does not imply that an apparently concave em-
pirical ROC curve suggests w0 5 w1. Even if w0 ± w1,
the ROC curve can still appear to be mostly concave
(i.e., without a crossover). This is because F(x) is a
rapidly increasing function of x. In fact, it is nearly 0
or 1, when x is nearly 12 or 22, respectively. Therefore,
a concave empirical ROC curve suggests one of two
possibilities: Either w0 5 w1, or w0 ± w1, but with | dc/
dw | $ ;2.

The AUC can be computed to be

dc
AUC 5 F . (13)1 22 2Ïw 1 w0 1

Again the AUC is a nonlinear function of all the un-
derlying parameters that assess performance: dc, w0, and
w1. The functional dependence on the former is shown
in Fig. 5c. Clearly, the nonlinearity of the curve is pre-
sent even in this realistic example. Again, two good
models, with one distinctly superior to the other (e.g.,
with different values of dc) can have comparable and
high AUC values. Equation (13) also explains why em-
pirical AUC values in practice are often in the 0.9 or
higher range. The reason can be traced again to the
behavior of F(x). As mentioned previously, modestly

6 In decision theoretic applications where one seeks an ‘‘optimal’’
decision threshold, this expression is often given to argue for the
threshold at which slope 5 1. However, that choice assumes that the
two classes have equal prior probabilities, pi. Sometimes p1 and p0

are referred to as the base rate and its complement. The optimal
threshold should be the one corresponding to slope 5 p0/p1.

large values of x, for example 2, correspond to near-1
values for F.

5. Triangular distribution with constrained
support

In some situations the forecast quantity is a proba-
bility, calling for distributions that are restricted to that
range. The first of the two such distributions considered
here is shown in Fig. 6a. This model does assume that
the forecasts do span the full range of possibilities (i.e.,
0 to 1). In the language of Murphy and Winkler (1987,
1992), the forecasts are assumed to be well refined. Also
note that in this approximation, the only parameters are
the two modes: c0 and c1.7

Three different regions must be considered: t # c0,
c0 # t # c1, and t $ c1. Unlike the previous examples,
here there exists no region that overlaps with the axes;
this is a consequence of the aforementioned assumption
about the refinement of the forecasts. The respective
ROC curves are

c0H 5 1 2 (1 2 F ),
c1

1
2H 5 1 2 [1 2 Ï(1 2 c )F] , and0c1

1 2 c0H 5 F. (14)1 21 2 c1

Note that the ROC curves for the first and third regions
are linear, while that of the middle section is not. Figure
6b displays the ROC curve.

From an expression of the slope, it follows that a
symmetric ROC curve imples c0 1 c1 5 1. Any other
combination of c0 and c1 will result in an asymmetric
curve. It is also easy to show that there does not exist
a crossover; a nontrivial curve is either always above
or always below the diagonal. It also follows that the
ROC curve will bow to the left if c0 ; 0.5, and to the
right if c1 ; 0.5.

Finally, the AUC can be computed to be

31 1 (c 2 c )1 0AUC 5 1 (c 2 c ) 2 . (15)1 02 2 6c (1 2 c )1 0

First, note that AUC depends on two independent quan-
tities: (c1 2 c0) and c1(1 2 c0). For small values of the
former, that is; poor performance, the first two terms in
(10) dominate the expression, leading to a linear de-
pendence on c1 2 c0. However, for better performance
values, the last term begins to penalize (because of the
negative sign) AUC in a nonlinear fashion. This non-

7 First, note that in this section, c stands for the mode (not mean)
of the distribution. Also, the widths of the distributions are not in-
dependent quantities. The mean is given as (1 1 c)/3, and the variance
as (1 2 c 1 c2)/18.
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linear penalty again leads to a flattening of the AUC
curve for better models. Figure 6c displays the AUC as
a function of the measure c1 2 c0. The reason the flat-
tening is not evident in this figure is that the simplicity
of the model does not allow high values of AUC. In
fact, according to (15) the highest allowed value of AUC
is only 5/6 or 0.83.

6. Beta distribution

A more realistic likelihood for probabilistic forecasts
is the beta distribution:

1
a 21 b 21i iL (x) 5 x (1 2 x) , (16)i B(a , b )i i

where B(ai, bi) 5 . An instance is1 a 21 b 21i i# x (1 2 x)0

shown in Fig. 7a. Note that, in this example, the dis-
tributions themselves are possibly asymmetric (or
skewed). If ai, bi are integers, then one can write B(ai,
bi) 5 [(ai 2 1)!(bi 2 1)!]/[(ai 1 bi 2 1)!]. The mean,
mode, and variance can be computed by

a a 2 1i ic 5 , m 5 , andi ia 1 b a 1 b 2 2i i i i

a bi i2w 5 . (17)i 2(a 1 b ) (a 1 b 1 1)i i i i

In this case, given that the likelihoods are written in
terms of ai and bi, it is natural to ask what combination
of these quantities constitutes a measure of performance.
From a decision theoretic point of view, the natural quan-
tity is L1(x)/L0(x), and this ratio is a function of (a1 2
a0) and (b1 2 b0).8 Therefore, these two differences are
natural measures of performance. Note that each of these
measures depends on both c and w. For example,

2 2c (1 2 c ) c (1 2 c )1 1 0 0a 2 a 5 (c 2 c ) 1 2 . (18)1 0 1 0 2 2[ ]w w1 0

The corresponding ROC curve is shown in Fig. 7b.
The analytic expressions for F and H are not illumi-
nating, but the slope of the ROC curve is

B(a , b )0 0 a 2a b 2b1 0 1 0slope(t) 5 t (1 2 t) . (19)
B(a , b )1 1

A symmetric ROC curve requires the product of the
slopes at the end points of the curve to be inversely
proportional. And for that to occur one must have (a1

1 b1) 5 (a0 1 b0). It follows that the ROC curve is
symmetric if (a0 1 b0) 5 (a1 1 b1), which in terms of
the means and variances translates to

c (1 2 c ) c (1 2 c )1 1 0 05 . (20)
2 2w w1 0

8 Technically, this expression should be multiplied by the ratio of
the respective prior probabilities as well. They are neglected here
because they are not functions of x.

An apparent asymmetry in an empirical ROC curve,
then, implies that this equation is violated. Note that in
the symmetric ROC case, the two performance mea-
sures, a1 2 a0 and b1 2 b0, differ only in sign.

It also follows that a crossover occurs when a1 . a0

and b1 . b0, because the slopes at the two extremes are
then both less than 1. These two inequalities together
imply

c (1 2 c ) c (1 2 c )1 1 0 0. . (21)
2 2w w1 0

Compare this with (20), which is the condition for a
symmetric ROC curve. The quantity c(1 2 c)/w2 de-
termines both the symmetry and the crossover of the
ROC curve. The crossover is displayed in Fig. 7b.

The expression for AUC is somewhat tedious to de-
rive, but for the case of integer parameters can be com-
puted as

1 1
AUC 5

(a 1 b ) B(a , b )1 1 0 0

a1 B(a 1 a 2 k, b 1 b 1 k 2 1)0 1 0 13 . (22)O
B(a 2 k 1 1, b 1 k)k51 1 1

Figure 7c displays a plot of the AUC as a function of
the measure (a1 2 a0) for a few different values of the
parameters. The nonlinearity is now evident when the
AUC reaches near-1 values.

7. Summary and conclusions

Several models are examined for the purpose of ex-
plicitly illustrating some features of ROC curves and
the area under the curve (AUC). The findings aid in
interpreting the shape of the ROC curve in terms of the
parameters defining the class-conditional distributions
of the forecast quantity. In addition to providing a ped-
agogical exposition of the ROC analysis, the work also
offers some guidance for interpreting ROC curves and
the AUC. The guidance is based on only the models
examined here. As such, the generality of the results is
not assured by any means. Nevertheless, all of the ex-
amples shown in Fig. 2 are found to be completely
consistent with the findings here. The following state-
ments should be interpreted only as qualitative guid-
ance. More quantitative statements are found in the text.

For unbounded forecasts, an asymmetric ROC curve
suggests unequal widths for the underlying distribu-
tions. If the class with the larger mean is labeled as 1,
then a concavity to the top suggests w0 . w1, and con-
cavity to the bottom suggests w0 , w1. In other words,
in attempting to explain any asymmetry in an empirical
ROC curve, it is advisable to examine the widths of the
underlying distributions. The amount of overlap with
the axes is also a measure of the difference in the widths.
The crossing of the diagonal by a ROC curve suggests
that the quantity | dc/dw | is smaller than some critical
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value. For example, if the distributions are Gaussian,
then that critical value is approximately 2.

For bounded forecasts, the distributions examined
here do not generate an overlap with the axes. The ex-
istence of a significant overlap in an empirical ROC plot
suggests that the underlying distributions are different
from the ones examined here in some significant way.
The symmetry and crossover of the ROC are determined
by a combination of means and variances, for example,
(20).

For both bounded and unbounded forecasts, the AUC
increases nonlinearly with respect to natural measures
of forecast quality derived from parameters of the un-
derlying distributions. Moreover, in the examples con-
sidered here, the more realistic models display more of
this nonlinearity. The nonlinearity is such as to reduce
the effectiveness of the AUC in assessing performance,
as performance increases. As such, the frequent occur-
rence of near-1 AUC values observed empirically is an
indication that many forecasts are of ‘‘reasonable’’ qual-
ity.
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